导热油
导热油介绍

导热油介绍一、简介导热油又称传热油,正规名称为热载体油(GB/T4016-83),英文名称为HeattransferOil,所以也称热导油,热煤油等。
导热油、是一种热量的传递介质,由于其具有加热均匀,调温控制温确切,能在低蒸汽压下产生高温,传热效果好,节能,输送和操作便利等特点,近年来被广泛应用于各种场合,而且其用途和用量越来越多。
二、导热油的类型1.烷基苯型(苯环型)导热油这一类导热油为苯环附有链烷煌支链类型的化合物,属于短之链烷粒基蔡(包括甲基、乙基、异丙基)与苯环结合的产物。
其沸点在170~180o C,凝点在-80。
C以下,故可做防冻液使用,此类产品的特点是在适用范围内不易出现沉淀,异丙基附链的化合物尤佳。
2、烷基蔡型导热油这一类型导热油的结构为苯环上连接烷粒支链的化合物。
它所附加的侧链一般有甲基、二甲基、异丙基等,其附加侧链的种类及数量决定化合物的性质。
侧链单于甲基相连的烷基蔡,应用于240~280°C范围的气相加热系统。
3、烷基联苯型导热油这一类型的导热油为联苯基环上连接烷基支链一类的化合物。
它是由短链的烷基(乙基、异丙基)与联苯环相结合构成,烷基的种类和数量决定其性质。
烷麻基数量越多,其热稳定性越差。
在此类产品中,由异丙基的间位体、对位体(同分异构体)与联苯合成的导热油品质最好,其沸点>330°C,热稳定性亦好,是在300~340。
C范围内使用的理想产品。
4、联苯和联苯醛低熔混合物型导热油这一类型的导热油为联苯和联苯酸低熔混合物由26.5%的联苯和73.5%的联苯醛组成。
熔点为12。
(:,世界上最早使用的合成芳烧导热油是DoWtherm,其特点是热稳定性好,使用温度高(400℃)。
此类产品由于苯环上没有与烷峰基侧链连接,而在有机热载体中耐热性最正确。
这种凝点(12.3。
C)低熔混合物,在常温下,沸腾温度在256~258°C范围内使用比较经济。
这是由于两种物质的熔点均较高(联苯为<71。
导热油

导热油导热油又称传热油,正规名称为热载体油,也称热导油,热煤油等。
导热油是一种热量的传递介质,由于其具有加热均匀,调温控制温准确,能在低蒸汽压下产生高温,传热效果好,节能,输送和操作方便等特点,近年来被广泛应用于各种场合,而且其用途和用量越来越多。
主要特点导热油具有抗热裂化和化学氧化的性能,传热效率好,散热快,热稳定性很好。
导热油作为工业油传热介质具有以下特点:1在几乎常压的条件下,可以获得很高的操作温度。
即可以大大降低高温加热系统的操作压力和安全要求,提高了系统和设备的可靠性;2可以在更宽的温度范围内满足不同温度加热、冷却的工艺需求,或在同一个系统中用同一种导热油同时实现高温加热和低温冷却的工艺要求。
即可以降低系统和操作的复杂性;省略了水处理系统和设备,提高了系统热效率,减少了设备和管线的维护工作量。
即可以减少加热系统的初投资和操作费用;3在事故原因引起系统泄漏的情况下,导热油与明火相遇时有可能发生燃烧,这是导热油系统与水蒸汽系统相比所存在的问题。
但在不发生泄漏的条件下,由于导热油系统在低压条件下工作,故其操作安全性要高于水和蒸汽系统。
4导热油与另一类高温传热介质熔盐相比,在操作温度为400℃以上时,熔盐较导热油在传热介质的价格及使用寿命方面具有绝对的优势,但在其它方面均处于明显劣势,尤其是在系统操作的复杂性方面。
相关特性导热油属于石油产品的润滑剂系列,化学性质较稳定,不像轻质油那么容易着火燃烧。
从使用及安全角度看,其主要特性:1.在许用温度范围内,热稳定性较好,结焦少,使用寿命较长。
2.在许用温度范围内,导热性能、流动性能及可泵性能良好。
3.低毒无味,不腐蚀设备,对环境影响很小。
4.凝固点较低,沸点较高,低沸点组分含量较少。
