4外文翻译
4翻译

毕 业 设 计(论 文)外 文 参 考资 料 及 译 文译文题目: CIC MegaCore Function 学生姓名: 高佳 学 号: 1021129024 专 业: 通信工程 所在学院: 龙蟠学院 指导教师: 姜志鹏 职 称: 讲师2013年11月06日CIC MegaCore Function----From DescriptionThis document describes the Altera CIC MegaCore function. The Altera CIC MegaCore function implements a cascaded integrator-comb filter with data ports that are compatible with the Avalon Streaming interface. CIC filters (also known as Hogenauer filters) are computationally efficient for extracting baseband signals from narrow-band sources using decimation, and for constructing narrow-band signals from processed baseband signals using interpolation.CIC filters use only adders and registers, and require no multipliers to handle large rate changes. Therefore, CIC is a suitable and economical filter architecture for hardware implementation, and is widely used in sample rate conversion designs such as digital down converters (DDC) and digital up converters (DUC).The Altera CIC MegaCore function supports the following features:■Support for interpolation and decimation filters with variable rate change factors (2 to 32,000), a configurable number of stages (1 to 12), and two differential delay options (1 or 2).■Single clock domain with selectable number of interfaces and a maximum of 1,024 channels.■Selectable data storage options with an option to use pipelined integrators.■Configurable input data width (1 to 32 bits) and output data width (1 to full resolution data width).■Selectable output rounding modes (truncation, convergent rounding, rounding up, or saturation) and Hogenauer pruning support.■Optimization for speed by specifying the number of pipeline stages used by each integrator.■Compensation filter coefficients generation.■Easy-to-use MegaWizard interface for parameterization and hardware generation.■IP functional simulation models for use in Altera-supported VHDL and Verilog HDL simulators.■DSP Builder ready.Cascaded Integrator Comb (CIC) filters are widely used in modern communication systems. As the signal processing in all aspects of requirements are constantly improve, in digital technology, the design of the filter appears increasingly important.Those who have signal processing ability of device can be referred to as a filter.In the modern telecommunications equipment and all kinds of control system, filter is widely used.Of all the electronic devices, using the most, the most widely used, technology is the most complex filter.Filter quality directly decides the product quality, good performance of filter can make the system more stable, so the filter of the countries all over the research and production has always been highly valued.With the wide application of digital technology, field programmable gate array (FPGA) has been the rapid development, integration and speed is growing.FPGA has high integration and reliability of the gate array (FPGA), and programmable resistance, maximum limit reduces the design cost, shorten the development cycle.Using CIC filters provides a silicon efficient architecture for performing sample rate conversion. This is achieved by extracting baseband signals from narrow-band sources using decimation, and constructing narrow-band signals from processed baseband signals using interpolation. The key advantage of CIC filters is that they use only adders and registers,and do not require multipliers to implement in hardware for handling large rate changes.A CIC filter (also known as a Hogenauer filter) can be used to perform either decimation or interpolation. A decimation CIC filter comprises a cascade of integrators (called the integrator section), followed by a down sampling block (decimator) and a cascade of differentiators (called the differentiator or comb section). Similarly an interpolation CIC filter comprises a cascade of differentiators, followed by an up sampling block (interpolator) and a cascade of integrators .In a CIC filter, both the integrator and comb sections have the same number of integrators and differentiators. Each pairing of integrator and differentiator is called a stage. The number of stages ( N ) has a direct effect on the frequency response of a CIC filter. The response of the filter is determined by configuring the number of stages N , therate change factor R and the number of delays in the differentiators (called the differential delay) M . In practice, the differential delay is set to 1 or 2.The MegaWizard interface only allows you to select legal combinations of parameters, and warns you of any invalid configurations .For high rate change factors, the maximum required data width for no data loss is large for many practical cases. To reduce the output data width to the input level, quantization is normally applied at the end of the output stage. In this case, the following rounding or saturation options are available:■Truncation : The LSBs are dropped. (This is equivalent to rounding to minus infinity.)■Convergent rounding . Also known as unbiased rounding . Rounds to the nearest even number . If the most significant deleted bit is one, and either the least significant of the remaining bits or at least one of the other deleted bits is one, then one is added to the remaining bits.■Round up: Also known as rounding to plus infinity. Adds the MSB of the discarded bits for positive and negative numbers via the carry in.■Saturation: Puts a limit value (upper limit in the case of overflow, or lower limit in the case of negative overflow) at the output when the input exceeds the allowed range. The upper limit is+2n-1 and lower limit is –2n.These rounding options can only be applied to the output st age of the filter. The data widths at the intermediate stages are not changed. The next section describes cases where the data width at the intermediate stages can be changed.Hogenauer pruning [Reference ] is a technique that utilizes truncation or rounding in intermediate stages with the retained numb er of bits decreasing monotonically from stage to stage, while the total error introduced is still no greater than the quantization error introduced by rounding the full precision output. This technique helps to reduce the number of logic cells used by the filter and gives better performance.The existing algorithms for computing the Hogenauer bit width growth for large N and R values are computationally expensive.For more information about these algorithms, refer to