高中数学苏教版必修1第1章1.1第1课时集合的含义
苏教版高中数学必修1第1章集合集合的含义及其表示教案

苏教版高中数学必修1第1章集合集合的含义及其表示(一)教学目标1.知识与技能(1)初步理解集合的含义,知道常用数集及其记法.(2)初步了解“属于”关系的意义.理解集合相等的含义.(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.2.过程与方法(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合.(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表示给定集合掌握集合表示的方法.3.情感、态度与价值观(1)了解集合的含义,体会元素与集合的“属于”关系.(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、扎实严谨的科学态度.(二)教学重点、难点重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述法正确地表示一些简单集合.(三)教学方法尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概念的理解、性质的掌握.通过命题表示集合,培养运用数学符合的意识.教学环节教学内容师生互动设计意图提出问题一个百货商店,第一批进货是帽子、皮鞋、热水瓶、闹钟共计4个品种,第二批进货是收音机、皮鞋、尼龙袜、茶杯、学生回答(不能,应为7种),然后教师和学生共同分析原因:由于两次进货共同的品种有两种,故设疑激趣,导入课闹钟共计5个品种,问一共进了多少品种的货?能否回答一共进了 4 + 5 = 9种呢?应为4 +5 – 2 = 7种.从而指出:,,这好像涉及了另一种新的运算.,,题.复习引入①初中代数中涉及“集合”的提法.②初中几何中涉及“集合”的提法.引导学生回顾,初中代数中不等式的解法一节中提到的有关知识:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集.几何中,圆的概念是用集合描述的.通过复习回顾,引出集合的概念.概念形成第一组实例(幻灯片一):(1)“小于l0”的自然数0,1,2,3,,,,9.(2)满足3x– 2 >x + 3的全体实数.(3)所有直角三角形.(4)到两定点距离的和等于两定点间的距离的点.(5)高一(1)班全体同学.(6)参与中国加入WTO谈判的中方成员.1.集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).2.集合的元素(或成员):即构成集合的每个对象(或成员),教师提问:①以上各例(构成集合)有什么特点?请大家讨论.学生讨论交流,得出集合概念的要点,然后教师肯定或补充.②我们能否给出集合一个大体描述?,,学生思考后回答,然后教师总结.③上述六个例子中集合的元素各是什么?④请同学们自己举一些集合的例子.通过实例,引导学生经历并体会集合(描述性)概念形成的过程,引导学生进一步明确集合及集合元素的概念,会用自然语言描述集合.概念深化第二组实例(幻灯片二):(1)参加亚特兰大奥运会的所有中国代表团的成员构成的集合.(2)方程x2 = 1的解的全体构成的集合.(3)平行四边形的全体构成的集合.(4)平面上与一定点O的距离等于r的点的全体构成的集合.3.元素与集合的关系:教师要求学生看第二组实例,并提问:①你能指出各个集合的元素吗?②各个集合的元素与集合之间是什么关系?③例(2)中数0,–2是这个集合的元素吗?学生讨论交流,弄清元素与集合之间是从属关系,即“属于”或“不属于”关系.引入集合语言描述集合.教学环节教学内容师生互动设计意图念深化集合通常用英语大写字母A、B、C,表示,它们的元素通常用英语小写字母a、b、c,表示.如果a是集合A的元素,就说a属于A,记作a∈A,读作“a属于A”.如果a不是集合A的元素,就说a不属于A,记作a A,读作“a不属于A”.4.集合的元素的基本性质;(1)确定性:集合的元素必须是确定的.不能确定的对象不能构成集合.(2)互异性:集合的元素一定是互异的.相同的几个对象归于同一个集合时只能算作一个元素.第三组实例(幻灯片三):(1)由x2,3x + 1,2x2–x + 5三个式子构成的集合.