在许用温度范围内,蒸汽压不高,蒸发损失少。
5.温度高于70℃时,与空气接触会被强烈氧化,其受热工作系统需密封,而只允许其在70℃以下的温度与空气接触。
6.受热后体积膨胀显著,膨胀率远大于水。
有机合成导热油

有机合成导热油
在有机合成领域,导热油通常指导热油(Thermal Fluid),它是一种用于传递热量的工质,广泛用于工业加热和冷却应用。
导热油在有机合成工艺中的应用通常需要满足一些特定的性能要求,如高温稳定性、耐腐蚀性等。
有机合成导热油的制备通常基于有机合成化学的原理,主要通过合成有机化合物来实现。
以下是一些可能用于有机合成导热油的有机化合物:
1.聚硅氧烷导热油:这种导热油通常基于聚硅氧烷化合
物,具有良好的高温稳定性和导热性能。
2.聚苯醚导热油:聚苯醚是一类高性能的高温导热油,
其结构中含有苯醚基团。
3.聚二甲基硅氧烷导热油:这种导热油基于聚二甲基硅
氧烷,具有优异的导热和绝缘性能。
4.芳香族导热油:一些芳香族化合物,如二苯基氧化硅、
二联苯醚等,也被用于制备高性能的有机合成导热油。
在制备有机合成导热油时,需要考虑油的导热性能、热稳定性、流动性以及与系统材料的兼容性等因素。
此外,油的制备还可能涉及到一系列有机合成工艺,如酯化、硅化、聚合等。
具体的配方和制备条件会取决于所需的性能和应用领域。
在实际应用中,选择合适的导热油对于确保工艺的高效和稳定运行非常重要。
导热油主要成分和化学名称

导热油主要成分和化学名称
摘要:
1.导热油的主要成分
2.导热油的化学名称
正文:
导热油,是一种在工业生产中常用的热传导介质,具有传热效率高、易于调节控制温度、对设备无腐蚀、投资低等优点。
导热油的成分主要是芳烃,也就是分子中含有苯环结构的碳氢化合物。
在导热油中,芳烃的含量通常达到99%。
导热油主要有以下几种类型:
1.烷基苯型(苯环型)导热油:这是最常见的一种导热油,其结构为苯环附有链烷烃支链类型的化合物,属于短支链烷烃基与苯环结合的产物。
2.烷基萘型导热油:其结构为苯环上连接烷烃支链的化合物,附加的侧链一般有甲基、二甲基、异丙基等。
3.烷基联苯型导热油:这是联苯基环上连接烷基支链一类的化合物,由短链的烷基与联苯环相结合构成。
4.联苯和联苯醚低熔混合物型导热油:这是由26.5% 的联苯和73.5% 的联苯醚组成的低熔混合物。
5.烷基联苯醚型导热油:其结构为两个苯环中间一个醚基,是较为罕见的一种导热油类型。
总的来说,导热油的成分主要是芳烃,但根据不同的类型和生产工艺,其
具体的化学名称和成分可能会有所不同。
导热油的主要用途

导热油的主要性 能及用途
单击此处添加文本具体内容,简明扼要地阐述你的观点
一、导热油的概念
导热油,又称传热油,是一种热量的传递 介质,起到传递热量的作用,由于其具有 加热均匀,调温控制温准确,能在低蒸汽 压下产生高温,传热效果好,节能,输送 和操作方便等特点,近年来被广泛应用于 各种场合,而且其用途和用量越来越多。
,倍尔润仍被推崇为世界领先的工业润滑油品牌。创始人John
Barry确立的“技术生产力”理念始终将用户需求放在第一位,研发
的工业润滑油、润滑脂等产品极具竞争力,每一款产品都深受工业企
业的喜爱,服务用户涉及到各行各业,营销支持网络遍布全球。
2
品质出色,所有的产品研发均需以提升机械设备工作效率、延长机械
二、倍尔润的导热油
倍尔润导热油选用精制的窄馏分矿物基础 油加入清净,分散、抗氧化等多种添加剂 精制而成。适用于最高温度不超过300 ℃ 的强制或非强制循环的闭式传热系统。
三、导热油的主要性能
02 良好的高温氧化 安定性能,使用
寿命长
04 比热容高,热传
导性能好
06 与系统的材料相 容性好,不腐蚀
设备的工作寿命为出发点;超越需求,卓越性能超出了工业标准和众