U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, 2nd Edition, Spinger, 2004.The CIC MegaCore function has pre-calculated Hogenauer pruning bit widths stored within the MegaCore function. There is no need to wait for Hogenauer pruning bit widths to be calculated if Hogenauer pruning is enabled for a decimation filter. Hogenauer pruning is only available to decimation filters when the selected output data width is smaller than the full output resolution data width.There are often many channels of data in a digital signal processing (DSP) system that require filtering by CIC filters with the same configuration. These can be combined into one filter, which shares the adders that exist in each stage and reduces the overall resource utilization. This combined filter uses fewer resources than using many individual CIC filters. For example, a two-channel parallel filter requires two clock cycles to calculate two outputs. The resulting hardware would need to run at twice the data rate of an individual filter. This is especially useful for higher rate changes where adders grow particularly large.To minimize the number of logic elements , a multiple input single output (MISO) architecture can be used for decimation filters, and a single input multiple output (SIMO) architecture for interpolation filters as described in the following sections.In many practical designs, channel signals come from different input interfaces. On each input interface, the same parameters including rate change factors are applied to the channel data that the CIC filter is going to process. The CIC MegaCore function allows the flexibility to exploit time sharing of the low rate differentiator sections. This is achieved by providing multiple input interfaces and processing chains for the high rate portions, then combining all of the processing associated with the lower rate portions into a single processing chain. This strategy can lead to full utilization of the resources and represents the most efficient hardware implementation. These architectures are known as multiple input single output (MISO) decimation filters.Single input multiple output (SIMO) is a feature associated with interpolation CIC filters. In this architecture, all the channel signals presented for filtering come from a single input interface.Like the MISO case, it is possible to share the low sampling rate differentiator section amongst more channels than the higher sampling frequency integrator sections. Therefore, this architecture features a single instance of the differentiator section, and multiple parallel instances of the integrator sections.After processing by the differentiator section, the channel signals are split into multiple parallel sections for processing in a high sampling frequency by the integrator sections. The sampling frequency of the input data is such that it is only possible to time multiplex two channels per bus, therefore the CIC filter must be configured with two input interfaces. Because two interfaces are required, the rate change factor must also be at least two to exploit this architecture. Up to 1,024 channels can be supported by using multiple input interfaces in this way.Single input multiple output (SIMO) is a feature associated with interpolation CIC filters. In this architecture, all the channel signals presented for filtering come from a single input interface. Like the MISO case, it is possible to share the low sampling rate differentiator section amongst more channels than the higher sampling frequency integrator sections.Therefore, this architecture features a single instance of the differentiator section, and multiple parallel instances of the integrator sections.After processing by the differentiator section, the channel signals are split into multiple parallel sections for processing in a high sampling frequency by the integrator sections.The required sampling frequency of the output data is such that it is only possible to time multiplex two channels per bus. Therefore the CIC filter must be configured with four output interfaces. Because four interfaces are required, the rate change factor must also be at least four to exploit this architecture, but in this example a rate change of eight is illustrated.SIMO architecture is applied when an interpolation filter type is chosen and the number of interfaces selected in the MegaWizard interface is greater than one.The total number of input channels must be a multiple of the number of interfaces. To satisfy this requirement, you may need to either insert dummy channels or use more than one CIC MegaCore function. Data is transferred as packets using AvalonStreaming interfaces. CIC filters have a low-pass filter characteristic. There are only three parameters (the rate change factor R , the number of stages N , and the differential delay M ) that can be modified to alter the passband characteristics and aliasing/imaging rejection. However, due to their drooping passband gains and wide transition regions, CIC filters alone cannot provide the flat passband and narrow transition region filter performance that is typically required in decimation or interpolation filtering applications.This problem can be alleviated by connecting the decimation or interpolation CIC filter to a compensation FIR filter which narrows the output bandwidth and flattens the passband gain.You can use a frequency sampling method to determine the coefficients of a FIR filter that equalizes the undesirable passband droop of the CIC and construct an ideal frequency response.The ideal frequency response is determined by sampling the normalized magnitude response of the CIC filter before inverting the response.Generally, it is only necessary to equalize the response in the passband, but you can sample further than the passband to fine tune the cascaded response of the filter chain.The Avalon-ST interface can also support more complex protocols for burst and packet transfers with packets interleaved across multiple channels.The Avalon-ST interface inherently synchronizes multi-channel designs, which allows you to achieve efficient, time-multiplexed implementations without having to implement complex control logic.CIC MegaCore函数----摘自 描述这篇文章对Altera公司的CIC 宏函数作了说明。
外文文献翻译(图片版)

本科毕业论文外文参考文献译文及原文学院经济与贸易学院专业经济学(贸易方向)年级班别2007级 1 班学号3207004154学生姓名欧阳倩指导教师童雪晖2010 年 6 月 3 日目录1 外文文献译文(一)中国银行业的改革和盈利能力(第1、2、4部分) (1)2 外文文献原文(一)CHINA’S BANKING REFORM AND PROFITABILITY(Part 1、2、4) (9)1概述世界银行(1997年)曾声称,中国的金融业是其经济的软肋。