(2)平面上与一个定点O的距离等于1的点的全体构成的集合.(3)方程x2 = – 1的全体实数解构成的集合.5.空集:不含任何元素的集合,记作.6.集合的分类:按所含元素的个数分为有限集和无限集.教师提问:“我们班中高个子的同学”、“年轻人”、“接近数0的数”能否分别组成一个集合,为什么?学生分组讨论、交流,并在教师的引导下明确:给定一个集合,任何一个对象是不是这个集合的元素也就确定了.另外,集合的元素一定是互异的.相同的对象归于同一个集合时只能算作集合的一个元素.教师要求学生观察第三组实例,并提问:它们各有元素多少个?学生通过观察思考并回答问题.然后,依据元素个数的多少将集合分类.让学生指出第三组实例中,哪些是有限集?哪些是无限集?,,请同学们熟记上述符号及其意义.通过讨论,使学生明确集合元素所具有的性质,从而进一步准确理解集合的概念.通过观察实例,发现集合的元素个数具有不同的类别,从而使学生感受到有限集、无限集、空集存在的客观意义.7.常用的数集及其记号(幻灯片四).N:非负整数集(或自然数集).N*或N+:正整数集(或自然数集去掉0).Z:整数集.Q:有理数集.R:实数集.教学环节教学内容师生互动设计意图应用举例列举法:定义:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.师生合作应用定义表示集合.例1 解答:(1)设小于10的所有自然数组成的集合为A,那么A = {0,1,2,3,4,5,6,7,例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2 = x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.描述法:定义:用集合所含元素的共同特征表示集合的方法称为描述法. 具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例2 试分别用列举法和描述法表示下列集合:(1)方程x2–2 = 0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合. 8,9}.由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合A可以有不同的列举法. 例如:A = {9,8,7,6,5,4,3,2,1,0}.(2)设方程x2= x 的所有实数根组成的集合为B,那么B = {0,1}.(3)设由1~20以内的所有质数组成的集合为C,那么C= {2,3,5,7,11,13,17,19}.例2 解答:(1)设方程x2 – 2 = 0的实数根为x,并且满足条件x2 –2 = 0,因此,用描述法表示为A = {x∈R| x2 –2 = 0}.方程x2–2 = 0有两个实数根2,2,因此,用列举法表示为A = {2,2}.(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x <20. 因此,用描述法表示为B = {x∈Z | 10<x<20}.大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B = {11,12,13,14,15,16,17,18,19}.教学环节教学内容师生互动设计意图应用举例例3 已知由l,x,x2,三个实数构成一个集合,求x应满足的条件.解:根据集合元素的互异性,得2211xxxx所以x∈R且x≠±1,x≠0.课堂练习:教材第5页练习A1、2、3.例2 用∈、填空.①Q;②3Z;③3R;④0 N;⑤0 N*;⑥0 Z.学生分析求解,教师板书.幻灯片五(练习答案),反馈矫正.通过应用,进一步理解集合的有关概念、性质.例4 试选择适当的方法表示下列集合:(1)由方程x2– 9 = 0的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数y = x + 3与y = –2x +6的图象的交点组成的集合;(4)不等式4x– 5<3的解集.生:独立完成;题:点评说明.例4 解答:(1){3,–3};(2){2,3,5,7};(3){(1,4)};(4){x| x<2}.归纳总结①请同学们回顾总结,本节课学过的集合的概念等有关知识;②通过回顾本节课的探索学习过程,请同学们体会集合等有关知识是怎样形成、发展和完善的.