多顶级制造商的要求。正是源于对一流品质的超越和坚守,倍尔润工
业润滑油、润滑脂产品始终征服着全球用户。
01 馏分范围窄,初 馏点高03 挥发性ຫໍສະໝຸດ ,闪点 高05 低温流动性好
四、导热油的用途
适用于强制或非强制循环的闭式传热系统 ,可用于加热、干燥等过程,如木材加工 、纺织染整、食品加工、化工等行业
六、倍尔润简介
倍尔润于1906年创立,总部位于英国伦敦,是一家经营历史逾百年
导热油的工作原理

导热油的工作原理
导热油是一种高温传热介质,其工作原理主要通过热传导来实现。
导热油通常是由有机化合物组成的液体,具有良好的热稳定性和导热性能。
以下是导热油的工作原理:
1. 加热器加热:导热油首先被加热器加热到一定温度。
加热器可以是燃气锅炉、电锅炉或其他加热设备。
2. 导热:加热后的导热油通过管道输送到需要传热的设备或系统中。
导热油的高温使其具有较高的热能,可以有效地传递给被加热的物质。
3. 吸热:导热油在传热过程中吸收被加热物质释放的热能。
这样,被加热物质的温度会逐渐升高,而导热油的温度则会降低。
4. 冷却器冷却:冷却器接收从被加热物质中传递出来的热量,通过冷却水或其他冷却介质将导热油冷却下来。
5. 再循环:冷却后的导热油重新被泵送到加热器中,进行再次加热,形成连续的循环,持续进行传热作业。
通过以上工作原理,导热油可以将热量从加热源传递到需要加热的物质中,实现温度的控制和调节。
导热油的优点包括传热效率高、温度稳定性好、使用寿命长等,因此在许多工业领域中被广泛应用于加热和热处理过程中。
导热油成分

导热油成分导热油是一种广泛用于工业领域的热传导介质。
它被用来传导热量,以维持设备和工业过程的稳定温度。
在导热油中,成分的选择对其性能至关重要。
本文将介绍导热油的常见成分及其特性。
1. 聚硅氧烷聚硅氧烷是一种常见的导热油成分,也被称为硅油。
它具有较高的热导率和较低的粘度,能够在高温下稳定工作。
此外,聚硅氧烷具有较低的毒性和良好的化学稳定性,不易被氧化。
因此,聚硅氧烷是许多高温工业应用中常见的导热油成分。
2. 多聚烯烃多聚烯烃是另一种常见的导热油成分。
它具有优异的耐高温性能和化学稳定性。
多聚烯烃的热导率较高,能够有效地传导热量。
此外,它也具有较低的粘度,能够在高温下良好地流动。
因此,多聚烯烃广泛应用于热交换器、加热锅炉和太阳能电池等领域。
3. 氰基酯氰基酯是一类优质的导热油成分。
它具有较高的热导率和较低的粘度,能够在高温下稳定工作。
氰基酯具有良好的热稳定性和氧化稳定性,不易分解和氧化。
它还具有较低的蒸气压和较高的闪点,使其在高温工业领域广泛应用。
4. 苯基二甲基硅氧烷苯基二甲基硅氧烷是一种常见的导热油成分。
它具有较高的热导率和较低的粘度,能够在高温下稳定工作。
苯基二甲基硅氧烷的化学稳定性良好,不易变质或分解。
但是,它的毒性较大,使用时需要注意安全性。
5. 矿物油矿物油是一种常见的导热油成分。
它由石油提炼而来,价格相对较低。
矿物油具有较高的热导率和良好的化学稳定性,能够在中低温下广泛应用。
然而,在高温下,矿物油容易分解和氧化,降低其导热性能。
因此,在高温工业应用中,矿物油的使用范围受到限制。
综上所述,导热油的成分在决定其性能和适用领域方面起着关键作用。
聚硅氧烷、多聚烯烃、氰基酯、苯基二甲基硅氧烷和矿物油是常见的导热油成分。
它们具有各自独特的特性和适用范围,在工业生产过程中扮演着重要角色。
因此,在选择导热油时,需要根据具体的应用需求和工作条件来选择最合适的成分。
导热油的原理

导热油的原理
导热油的原理是基于传热的原理,具体为热能从热源(例如燃烧炉、电加热器等)传递到需要加热的物体或空间中。
导热油是一种热传导性能良好的液体,通常由矿物油或有机硅油组成。