当一国的经济增长的可持续性岌岌可危的时候,金融业的改革一直被认为是提高资金使用效率和消费型经济增长重新走向平衡的必要(Lardy,1998年,Prasad,2007年)。
事实上,不久前,中国的国有银行被视为“技术上破产”,它们的生存需要依靠充裕的国家流动资金。
但是,在银行改革开展以来,最近,强劲的盈利能力已恢复到国有商业银行的水平。
但自从中国的国有银行在不久之前已经走上了改革的道路,它可能过早宣布银行业的改革尚未取得完全的胜利。
此外,其坚实的财务表现虽然强劲,但不可持续增长。
随着经济增长在2008年全球经济衰退得带动下已经开始软化,银行预计将在一个比以前更加困难的经济形势下探索。
本文的目的不是要评价银行业改革对银行业绩的影响,这在一个完整的信贷周期后更好解决。
相反,我们的目标是通过审查改革的进展和银行改革战略,并分析其近期改革后的强劲的财务表现,但是这不能完全从迄今所进行的改革努力分离。
本文有三个部分。
在第二节中,我们回顾了中国的大型国有银行改革的战略,以及其执行情况,这是中国银行业改革的主要目标。
第三节中分析了2007年的财务表现集中在那些在市场上拥有浮动股份的四大国有商业银行:中国工商银行(工商银行),中国建设银行(建行),对中国银行(中银)和交通银行(交通银行)。
引人注目的是中国农业银行,它仍然处于重组上市过程中得适当时候的后期。
第四节总结一个对银行绩效评估。
Catti 考试英译汉常见问题

五、货币符号
• 在实务考试中经常会出现货币符号的缩写,这些货币符号一般也需要翻译出来。例如“£”(英镑)、 “$”(美元)、“€”(欧元)等等,考生对这些符号要有基本的了解。原文中明明说的是5000万英镑, 你翻译为5000万欧元,实际价值错得离谱。
• 有的考生在译文中将外国人名直接上原文,这是不符合要求的(除非有特 殊规定),阅卷老师会相应地扣分。有的考生在译文中将人名空在那里, 这就更不符合翻译的基本要求了。
三、国名和机构名
• 国名一定要准确翻译,不能有丝毫的马虎,译错绝对要扣分。国名一般都能在字典中查到,只是要注意简 称和全称的问题。“The United States of America”一定要翻译为“美利坚合众国”;如原文为 “USA”,则可译为“美国”。孟加拉国的英文全称是“The People's Republic of Bangladesh”,翻 译为“孟加拉人民共和国”,其简称“Bangladesh”,一定要翻译为“孟加拉国”,不能译为“孟加拉” 而省略了“国”字。
Catti 考试英译汉常见问题
一、数字
• 关于数字用法的问题,国家主管部门已有具体规定,各翻译出版机构以及一些国际组织也有自己的专门规 定。
• 一般的规定是,对于纯粹属于计量或统计范畴的数值,无论原文是否使用阿拉伯数字,译文一般 用阿拉伯数字。例如:原文“654,321,000”,译文中照抄“654,321,000”即可;不能译为6亿5 千4百32万1千。原文“fifty million”,可译为“5 000万”;不能译为“五十百万”,或“50百 万”。对于万以上数字,中文一般以“万”和“亿”为单位;原文“half a billion”,可译为 “5亿”。原文“five trucks”,可译为“5辆卡车”;原文“3-4 percent”,可译为“3%-4%”; 原文“five percentage points”, 可译为“5个百分点”。
(完整版)外文翻译

外文文献原稿和译文原稿logistics distribution center location factors:(1) the goods distribution and quantity. This is the distribution center and distribution of the object, such as goods source and the future of distribution, history and current and future forecast and development, etc. Distribution center should as far as possible and producer form in the area and distribution short optimization. The quantity of goods is along with the growth of the size distribution and constant growth. Goods higher growth rate, the more demand distribution center location is reasonable and reducing conveying process unnecessary waste.(2) transportation conditions. The location of logistics distribution center should be close to the transportation hub, and to form the logistics distribution center in the process of a proper nodes. In the conditional, distribution center should be as close to the railway station, port and highway.(3) land conditions. Logistics distribution center covers an area of land in increasingly expensive problem today is more and more important. Is the use of the existing land or land again? Land price? Whether to conform to the requirements of the plan for the government, and so on, in the construction distribution center have considered.(4) commodities flow. Enterprise production of consumer goods as the population shift and change, should according to enterprise's better distribution system positioning. Meanwhile, industrial products market will transfer change, in order to determine the raw materials and semi-finished products of commodities such as change of flow in the location of logistics distribution center should be considered when the flow of the specific conditions of the relevant goods.(5) other factors. Such as labor, transportation and service convenience degree, investment restrictions, etc.How to reduce logistics cost,enhance the adaptive capacity and strain capacity of distribution center is a key research question of agricultural product logistics distribution center.At present,most of the research on logistics cost concentrates off theoretical analysis of direct factors of logistics cost, and solves the problem of over-high logistics Cost mainly by direct channel solution.This research stresses on the view of how to loeate distribution center, analyzes the influence of locating distribution center on logistics cost.and finds one kind of simple and easy location method by carrying on the location analysis of distribution center through computer modeling and the application of Exeel.So the location of agricultural product logistics distribution center can be achieved scientifically and reasonably, which will attain the goal of reducing logistics cost, and have a decision.making support function to the logisties facilities and planning of agricultural product.The agricultural product logistics distribution center deals with dozens and even hundreds of clients every day, and transactions are made in high-frequency. If the distribution center is far away from other distribution points,the moving and transporting of materials and the collecting of operational data is inconvenient and costly. costly.The modernization of agricultural product logistics s distribution center is a complex engineering system,not only involves logistics technology, information technology, but also logistics management ideas and its methods,in particular the specifying of strategic location and business model is essential for the constructing of distribution center. How to reduce logistics cost,enhance the adaptive capacity and strain capacity of distribution center is a key research question of agricultural product logistics distribution center. The so—called logistics costs refers to the expenditure summation of manpower, material and financial resources in the moving process of the goods.such as loading and unloading,conveying,transport,storage,circulating,processing, information processing and other segments. In a word。
4字祝福语外文翻译