③通过回顾学习过程比较列举法和师生共同总结——交流——完善.引导学生学会自己总结;让学生进一步(回顾)体会知识的形描述法. 归纳适用题型. 成、发展、完善的过程.课后作业1.1 第一课时习案由学生独立完成.巩固深化;预习下一节内容,培养自学能力.备选例题例1(1)利用列举法表法下列集合:①{15的正约数};②不大于10的非负偶数集.(2)用描述法表示下列集合:①正偶数集;②{1,–3,5,–7,,,–39,41}.【分析】考查集合的两种表示方法的概念及其应用.【解析】(1)①{1,3,5,15}②{0,2,4,6,8,10}(2)①{x | x = 2n,n∈N*}②{x | x = (–1) n–1·(2n–1),n∈N*且n≤21}.【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集.例2 用列举法把下列集合表示出来:(1)A = {x∈N |99x∈N};(2)B = {99x∈N | x∈N };(3)C = { y = y = –x2 + 6,x∈N,y∈N };(4)D = {(x,y) | y = –x2 +6,x∈N };(5)E = {x |pq= x,p + q = 5,p∈N,q∈N*}.【分析】先看五个集合各自的特点:集合A 的元素是自然数x ,它必须满足条件99x也是自然数;集合B 中的元素是自然数99x,它必须满足条件x 也是自然数;集合C中的元素是自然数y ,它实际上是二次函数y = –x 2 + 6 (x ∈N )的函数值;集合D 中的元素是点,这些点必须在二次函数y = –x 2 + 6 (x ∈N )的图象上;集合E 中的元素是x ,它必须满足的条件是x =p q,其中p + q = 5,且p ∈N ,q ∈N *.【解析】(1)当x = 0,6,8这三个自然数时,99x=1,3,9也是自然数.∴ A = {0,6,9}(2)由(1)知,B = {1,3,9}.(3)由y = –x 2 + 6,x ∈N ,y ∈N 知y ≤6. ∴x = 0,1,2时,y = 6,5,2 符合题意.∴ C = {2,5,6}.(4)点{x ,y}满足条件y = –x 2+ 6,x ∈N ,y ∈N ,则有:0,1,2,6,5,2.x x x yyy∴ D = {(0,6) (1,5) (2,2) }(5)依题意知p + q = 5,p ∈N ,q ∈N *,则0,1,2,3,4,5,4,3,2,1.p p p p p qqqqqx 要满足条件x =P q,∴E = {0,14,23,32,4}.【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例3 已知–3∈A = {a –3,2a – 1,a 2 + 1},求a 的值及对应的集合 A.–3∈A ,可知–3是集合的一个元素,则可能 a –3 = –3,或2a – 1 = –3,求出a ,再代入A ,求出集合 A.【解析】由–3∈A ,可知,a –3 = –3或2a –1 = –3,当a –3 = –3,即a = 0时,A = {–3,–1,1}当2a – 1 = –3,即a = –1时,A = {– 4,–3,2}. 【评析】元素与集合的关系是确定的,–3∈A ,则必有一个式子的值为–3,以此展开讨论,便可求得 a.。
高中数学 第一章 集合(含解析)苏教版必修1

第1课时集合的含义及其表示(1)教学过程一、问题情境(1) 小于10的所有偶数;(2) 中国的直辖市;(3) 单词book中的字母;(4) 到一个角的两边距离相等的所有的点;(5) 方程x2-5x+6=0的所有实数根;(6) 不等式x-3>0的所有解;(7) 某高中全体高一学生.二、数学建构问题1以上实例有什么共同特征?(引导学生说出:一定范围内,确定的,不同对象.然后通过学生回答,总结出集合的含义)一定范围内某些确定的、不同的对象的全体构成一个集合.集合常用大写的拉丁字母来表示,如集合A、集合B.集合中的每一个对象称为该集合的元素,简称元.集合的元素常用小写的拉丁字母来表示,如元素a、元素b.问题2回答下列问题:(1) 已知A={1, 3},问:3, 5哪个是A的元素?(2) “所有素质好的人”能否构成一个集合A?