其具有高热容量和高导热性能,能够高效地传递热量。
导热油通过导热系统(例如管道、散热器等)与热源相连,热源将热能传给导热油。
导热油在高温下吸收热量,热油分子被加热并获得更多能量。
热油分子的热运动使其能量传递给周围的分子,在整个导热油中迅速传导热量。
导热油通过管道传输到需要加热的物体或空间中,热油的热能进一步传递给这些物体或空间。
被加热的物体或空间中的分子通过热的对流、传导和辐射来吸收热量,从而升高温度。
这样就实现了从热源到被加热物体之间的热能传递。
导热油的优势在于其具有较高的热稳定性和热适应性,能够在较高温度范围内稳定工作。
它还具有良好的流动性和传热效率,能够快速、均匀地传递热量到需要加热的物体或空间中。
因此,导热油被广泛应用于许多行业,如化工、电力、造纸、纺织等,以满足加热、升温和保温等需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导热油简史导热油的应用始于20世纪30年代,美国于1932年制成联苯-联苯醚共沸混合物,商品名称为道生A(Dowtherm A)。
由于此油有毒、凝固点高,在某些工业应用中受到限制。
因此,近几十年来,各工业国家围绕降低凝固点、降低毒性、提高热稳定性方面进行科学研究。
到目前为止,已相继推出一百多个新型导热油产品。
我国导热油生产始于20世纪60年代,以防道生油为主;70年代、80年代初,导热油工业从生产品种到生产数量以及应用领域都有很大的发展。
我国导热油年产量已达几万吨。
1.导热油的种类:导热油分为矿物型和合成型。
矿物型导热油:是以石油为原料加工制得,石油进行高温裂解或催化裂化过程中,形成的馏分油作为原料经添加抗氧化剂后精制而成。
合成型导热油:这一类产品以化工或石油化工产品为原料,有机合成制得。
其特点是热稳定性好,使用高温范围窄,但价格昂贵。
合成型导热油的主要特点是:热稳定好,使用温度高。
合成型导热油通常是几种同分异构体或化学性质相似的混合物,是以化工或石油作为原料经有机合成而成,如联苯等。
导热油的成分有联苯、萘、二苯醚及其低熔点的混合物,常见的种类有烷基苯型、烷基萘型、联苯加二苯醚混合型、氢化三联苯型、有机硅类矿物油型等。
2.导热油的组成导热油是由基础油和各种添加剂组合而成,基础油约占导热油总量的90%以上,导热油基础油的理想组分是以环烷烃、异构烷烃、精制后中质芳香烃组分。
基础油要具有良好的热稳定性和事宜的馏程范围,对导热油起决定性作用。
导热油中的添加剂主要有高温抗氧剂、复合阻焦剂、降凝剂、降粘剂等,根据需要适量加入,可较好的改善和提高导热油的热稳定性和抗氧化安定性等性能。
添加剂所占比例很小,但可以改善导热油的氧化安定性、热安定性、抑制导热油结焦倾向。
3.导热油的基本要求:3.1 常压下有较高的沸点;3.2较低的凝固点;3.3在工作状态下,运动粘度低;3.4热传导性好;3.5无腐蚀性、无毒、无味3.6化学性能稳定;3.7不易燃烧;3.8对环境无污染;3.9价格低廉。
导热油的功能导热油具有化学氧化的功能,它的传热效率很好,它的散热效果很快,同时它的稳定性也很好。
导热油它作为间接传递热量的一类热稳定性较好的专用油品具有以下几种特点:在几乎常压的条件下,可以获得很高的操作温度。
即可以大大降低高温加热系统的操作压力和安全要求,提高了系统和设备的可靠性;可以在更宽的温度范围内满足不同温度加热、冷却的工艺需求,或在同一个系统中用同一种导热油同时实现高温加热和低温冷却的工艺要求。
即可以降低系统和操作的复杂性;省略了水处理系统和设备,提高了系统热效率,减少了设备和管线的维护工作量。
即可以减少加热系统的初投资和操作费用;在事故原因引起系统泄漏的情况下,导热油与明火相遇时有可能发生燃烧,这是导热油系统与水蒸气系统相比所存在的问题。