4字祝福语外文翻译Blessing is a universal language that transcends borders and connects people from different cultures and backgrounds. Whether it's a simple "good luck" or a heartfelt "may all your dreams come true," the power of a four-word blessing can bring warmth and joy to anyone who receives it.In Chinese culture, four-word blessings are often used to convey well-wishes and good intentions. These concise and meaningful phrases are believed to carry positive energy and bring blessings to the recipient. From "平安幸福" (peace and happiness) to "事业有成" (success in career), these four-word blessings encompass a wide range of wishes for health, prosperity, and happiness.When it comes to translating these four-word blessings into foreign languages, it's important to capture not only the literal meaning but also the cultural and emotional nuances behind the words. Each language has its own unique expressions and idioms that convey similar sentiments, and finding the right words to convey the essence of a blessing is crucial in ensuring that the message resonates with the recipient.In English, four-word blessings can take on various forms, from simple and straightforward phrases like "love and happiness" to more poetic expressions such as "joyful heart, peaceful mind." The key is to convey the sincerity and warmth behind the blessing, regardless of the specific words used.In Spanish, four-word blessings often reflect the rich cultural traditions and values of the language. Phrases like "amor y paz" (love and peace) and "salud y prosperidad" (health and prosperity) encapsulate the deeply rooted beliefs in family, love, and well-being.In French, the elegance and beauty of the language are reflected in four-word blessings such as "joie et bonheur" (joy and happiness) and "paix et amour" (peace and love). These phrases evoke a sense of romance and sophistication, adding an extra layer of charm to the blessings.In Japanese, the art of expressing blessings is deeply ingrained in the language and culture. Four-word blessings like "健康と幸せ" (health and happiness) and "平和と愛" (peace and love) reflect the Japanese values of harmony, gratitude, and mindfulness.No matter the language, the essence of a four-word blessing remains the same – to convey heartfelt wishes for the well-being and happiness of the recipient. Whether it's in Chinese, English, Spanish, French, Japanese, or any other language, the power of a sincere blessing knows no bounds.In a world where communication knows no borders, the ability to convey blessingsin different languages is a testament to the universal desire for love, happiness, and peace. As we continue to connect with people from diverse backgrounds and cultures, the exchange of blessings in various languages serves as a reminder of our shared humanity and the beauty of diversity.In conclusion, the translation of four-word blessings into foreign languages is not simply a matter of finding equivalent words, but rather a delicate art of capturing the essence and spirit of the blessings across different cultures and languages. It is a celebration of the universal language of love, kindness, and goodwill that unites us all, regardless of where we come from or what language we speak. So, whether it's "平安幸福," "love and happiness," or "paix et amour," may the blessings we share bring warmth and joy to all who receive them.。
机械毕业设计英文外文翻译4ADVISOR 使用说明

附录ADVISOR Documentation3.1 ADVISOR file structure3.1.1 File interactions & data flowThe above schematic represents data flow in the ADVISOR file system. The four main agent types are:◆Input Scripts define variables in the workspace and/or call other inputscripts. An example is MC_PM32.M.◆Block Diagrams are Simulink files containing the equations used tocompute outputs such as fuel use from inputs such as an engine map.They are the models. One example is BD_PAR.MDL.◆Output Scripts post process the model outputs by querying theworkspace. These may include plotting routines or error checkingroutines. chkoutputs.m is an example.◆Control Scripts may both develop inputs and process outputs. Examplesinclude the ADVISOR GUI and optimization routines.3.1.2 File locationsThe main ADVISOR directory (e.g. c:\ADVISOR or c:\Program Files\ADVISOR) contains several sub directories. Among these are the data, GUI, and models directories that contain the corresponding files.3.1.3 File naming conventionsAll model and data files use a prefix followed by an underscore (‘_’) that is the same as the prefix used for (nearly all of) the variables it defines, which in turn is in pointy brackets (<>) at the end of the Simulink block in which those variables are used. Here are ADVISOR’s c omponent file types:ACC_*.M Accessory load filesCYC_*.M Driving cycle files, which define variables starting with cyc_, used in the block labeled <cyc>ESS_*.M Energy storage system data files, which likewise define variables starting with ess_, used in the block labeled <ess>EX_*.M Exhaust after treatment files (such as catalysts)FC_*.M Fuel converter data filesTX_*.M Transmission data files (these include gearbox-gb and final drive-fd variables)GC_*.M Generator/controller data filesMC_*.M Motor/controller data filesPTC_*.M Powertrain control data files, which define engine control, clutch control, and hybrid control strategy variables starting with vc_ and cs_, used in blocks labeled <vc> and <cs>TC_*.M Torque coupler data filesVEH_*.M Vehicle data filesWH_*.M Wheel/axle data filesIn addition to the above component data files, there is one other type thatuse prefixes:BD_*.MDL Simulink block diagrams (models)All filenames that include prefixes are entirely in capital letters to avoid confusion with variable names, which are entirely in lower-case letters.3.1.4 Adding files to ADVISORThe easiest way to add a particular kind of file to ADVISOR is to modify an existing file of that kind and save it with a new file name, entirely in capital letters, in the appropriate ADVISOR directory. This will ensure that all variables necessary to fully define the particular component will be included in your new file. For adding vehicle component or drive cycle files, clicking the pushbutton in the graphical user interface brings up a window to guide the process.3.1.5 Inspecting input filesComponent files and nearly all other files in ADVISOR are text files (the exceptions are mat files, which contain Matlab-specific data), and can be viewed and edited in any text editor. A fixed pitch font helps. We recommend using the Matlab editor/debugger packaged with Matlab 5.3. Additionally, text files can be viewed in the Matlab command window by entering type filename at the MATLAB command line.3.1.6 Deleting files from ADVISOR‟s databaseFiles can be removed from ADVISOR by either deleting them using your operating system or by entering the following at the Matlab command line: !rm filenameDeleting files via the operating system is preferable, especially on PC and Macintosh platforms, where …deleted‟ files will be preserved in Trash or the Recycle Bin.3.2 Drivetrain model descriptionsADVISOR has six different vehicle types and two specific vehicle choices, as listed below. Each of these has a different drivetrain. There is also an option to use a custom drivetrain.Conventional Drivetrain: The conventional vehicle