(3) A={2, 2, 4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一个集合?由上述问题可以归纳出集合中元素的特征:①确定性:设A是一个给定的集合,x是某一个具体对象,则“x是A的元素”或者“x不是A的元素”这两种情况必有一种且只有一种成立.②互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不能重复出现同一元素.③无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照由小到大的数轴顺序书写.问题3元素与集合之间有怎样的关系?解如果a是集合A中的元素,就记作a∈A,读作“a属于A”;如果a不是集合A中的元素,就记作a∉A或a⋷A,读作“a不属于A”.问题4常用的数集有哪些?它们分别用什么数学符号表示?解自然数集(非负整数集):N,正整数集:N*或N+,整数集:Z,有理数集:Q,实数集:R.问题5集合的表示方法有哪些?(1) 列举法:将集合的元素一一列举出来,并置于“{}”中,元素之间用逗号分隔.列举时与元素次序无关,如{北京,上海,天津,重庆}.集合的相等关系:如果两个集合所含的元素完全相同,那么称这两个集合相等,如{北京,上海,天津,重庆}={天津,重庆,北京,上海}.思考“问题情境”中的集合都能用列举法表示吗?如果能,请表示出来.(2) 描述法:将集合中所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.{x|p(x)}中x为集合的代表元素,p(x)指元素x具有的性质,如{x|x为中国的直辖市},{x|x-3>0, x∈R}. (3) Venn图:有时用Venn图示意集合(如图1),更显直观.(图1)问题6按照元素的个数,集合该怎样分类?(1) 有限集:含有有限个元素的集合称为有限集.(2) 无限集:含有无限个元素的集合称为无限集.(3) 空集:不含任何元素的集合称为空集,记作⌀,如{x|x2+x+1=0, x∈R}=⌀.三、数学运用【例1】下列各组对象能否构成集合:(1) 所有的好人;(2) 小于2012的数;(3) 和2012非常接近的数;(4) 小于5的自然数;(5) 不等式2x+1>7的整数解;(6) 方程x2+1=0的实数解. (见学生用书课堂本P1~2)[处理建议]引导学生根据定义判断.[规范板书]解(1)(3)不符合集合中元素的确定性,因此,只有(2)(4)(5)(6)能够构成集合.[题后反思]解决这类题目要抓住集合中元素的两个特征:确定性,互异性.【例2】用符号“∈”或“∉”填空:-错误!未找到引用源。
江苏省高中数学必修一第一章1.1集合的含义及其表示课件(苏教版)

描述法 将集合的所有元素都具 有的性质 ( 满
足的条件 )表示出来,写成 x | px的形 式 ,如:
x | x为中国的直辖市 ,x | x为young中的字母
x 3, x R.
有时用Venn图示意集合 ,更加形象直观 如下图.
北京, 上海, 天津,重庆
1
y, o,u, n, g
2
解 由2x 3 5可得 x 4 ,所不等式 2x 3 5的
集合B等.
一般地 ,
记作记作 .
集合的元 素常用小写拉丁字母表示 .如果
a是集合A的元素 ,就记作 a A,读作"a 属
于A";如果 a不是集合 A的元素 ,就记作 A
A或 aA,读作"a不属于A".例如, 2 R,
2 Q.
如果两个集合所含的元 素完全相同 (即A的元素 都是B的元素, B中的元素也都是 A的元素 ),则称 这两个集合 ,如
1.1 集合的含义及其表示
我家有爸爸、妈妈和我 ; 我来自第三十八中学 ;
我现在的班级是高一 1班.全班共有学生 45人,
其中男生 23人,女生 22人;
一般地,一定范围内某些确定的 、不同的对象的全体
构成一个 set.集合中的对象称为该集 合的 elem ent,简称 .
集合常用大写拉丁字母 来表示,如集合A、
解集为 x | x 4, x R.
一般地,含有有限个元素的集合 称为
( fnfiniteset).若一个集合不是有限集 ,就称此
集合为
(inf inite set).我们把不含任何
元素的集合称为 (em ptyset),记作 .
解 因为x2 x 1 0没有实数解 ,
所以 x | x2 x 1 0, x R .