但在不发生泄漏的条件下,由于导热油系统在低压条件下工作,故其操作安全性要高于水和蒸汽系统。
导热油与另一类高温传热介质熔盐相比,在操作温度为400℃以上时,熔盐较导热油在传热介质的价格及使用寿命方面具有绝对的优势,但在其它方面均处于明显劣势,尤其是在系统操作的复杂性方面。
化学性质较稳定,不像轻质油那么容易着火燃烧。
从使用及安全角度看,其主要特性是:1.在许用温度范围内,热稳定性较好,结焦少,使用寿命较长。
2.在许用温度范围内,导热性能、流动性能及可泵性能良好。
3.低毒无味,不腐蚀设备,对环境影响很小。
4.凝固点较低,沸点较高,低沸点组分含量较少。
在许用温度范围内,蒸汽压不高,蒸发损失少。
5.温度高于70℃时,与空气接触会被强烈氧化,其受热工作系统需密封,而只允许其在70℃以下的温度与空气接触。
6.受热后体积膨胀显著,膨胀率远大于水。
温升100℃,体积膨胀率可达8%~10%。
7.过热时会发生裂解或缩合,在容器、管道中结焦或积碳。
8.混入水或低沸点组分时,受热后蒸气压会显著提高。
9.闪点、燃点及自燃点均较高,在许用温度及密闭状态下不会着火燃烧。
10.根据用户多居住的地区和设备作业环境,建议选择适宜的低温性能的导热油。
导热油的用途范围:工业领域:应用工业及装置橡塑工业:热压、压延、挤压、硫化、人造皮革加工、薄膜加工。
精细化工:医药、农药中间体、防老剂、表面活性剂、香料等合成。
油脂化工:脂肪酸蒸馏、油脂分解、蒸馏、浓缩、硝化。
化纤工业:聚合反应、熔融纺纱、热固、纤维整理。
造纸工业:热熔融机、波纹板加工机、干燥机。
木材加工:复合板压制、干燥机。
电器加工:电线及电缆制造。
能源工业:废热回收、太阳能利用、反应堆取热。
食品工业:粮食干燥、食品烘烤。
空调工业:家庭暖房化工及。
石油化工:聚合、分解、蒸馏、浓缩、蒸发、熔融装置等。
建材工业:沥青融化、保温、石膏板烘干纺织印染工业:热熔染色、热定型、烘干装置。
除上述行业外,还应用于温水发生器、热水发生器、蒸汽发生器、散热器以及肥皂洗涤剂工业、焦油加工业、洗衣业的用热等等。
导热油各项质量标准1、运动黏度(以下简称黏度)黏度是指在规定条件下,导热油的稀稠程度以及流动性能。
黏度越大,油的流动性越差,管道传输所需的循环泵功率也就越大。
但并非黏度越小品质就越好,有些黏度较小的矿物型油中很可能含有较多的低分子直链烷烃,其热稳定性较差,易受热分解,且使用后黏度容易发生变化。
油的黏度大小除了跟其碳链长短、分子结构、基因组分等有关外,还与温度有很大关系。
标准规定运动黏度应在40℃恒温条件下测定。
(有的厂家以50℃测定不符合标准规定)在正常情况下油的黏度随着温度升高而下降,因此使用温度较高的,运动黏度可允许大些。
但若是使用过程中油的黏度发生变化,则很可能意味着有机载体发生了裂解或聚合。
当黏度增大较多时,流速变慢,炉管中油的流体逐渐由湍流变为层流,边界层厚度不断增大,导致边界层温度比油心主流温度高很多,进而加速导热油分解成黏度更大的胶质物,结果形成残炭沉积于管壁,从而影响传热,严重时易造成管壁过热,引发事故。
因此当有机热载体的黏度超过标准规定的最高允许值时就不应再继续使用。
2、闪点闪点:指在加热条件下,当火焰接近油蒸气与空气组成的混合性气体时,发生短促闪燃的最低温度。
闪点分为开口闪点和闭口闪点,前者是敞开条件下与空气完全接触下测定:后者是在基本封闭,空气极少条件下测定。
在用有机热载体只测定闭口闪点,主要判定其是否成为易燃危险品。
开口闪点较低的有机热载体,最后采用闭式运行。
若采用开始运行,则蒸发率较大,使用过程中损耗也大,且运行时安全性也相对差些。
(例如当系统有泄漏时容易发生火灾。