represents a typical passenger car. It uses only a fuel converter for motive power. The default gearbox is a 5 speed. The conventional accessories are a constant mechanical power load.Series Drivetrain: The series vehicle components include a fuel converter, a generator, batteries, and a motor. The fuel converter does not drive the vehicle shaft directly. Instead, it converts mechanical energy directly into electrical energy via the generator. All torque used to move the vehicle comes from the motor. The default gearbox is a one speed. The default control strategy is a series power follower. The hybrid accessories are a constant electrical power load.Parallel Drivetrain: The parallel vehicle components include an engine, batteries, and a motor. Is is named parallel because both the motor and the engine can apply torque to move the vehicle. The motor can act in reverse as a generator for braking and to charge the batteries. The default control strategy isan electric assist. The default gearbox is a 5 speed. The hybrid accessories are a constant electrical power load.Parallel Starter/Alternator: The parallel starter/alternator vehicle components include an engine, batteries, and a motor. It is named parallel starter/alternator because the motor behaves like the starter and the alternator of a conventional vehicle. It allows for engine shutdown and restart and for minimal electric assist. It is a parallel design because both the motor and the engine can apply torque to move the vehicle. The major difference between the parallel starter/alternator design and the basic parallel design is the location of the clutch. The clutch is positioned between the gearbox and torque coupler in the parallel starter/alternator design while it is located between the torque coupler and the engine in the basic parallel design. This means that if the vehicle is moving and the clutch is engage both the engine and motor shafts must be rotating. The motor can act in reverse as a generator for braking and to charge the batteries. The default control strategy is an electric assist <Parallel.htm>. The default gearbox is a 5 speed. The hybrid accessories are a constant electrical power load.Custom:The above figure represents a conventional vehicle's drivetrain using components from ADVISOR. Note that most blocks have two inputs and two outputs. Each block passes and transforms a torque and speed request, and each block also passes an achievable or actual torque and speed.The top arrows, feeding left-to-right, are the torque and speed requests. Thedrive cycle requests or requires a given speed. Each block between the driving cycle and the torque provider, in this case the ICE, then computes its required input given its required output. It does this by applying losses, speed reductions or multiplications, and its performance limits.At the end of the line, the …ICE fuel converter‟ uses its required torque output and speed to determine how much torque it can actually deliver and its maximum speed. Then passing information back to the left, each component determines its actual output given its actual input, using losses computed during the …input requirement‟ pass described above. Finally, the vehicle block computes the vehicle's actual speed given the tractive force and speed limit it receives, and uses this speed to compute acceleration for the next time step. And so the cycle continues throughout the duration of the driving cycle.The following describe the torque, speed, and power transformations performed by the drivetrain component models that connected to each other as explained above to build a vehicle model. In addition, the somewhat trickier blocks that perform solely …control‟ f unctions are documented below.3.2.3 TransmissionTorque couplerTorque coupler block diagramRole of subsystem in vehiclePhysically, a torque coupler is a three-sprocket belt or chain drive whereby two torque sources combine their torques to provide to a drivetrain component such as the gearbox or final drive. The torque coupler block diagram processes atorque and speed request from the downstream drivetrain component and apportions requests of the two ‘feeder’ torque sources.Description of modeling approachThe effects of torque loss and a gear ratio between the second of the torque input devices and the output are modeled here. The torque loss is a constant whenever the torque coupler is spinning.The torque coupler first requests the sum of necessary output torque and torque coupler loss from the first torque source. Using the actual/available torque of the first source, it requests the balance of the second torque source. The speeds of the two torque providers are in constant proportion to the torque coupler output speed: the first input speed equals the output speed, and the second input speed is greater by a factor tc_mc_to_fc_ratio.GearboxGearbox block diagram Role of subsystem in vehicleThe gearbox of a multi-speed transmission houses gears of different gear ratios that are used to transmit torque from the engine or tractive motor to the final drive and on to the wheels. It thereby allows a number of discrete speed reduction and torque multiplication factors. Inclusion of a gearbox is critical to the drivetrain of conventional and parallel hybrid vehicles, and generally less important for series hybrids.Description of modeling approachThe gearbox model in ADVISOR usually communicates physics (torque, speed,and power) information to and from the final drive submodel and engine, torque converter, and/or motor model. Control information as might be sensed or commanded by a CPU in the vehicle, such as gear number, is passed to and from the transmission control submodel.Effects on torque and speed in the gearbox include:∙torque multiplication and speed reduction via the gear ratio,∙torque loss due to the acceleration of rotational inertia, and∙torque loss due to the friction of the turning gears.These effects are modeled empirically. Data files such as <ADVISOR directory>/data/transmission/TX_5SPD.M are required to supply necessary physical parameters.The equations represented by the Simulink block diagram in the picture corresponding to the link above are as follows.Equations used in subsystemTORQUE AND SPEED REQUIRED(torque req’d into gearbox) = (torque req’d out of gearbox) / (current gear ratio) +(torque req’d to accelerate rotational inertia) + (torque loss due to friction),where(torque req’d out of gearbox) is a Simulink input (#1, in the top left of the above figure)(current gear ratio) is computed from (current gear number), which is provided by the "gearbox controller interface" block, using the look-up vector gb_ratio(torque req’d to accelerate rotational inertia) = gb_inertia* d(speed req’d into gearbox)/dt(torque loss at transmission input due to friction) = function of [torque at output-side of gearbox, angular speed at output side of gearbox, gear (e.g., 1st, 2nd, etc.)]