苏教版(2019)必修第一册 1-1 集合的概念与表示 课件(37张)

这个集合中就确定了.
(2)互异性:一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.任何两个
相同的对象在同一个集合中,只能算作这个集合的一个元素.
(3)无序性:集合中的元素无先后顺序之分.
些对象的全体,而非个别对象.
【示例】中国古代四大发明组成一个集合,那么集合的元素就是造纸术、指南针、火药、印刷术.
二十一世纪中国有新四大发明:高铁、移动支付、共享单车和网购.这四大发明就组成了一个集合.
即时巩固
[多选题]下列所给对象能构成集合的是(AD)
A.平面直角坐标系内到原点的距离等于1的点
B.《高中数学必修第一册》课本上的所有难题
两个集合相等,记作A=B.
【提示】(1)两个集合相等时,其元素个数一定相等.
(2)当两个集合相等时,其元素不一定依次对应相同.
如:集合{1,2,3}与集合{3,2,1}相等.
(3)两个集合是否相等,不能只看形式.
如:不等式0<x<1的解集与不等式 0<y<1的解集是两个相等的集合.
三、集合的表示方法
,即
∈{
}.
2.常用数集及其记法(要牢记)
数学中一些常用的数集及其记法:
全体自然数组成的集合,叫作自然数集,记作N;
全体正整数组成的集合,叫作正整数集,记作N*或N+;
全体整数组成的集合,叫作整数集,记作Z;
全体有理数组成的集合,叫作有理数集,记作Q;
全体实数组成的集合,叫作实数集,记作R.
【提示】(1)N比N*(或N+)多一个元素0;(2)N*中*在右上角,N+中+在右下角.
高中数学第一章 1.1.1 第一课时 集合的含义优秀课件

3.若所有形如 3a+ 2b(a∈Z ,b∈Z )的数组成集合 A, 判断 6+2 2是不是集合 A 中的元素. 解:是,∵6+2 2=3×2+2× 2, ∴令 a=2,b=2, 则 6+2 2=3a+ 2b. 又∵2∈Z ,∴6+2 2∈A.
探究点三 集合中元素特性的简单应用 [典例精析] 已知集合 A 含有两个元素 a-3 和 2a-1,若-3∈A,试求 实数 a 的值. [思路点拨] 由于集合 A 中含有两个元素,因此-3=a-3 和-3=2a-1 都有可能,需分类讨论.
1.1 集 合
1.1.1 集合的含义与表示
第一课时 集合的含义
一、预习教材·问题导入 根据以下提纲,预习教材 P1~P3,回答下列问题. 教材开始的(1)~(8)例子中,各组的对象分别是什么?这 8 个例子中能构成集合的有哪些?
提示: 素数,人造卫星,汽车,国家,正方形,点,实数 根,高一学生. (1)(2)(3)(4)(5)(6)(7)(8).
(1)所有的正三角形;
(2)高一数学必修 1 课本上的所有难题;
(3)比较接近 1 的正数全体;
(4)某校高一年级的 16 岁以下的学生;
(5)平面直角坐标系内到原点距离等于 1 的点的集合;
(6)a,b,a,c.
[解] (1)能构成集合.其中的元素需满足三条边相等. (2)不能构成集合.因“难题”的标准是模糊的,不确定的, 故不能构成集合. (3)不能构成集合.因“比较接近 1”的标准不明确,所以元 素不确定,故不能构成集合. (4)能构成集合.其中的元素是“16 岁以下的学生”. (5)能构成集合.其中的元素是“到坐标原点的距离等于 1 的点”. (6)不能构成集合.因为有两个 a 是重复的,不符合元素的 互异性.
新教材苏教版必修第一册 第1章 1.1 第1课时 集合的含义 课件(38张)

学 探
3.元素与集合的表示
提
新 知
素
(1)元素的表示:通常用小写拉丁字母 a,b,c,… 表示集合 养
中的元素.