)使用过程中,有机热载体会不同程度地发生裂解或聚合,发生裂解或被其他易燃物污染,会使闪点降低;发生聚合会使闪点升高。
少量低闪点小分子(也称为低沸物)可以通过高位槽排出(这也是高位槽排汽管不可随意加装阀门的原因).开式系统运行时,由于裂解产生的低沸物被及时排除,一般闪点不会降低,有的还会有所升高。
闭式运行时,如果产生有低闪点小分子,可能很少的量也会使闪点降低,当闪点过低时需进行排气处理。
闪点变化较大时,说明油品发生了较严重的变质。
3、酸值(也称“中和值”)酸值是指油品中有机酸的总含量。
当油温低于100℃且无水分时,一般不会对金属产生腐蚀。
但温度超过100℃后,随着温度及酸值增加,有机酸对金属的腐蚀性也会随之增强。
一般新油的酸值小于0.03mgKOH/g(掺有劣质回收油的新油,酸值往往会超标。
)抗氧化性差的导热油在高温时易被空气氧化成有机酸而使酸值增大。
为了避免变质劣化的有机热载体影响锅炉安全运行,防止有机酸对金属的腐蚀,当酸值超过1.5mgKOH/g时,应停止使用。
4、残炭残炭是指在超温条件下油品受热分解或聚合而形成沉积物的炭含量。
残炭的主要成分是胶质、沥青及多环芳香烃。
通过测定一定量的油在一定温度下燃烧后残留物的量得到残炭值。
纯合成油在未使用情况下,残炭量通常极微。
大多数合成油出厂质量标准中没有残炭指标。
国外对合成油一般不测残炭,而是测定丙酮不溶物。
对于新油,测定残炭值大小可初步判断是否掺有回收或劣质油。
导热油的结焦高温导热油在系统中循环传送热能,同时产生胶质。
胶质是黏糊状的,质量好的导热油能将胶质悬浮于油中,在循环过程中,可将部分胶质通过过滤器滤掉。
但若有一小部分胶质附着在炉管内壁,就容易形成结焦。
另外,在导热油循环过程中,若有空气窜入易发生降解和聚合作用,形成低沸点物和高沸点物。
低沸点物可以通过高位槽排到大气中,而高沸点物可以溶解在导热油中,如果导热油的溶解达到过饱和状态,高沸点物就会粘附在管内壁,这是结焦的又一原因。
再有,操作温度超过其设计温度往往引起自催化热分解,也能导致管内结焦。
工艺物料泄漏进入导热油系统,形成腐蚀产物,以及大修中带入的杂质污染也会促使管内壁发生结焦。
导热油的检测导热油检测要素有七点,因导热油(又名热传导液)有一系列的物理性质.如粘度、蒸汽压、沸程、初馏点、闪点、燃点、流点等。
运行中定期检验的目的是了解油品内在质量的变化,并由此发现系统设计、操作管理及导热油自身的质量问题,及时纠正以延长使用寿命。
从以下检验项目可说明运行中热导热油的变质情况:1、馏程馏程的变化表明热传导液分子质量的变化,国外采用气相色谱法,经与新油的馏程进行比较,以高沸物和低沸物含量表明热传导液发生裂解和聚合的程度。
2、粘度粘度的变化表明热传导液分子质量和结构的变化。
裂解使粘度下降,而聚合和氧化使粘度上升。
这些变化对高温范围的粘度影响很小,但对低温粘度影响较大,因此对寒冷地区和伴有冷却的操作工艺来说,低温粘度增长应引起重视。
3、酸值酸值的变化表明热传导液的老化程度。
酸值上升通常是油品发生氧化所致,主要发生在膨胀槽不采用氮封的系统中。
但当老化到一定程度时,可溶性有机酸可能进一步聚合生成高分子氧化产物,这时酸值又可能下降。
因此,要注意从酸值的变化趋势判断油品的老化程度。
4、残炭残炭是运行中的热传导液经蒸发和裂解后留下的残炭量。
在运行中残炭量往往随时间呈不断上升的趋势,可说明高分子炭状沉积物形成的倾向和老化的程度。
国外常测定丙酮或戊烷不溶物,包括油不溶物和因裂解、聚合而产生的树脂状物。
因该方法未经蒸发和热解,可准确说明油品中不溶物的含量。
5、闪点闪点是主要的安全性指标,说明高挥发性产物和可燃性气体形成的可能性。
闪点下降过多可能成为事故的隐患。
一般通过以上检验项目对热传导液的变质情况进行综合判断。