--this is implemented with a lookup-table(speed req’d into gearbox) = (speed req’d out of gearbox) * (current gear ratio)TORQUE AND SPEED AVAILABLE(torque avail. at output side of gearbox) = { (torque avail. at input side of gearbox) * [(output side power) / (input side power)]required - (torque req’d to accelerate rotational inertia) } * (current gear ratio)where(torque avail. at input side of gearbox) is a Simulink input (#2, in the bottom left of the above figure)[(output side power) / (input side power)]required is computed from the input and output torques and speeds of the REQUIRED calculations(speed avail. at output side of gearbox) = (speed avail. at input side of gearbox) / (current gear ratio)ADVISOR 使用说明3.1ADVISOR的文件结构3.1.1 文件交互与数据流ADVISOR 文件系统的数据流如上图所示。
机械设计外文文献翻译、中英文翻译
机械设计外文文献翻译、中英文翻译unavailable。
The first step in the design process is to define the problem and XXX are defined。
the designer can begin toXXX evaluated。
and the best one is XXX。
XXX.Mechanical DesignA XXX machines include engines。
turbines。
vehicles。
hoists。
printing presses。
washing machines。
and XXX and methods of design that apply to XXXXXX。
cams。
valves。
vessels。
and mixers.Design ProcessThe design process begins with a real need。
Existing apparatus may require XXX。
efficiency。
weight。
speed。
or cost。
while new apparatus may be XXX。
To start。
the designer must define the problem and XXX。
ideas and concepts are generated。
evaluated。
and refined until the best one is XXX。
XXX.XXX。
assembly。
XXX.During the preliminary design stage。
it is important to allow design XXX if some ideas may seem impractical。
they can be corrected early on in the design process。
计算机外文翻译(完整)
计算机外⽂翻译(完整)毕业设计(论⽂)外⽂资料翻译专业:计算机科学与技术姓名:王成明学号:06120186外⽂出处:The History of the Internet附件: 1.外⽂原⽂ 2.外⽂资料翻译译⽂;附件1:外⽂原⽂The History of the InternetThe Beginning - ARPAnetThe Internet started as a project by the US government. The object of the project was to create a means of communications between long distance points, in the event of a nation wide emergency or, more specifically, nuclear war. The project was called ARPAnet, and it is what the Internet started as. Funded specifically for military communication, the engineers responsible for ARPANet had no idea of the possibilities of an "Internet."By definition, an 'Internet' is four or more computers connected by a network.ARPAnet achieved its network by using a protocol called TCP/IP. The basics around this protocol was that if information sent over a network failed to get through on one route, it would find another route to work with, as well as establishing a means for one computer to "talk" to another computer, regardless of whether it was a PC or a Macintosh.By the 80's ARPAnet, just years away from becoming the more well known Internet, had 200 computers. The Defense Department, satisfied with ARPAnets results, decided to fully adopt it into service, and connected many military computers and resources into the network. ARPAnet then had 562 computers on its network. By the year 1984, it had over 1000 computers on its network.In 1986 ARPAnet (supposedly) shut down, but only the organization shut down, and the existing networks still existed between the more than 1000 computers. It shut down due to a failied link up with NSF, who wanted to connect its 5 countywide super computers into ARPAnet.With the funding of NSF, new high speed lines were successfully installed at line speeds of 56k (a normal modem nowadays) through telephone lines in 1988. By that time, there were 28,174 computers on the (by then decided) Internet. In 1989 there were 80,000 computers on it. By 1989, there were290,000.Another network was built to support the incredible number of people joining. It was constructed in 1992.Today - The InternetToday, the Internet has become one of the most important technological advancements in the history of humanity. Everyone wants to get 'on line' to experience the wealth of information of the Internet. Millions of people now use the Internet, and it's predicted that by the year 2003 every single person on the planet will have Internet access. The Internet has truly become a way of life in our time and era, and is evolving so quickly its hard to determine where it will go next, as computer and network technology improve every day.HOW IT WORKS:It's a standard thing. People using the Internet. Shopping, playing games,conversing in virtual Internet environments.The Internet is not a 'thing' itself. The Internet cannot just "crash." It functions the same way as the telephone system, only there is no Internet company that runs the Internet.The Internet is a collection of millioins of computers that are all connected to each other, or have the means to connect to each other. The Internet is just like an office network, only it has millions of computers connected to it.The main thing about how the Internet works is communication. How does a computer in Houston know how to access data on a computer in Tokyo to view a webpage?Internet communication, communication among computers connected to the Internet, is based on a language. This language is called TCP/IP. TCP/IP establishes a language for a computer to access and transmit data over the Internet system.But TCP/IP assumes that there is a physical connecetion between onecomputer and another. This is not usually the case. There would have to be a network wire that went to every computer connected to the Internet, but that would make the Internet impossible to access.The physical connection that is requireed is established by way of modems,phonelines, and other modem cable connections (like cable modems or DSL). Modems on computers read and transmit data over established lines,which could be phonelines or data lines. The actual hard core connections are established among computers called routers.A router is a computer that serves as a traffic controller