课
合
时
作 探
(2)集合的表示:通常用大写拉丁字母A,B,C,… 表示集合.
分 层
究
作
释
业
疑
难
返 首 页
8
情
景 导
4.元素与集合的关系
学 探
(1)属于(符号:∈ ),a是集合A中的元素,记作 a∈A
导
结
学
探
因为-4是整数,故-4∈Z;
新
提 素
知
因为0.5是实数,故0.5∈R;
养
合
因为 2不是正整数,故 2 N*;
课 时
作
分
探 究 释
因为13是有理数,故13∈Q.]
层 作 业
疑
难
返 首 页
14
课
情
堂
景
小
导
结
学
提
探
新 知
合作
探究
释疑
难
素 养
课
合
时
作
分
探
层
究
作
释
业
疑
难
返 首 页
15
集合的含义
课
情
第1章 集合
1.1 集合的概念与表示 第1课时 集合的含义
2
情
景
学习目标
导 学
1.通过实例理解并掌握集合的有关概念.
探
新 2.初步理解集合中元素的三个特征.(重点)
知
课
核心素养
堂 小
通过本节内容的 结 提
苏教版高中数学必修一集合的含义及表示集合文字素材

高考数学基础知识、常见结论详解一、集合与简易逻辑一、理解集合中的有关概念(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
集合元素的互异性:如:)}lg(,,{xy xy x A =,}|,|,0{y x B ,求A ;(2)集合与元素的关系用符号∈,∉表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。
注意:区分集合中元素的形式:如:}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C ;}12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==;}12|)',{(2++==x x y y x F ;},12|{2xy z x x y z G =++== (5)空集是指不含任何元素的集合。
(}0{、φ和}{φ的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。
如:}012|{2=--=x ax x A ,如果φ=+R A I ,求a 的取值。
二、集合间的关系及其运算(1)符号“∉∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;符号“⊄⊂,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。
(2)_}__________{_________=B A I ;____}__________{_________=B A Y ; _}__________{_________=A C U(3)对于任意集合B A ,,则:①A B B A Y Y ___;A B B A I I ___;B A B A Y I ___;②⇔=A B A I ;⇔=A B A Y ;⇔=U B A C U Y ;⇔=φB A C U I ;③=B C A C U U I ; )(B A C U I =;(4)①若n 为偶数,则=n ;若n 为奇数,则=n ;②若n 被3除余0,则=n ;若n 被3除余1,则=n ;若n 被3除余2,则=n ;三、集合中元素的个数的计算:(1)若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
第1章-1.1-集合的概念与表示高中数学必修第一册苏教版

A.−2 ∉
)
B.2 ∉
C.3 ∈
D.−3 ∈
【解析】由 2 + − 6 = 0可得 + 3 − 2 = 0,解得 = −3或 = 2,
所以 = {−3,2},因此−2 ∉ ,2 ∈ ,3 ∉ ,−3 ∈ .
例11 (2024·江西省上饶市重点高中开学考试)已知集合 = {| = + 2,,
D. + 属于,,任一个
【解析】由 ∈ ,可得 = 21 1 ∈ ,
由 ∈ ,可得 = 22 + 1 2 ∈ ,
所以 + = 21 + 22 + 1 = 2 1 + 2 + 1 = 2 + 1 ∈ ,所以 + ∈ .
2.(2024·广东省佛山市月考)设集合 = { ∈
①当 = 0时,方程为2 + = 0,此时一定有解.当 = −1,0,1,2时,满足条件的有序
数对为 0, −1 , 0,0 , 0,1 , 0,2 .
②当 ≠ 0时,方程为一元二次方程,因为有实数解,则Δ = 4 − 4 ≥ 0,所以
≤ 1.当 = −1,1,2时,满足条件的有序数对(在列举有序数对时,注意不要遗漏,
法表示为{3,5,7,11}.