for information.To explain this better, let's look at how a standard computer might viewa webpage.1. The user's computer dials into an Internet Service Provider (ISP). The ISP might in turn be connected to another ISP, or a straight connection into the Internet backbone.2. The user launches a web browser like Netscape or Internet Explorer and types in an internet location to go to.3. Here's where the tricky part comes in. First, the computer sends data about it's data request to a router. A router is a very high speed powerful computer running special software. The collection of routers in the world make what is called a "backbone," on which all the data on the Internet is transferred. The backbone presently operates at a speed of several gigabytes per-second. Such a speed compared to a normal modem is like comparing the heat of the sun to the heat of an ice-cube.Routers handle data that is going back and forth. A router puts small chunks of data into packages called packets, which function similarly to envelopes. So, when the request for the webpage goes through, it uses TCP/IP protocols to tell the router what to do with the data, where it's going, and overall where the user wants to go.4. The router sends these packets to other routers, eventually leadingto the target computer. It's like whisper down the lane (only the information remains intact).5. When the information reaches the target web server, the webserver then begins to send the web page back. A webserver is the computer where the webpage is stored that is running a program that handles requests for the webpage and sends the webpage to whoever wants to see it.6. The webpage is put in packets, sent through routers, and arrive at the users computer where the user can view the webpage once it is assembled.The packets which contain the data also contain special information that lets routers and other computers know how to reassemble the data in the right order.With millions of web pages, and millions of users, using the Internet is not always easy for a beginning user, especially for someone who is not entirely comfortale with using computers. Below you can find tips tricks and help on how to use main services of the Internet.Before you access webpages, you must have a web browser to actually be able to view the webpages. Most Internet Access Providers provide you with a web browser in the software they usually give to customers; you. The fact that you are viewing this page means that you have a web browser. The top two use browsers are Netscape Communicator and Microsoft Internet Explorer. Netscape can be found at /doc/bedc387343323968011c9268.html and MSIE can be found at /doc/bedc387343323968011c9268.html /ie.The fact that you're reading this right now means that you have a web browser.Next you must be familiar with actually using webpages. A webpage is a collection of hyperlinks, images, text, forms, menus, and multimedia. To "navigate" a webpage, simply click the links it provides or follow it's own instructions (like if it has a form you need to use, it will probably instruct you how to use it). Basically, everything about a webpage is made to be self-explanetory. That is the nature of a webpage, to be easily navigatable."Oh no! a 404 error! 'Cannot find web page?'" is a common remark made by new web-users.Sometimes websites have errors. But an error on a website is not the user's fault, of course.A 404 error means that the page you tried to go to does not exist. This could be because the site is still being constructed and the page hasn't been created yet, or because the site author made a typo in the page. There's nothing much to do about a 404 error except for e-mailing the site administrator (of the page you wanted to go to) an telling him/her about the error.A Javascript error is the result of a programming error in the Javascript code of a website. Not all websites utilize Javascript, but many do. Javascript is different from Java, and most browsers now support Javascript. If you are using an old version of a web browser (Netscape 3.0 for example), you might get Javascript errors because sites utilize Javascript versions that your browser does not support. So, you can try getting a newer version of your web browser.E-mail stands for Electronic Mail, and that's what it is. E-mail enables people to send letters, and even files and pictures to each other.To use e-mail, you must have an e-mail client, which is just like a personal post office, since it retrieves and stores e-mail. Secondly, you must have an e-mail account. Most Internet Service Providers provide free e-mail account(s) for free. Some services offer free e-mail, like Hotmail, and Geocities.After configuring your e-mail client with your POP3 and SMTP server address (your e-mail provider will give you that information), you are ready to receive mail.An attachment is a file sent in a letter. If someone sends you an attachment and you don't know who it is, don't run the file, ever. It could be a virus or some other kind of nasty programs. You can't get a virus justby reading e-mail, you'll have to physically execute some form of program for a virus to strike.A signature is a feature of many e-mail programs. A signature is added to the end of every e-mail you send out. You can put a text graphic, your business information, anything you want.Imagine that a computer on the Internet is an island in the sea. The sea is filled with millions of islands. This is the Internet. Imagine an island communicates with other island by sending ships to other islands and receiving ships. The island has ports to accept and send out ships.A computer on the Internet has access nodes called ports. A port is just a symbolic object that allows the computer to operate on a network (or the Internet). This method is similar to the island/ocean symbolism above.Telnet refers to accessing ports on a server directly with a text connection. Almost every kind of Internet function, like accessing web pages,"chatting," and e-mailing is done over a Telnet connection.Telnetting requires a Telnet client. A telnet program comes with the Windows system, so Windows users can access telnet by typing in "telnet" (without the "'s) in the run dialog. Linux has it built into the command line; telnet. A popular telnet program for Macintosh is NCSA telnet.Any server software (web page daemon, chat daemon) can be accessed via telnet, although they are not usually meant to be accessed in such a manner. For instance, it is possible to connect directly to a mail server and check your mail by interfacing with the e-mail server software, but it's easier to use an e-mail client (of course).There are millions of WebPages that come from all over the world, yet how will you know what the address of a page you want is?Search engines save the day. A search engine is a very large website that allows you to search it's own database of websites. For instance, if you wanted to find a website on dogs, you'd search for "dog" or "dogs" or "dog information." Here are a few search-engines.1. Altavista (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed2. Yahoo (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed Collection3. Excite (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed4. Lycos (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed5. Metasearch (/doc/bedc387343323968011c9268.html ) - Multiple searchA web spider is a program used by search engines that goes from page to page, following any link it can possibly find. This means that a search engine can literally map out as much of the Internet as it's own time and speed allows for.An indexed collection uses hand-added links. For instance, on Yahoo's site. You can click on Computers & the Internet. Then you can click on Hardware. Then you can click on Modems, etc., and along the way through sections, there are sites available which relate to what section you're in.Metasearch searches many search engines at the same time, finding the top choices from about 10 search engines, making searching a lot more effective.Once you are able to use search engines, you can effectively find the pages you want.With the arrival of networking and multi user systems, security has always been on the mind of system developers and system operators. Since the dawn of AT&T and its phone network, hackers have been known by many, hackers who find ways all the time of breaking into systems. It used to not be that big of a problem, since networking was limited to big corporate companies or government computers who could afford the necessary computer security.The biggest problem now-a-days is personal information. Why should you be careful while making purchases via a website? Let's look at how the internet works, quickly.The user is transferring credit card information to a webpage. Looks safe, right? Not necessarily. As the user submits the information, it is being streamed through a series of computers that make up the Internet backbone.The information is in little chunks, in packages called packets. Here's the problem: While the information is being transferred through this big backbone, what is preventing a "hacker" from intercepting this data stream at one of the backbone points?Big-brother is not watching you if you access a web site, but users should be aware of potential threats while transmitting private information. There are methods of enforcing security, like password protection, an most importantly, encryption.Encryption means scrambling data into a code that can only be unscrambled on the "other end." Browser's like Netscape Communicator and Internet Explorer feature encryption support for making on-line transfers. Some encryptions work better than others. The most advanced encryption system is called DES (Data Encryption Standard), and it was adopted by the US Defense Department because it was deemed so difficult to 'crack' that they considered it a security risk if it would fall into another countries hands.A DES uses a single key of information to unlock an entire document. The problem is, there are 75 trillion possible keys to use, so it is a highly difficult system to break. One document was cracked and decoded, but it was a combined effort of14,000 computers networked over the Internet that took a while to do it, so most hackers don't have that many resources available.附件2:外⽂资料翻译译⽂Internet的历史起源——ARPAnetInternet是被美国政府作为⼀项⼯程进⾏开发的。
XXX财务分析体系外文文献翻译最新译文
XXX财务分析体系外文文献翻译最新译文XXX the use of DuPont financial analysis system in XXX DuPont system breaks down the return on equity (ROE) into three components: net profit margin。
asset turnover。
and financial leverage。
Using data from a sample of listed companies。
the study finds that the DuPont system is effective in XXX。
the XXX that it should be used in n with other financial analysis tools.In recent years。
there has been a growing interest in using financial analysis tools to XXX financial analysis system is one such tool that has XXX in the 1920s to analyze the performance of its own ns。
Since then。
it has been widely used in the financial XXX.The DuPont system breaks down the ROE into three components: net profit margin。
asset XXX。
and financial leverage。
The net profit margin measures the XXX efficiency of the company's use of its assets to generate sales。
外文翻译及文献综述
2 无线射频系统(RFID)的原理及安全性分析
2.1 RFID系统概述 RFID系统一般由三部分组成[3]: 标签(Tag):它是RFID的核心部件,主要包括用于收 发信息的藕合元件和一块微控制芯片组成,芯片内存 有唯一的电子编码; 阅读器(Reader):用来对标签进行读写操作的设备; 天线(Antenna):传递射频信号必需的收发装置。
毕业设计过程中阅读的和课题注意是 “和课题相关的”。不要选择 和课题无关的外文资料进行翻译。
3.1.3 外文翻译工具
谷歌翻译(/#) 有道翻译(/) 爱词霸翻译(http://fy.iciba. com/)
(3) Chien和Chen于2007年提出了一个符合EPC Class 1 Generation 2 的 RFID双向认证协议[18]
(4) Tassos Dimitriou等人提出的安全与效率兼得的协议
6 小结
虽然RFID技术在各行各业中有良好的应用前景,但如果不能很好 地解决隐私、追踪等安全问题,这种应用前景难以变成现实的产 业,因此,对RFID安全协议进行研究具有比较重要的意义。 本文首先对RFID系统进行了大致的描述,包括RFID系统的结构 及其原理,并针对在RFID系统上存在的一些隐私与安全隐患做了 细致分析,指出了在RFID系统上采用安全措施的必要性。同时从 多个角度阐述了一些RFID安全机制,重点介绍了基于密码技术的 RFID协议,文中又可分为基于杂凑的安全协议和其他密码学机制 的安全协议,并对文中提到的每一个协议给出了详细的通信流程, 分析了这些协议的缺陷。 随着RFID技术成本的降低和技术的成熟,人们将会越来越重视 RFID的安全性问题。我们相信,在不久的将来,RFID安全与隐私 问题一定能得到进一步完善的解决,同时RFID技术也一定会全面 普及。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)
译文及原稿译文题目:[单击此处添加译文题目]
原稿题目:[单击此处添加原稿题目]
原稿出处:[单击此处添加原稿出处]
[单击此处添加译文题目]
[单击此处添加译文正文]
以下是说明文字,正式成文后请删除。
1、模板的使用方法
(1)请不要删除任何具有格式的模板文字。
(2)按照提示直接单击或单击后选择“编辑”→“选择性粘贴”—“无格式文本”就可添加相应内容。
2、在“原稿出处”中对原稿的来源进行说明,包括作者姓名、出处、出版信息等。
期刊类文献书写方法:作者(不超过3人,多者用“等”或“et al”表示).[J].刊名,出版年,卷号(期号):起止页码.
论文集类文献书写方法:著者.[C].编者.论文集名.出版地:出版社,出版年份:起止页码.
有两篇译文的,按如下顺序列出:
译文题目一
原稿题目一
原稿出处一
译文题目二
原稿题目二
原稿出处二
3、检索和利用外文资料的能力是现阶段毕业设计(论文)环节中所要求掌握的基本能力之一。
外文翻译是在查阅外文文献时,将篇幅适当、内容与选题相关的外文资料翻译成中文。
通过翻译外文资料,可更深层次地了解国外相关领域的现状,同时也是对翻译能力的锻炼,并为考察和检验学生外语能力提供依据。
4、进行外文翻译应注意以下几点:
(1)翻译的外文文献内容应与论文选题相关;一般应选自国外学术期刊、学术会议的文章及其他相关材料。
(2)篇幅、深度和难度适当,可以由1~2篇文章组成。
5、外文翻译字数应达到3000字以上(翻译成中文后的汉字字数)。
[单击此处添加外文原稿题目] [单击此处添加外文原稿正文]。