(3)方程 2 − 2 + 1 = 0的实数根组成的集合;
【解析】(3)方程 2 − 2 + 1 = 0的实数根为1,因此可用列举法表示为{1},
也可用描述法表示为{| 2 − 2 + 1 = 0}.
(4)平面直角坐标系内所有第二象限的点组成的集合;
【解析】集合的代表元素是点,可用描述法表示为{ , | < 0且 > 0}.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1集合的含义及其表示
第1课时集合的含义
学习目标:1.通过实例理解并掌握集合的有关概念.2.初步理解集合中元素的三个特征.(重点)3.体会元素与集合的属于关系.(重点)4.掌握常用数集及其专用符号,初步认识用集合语言表示有关数学对象.(重点、易错易混点)
[自主预习·探新知]
1.元素与集合的概念
一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素,简称元.
2.集合中元素的特性
集合中元素的特性:确定性、互异性、无序性.
思考:假如在军训时教官喊“全体高个子同学集合”,你去集合吗?
[提示]不知道,不清楚自己到底是不是高个子.
3.元素与集合的表示
(1)元素的表示:通常用小写拉丁字母a,b,c,…表示集合中的元素.
(2)集合的表示:通常用大写拉丁字母A,B,C,…表示集合.
4.元素与集合的关系
(1)属于(符号:∈),a是集合A中的元素,记作a∈A,读作“a属于A”.
/或∈),a不是集合A中的元素,记作a∈/A或a∈A,
(2)不属于(符号:∈
读作“a不属于A”.
5.常用数集及表示符号
名称非负整数集正整数集整数集有理数集实数集
(自然数集)
符号N N*或N+Z Q R
[基础自测]
1.思考辨析
(1)漂亮的花可以组成集合.()
(2)在一个集合中可以找到两个(或两个以上)相同的元素.()
[解析](1)×.因为“漂亮”没有明确的标准,其不满足集合中元素的确定性.
(2)×.因为集合中的元素具有互异性,故在一个集合中一定找不到两个(或两个以上)相同的元素.
[答案](1)×(2)×
2.用“∈”、“∈/”填空.
3.5________N;-4________Z;0.5________R;
2________N*;1
3
________Q.
【导学号:48612005】
[解析]因为3.5不是自然数,故 3.5∈/N;因为-4是整数,故-4∈Z;
因为0.5是实数,故0.5∈R;
因为2不是正整数,故2∈
/N*;
因为1
3
是有理数,故
1
3
∈Q.
[答案]∈/∈∈∈/∈
[合作探究·攻重难]
集合的含义
观察下列各组对象能否组成一个集合?
(1)2016年里约奥运会上中国队获得的金牌;
(2)无限接近零的数;
(3)方程x2-2x-3=0的所有解;
(4)平面直角坐标系中,第一象限内的所有点.
[思路探究]判断一组对象能否构成集合的关键是该组对象是否唯一确定.
[解](1)能.因为2016年里约奥运会上中国队获得的金牌是确定的.
(2)不能.因为“无限接近”标准不明确,不具有确定性,不能构成集合.
(3)能.因为方程x2-2x-3=0的解为x1=3,x2=-1确定,所以可以组成集合,集合中有两个元素3和-1.
(4)能.因为第一象限内的点是确定的点.
[规律方法]一般地,确认一组对象a1,a2,a3,…,a n能否构成集合的过程为:
[跟踪训练]
1.判断下列每组对象能否构成一个集合.
(1)不超过20的非负数;
(2)方程x2-9=0在实数范围内的解;
(3)某校2018年在校的所有高个子同学;
(4) 3的近似值的全体.
[解](1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合.
(2)能构成集合.
(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,
因此不能构成一个集合.
(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数(如“2”)是不是它的近似值,所以不能构成集合.
元素与集合的关系
所给下列关系正确的序号是________.
①-1
2
∈R;②2∈/Q;③0∈/N*;④|-3|∈/N*.
[思路探究]注意各个数集的范围,尤其是其中的特殊数值.
[解]-1
2
为实数,2是无理数,
0为自然数,但非正整数,3为正整数.
故①②③正确,④错误.
[答案]①②③
[规律方法] 1.由集合中元素的确定性可知,对任意的元素a与集合A,在“a∈A”与“a∈/A”这两种情况中必有一种且只有一种成立.
2.符号“∈”和“∈/”只表示元素与集合之间的关系,而不能用于表示其他关系.
3.“∈”和“∈/”具有方向性,左边是元素,右边是集合.
[跟踪训练]
2.设不等式3-2x<0的解集为M,下列关系中正确的有________.(填序号)
【导学号:48612006】
①0∈M,2∈M;②0∈/M,2∈M;③0∈M,2∈/M;④0∈/M,2∈/M.
[解析]本题是判断0和2与集合M间的关系,因此只需判断0和2是否
是不等式3-2x<0的解即可,当x=0时,3-2x=3>0,所以0∈/M;当x=2时,3-2x=-1<0,所以2∈M.
[答案]②
集合元素的特征
[探究问题]
1.某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合定义中“某些确定的”含义是什么?
[提示]某班所有的“帅哥”不能构成集合,因“帅哥”无明确的标准,高于175厘米的男生能构成一个集合,因标准确定.“某些确定的”含义是集合中的元素必须是确定的,也就是说,给定一个集合,那么任何一个对象在不在这个
集合中就确定了.
2.有同学说,在某一个集合中有a,-a,|a|三个元素,他说的对吗?
a a≥0,
[提示]这种说法是错误的,因|a|=
且若a=0,则a,-a,
-a a<0,
|a|均为0,这些均与元素的互异性矛盾.
3.“中国的直辖市”构成的集合中,元素包括哪些?甲同学说:北京、上海、天津、重庆;乙同学说:上海、北京、重庆、天津,他们的回答都正确吗?
由此说明什么?怎么说明两个集合相等?
[提示]两个同学都说出了中国直辖市的所有城市,因此两个同学的回答都是正确的,由此说明集合中的元素是无先后顺序的,这就是元素的无序性,只要构成两个集合的元素一样,我们就称这两个集合是相等的.
若集合A中有三个元素a-3,2a-1,a2-4,且-3∈A,求
实数a的值.
[思路探究]按-3=a-3或-3=2a-1或-3=a2-4分三类分别求解a的值,注意验证集合A中元素是否满足互异性.
[解](1)若a-3=-3,则a=0,此时满足题意;
(2)若2a-1=-3,则a=-1,此时a2-4=-3,不满足集合中元素的互异性,故舍去.
(3)若a2-4=-3,则a=±1.
当a=1时,满足题意;
当a=-1时,由(2)知,不满足题意.
综上可知,a=0或a=1.
母题探究:1.(变条件)若将本例条件“-3∈A”改为“a∈A”,其他条件不变,求a的值.
[解]因为a∈A,
所以a=a-3或a=2a-1,
解得a=1.
此时集合A含有两个元素-2,1,符合题意,故实数a的值为1.
2.(变条件)若将本例条件中“-3∈A”改为“-3∈/A”,其他条件不变,求实数a的范围.
[解]由例题可知-3∈A时,a=0或-1,则-3∈/A得a≠0且a≠-1.
[规律方法] 1.集合元素特性中的互异性,指的是一个集合中不能有两个相
同的元素,利用其可以解决一些实际问题,如三角形中的边长问题及元素能否组成集合问题.
2.求解字母的取值范围:当一个集合中的元素含有字母,求解字母的取值
范围时,一般可先利用集合中元素的确定性解出集合中字母的所有可能的值或范
围,再根据集合元素的互异性进行检验,防止产生增解.(如本题中的a=-1)
[当堂达标·固双基]
1.下列能构成集合的有________.
①中央电视台著名节目主持人;②我市跑得快的汽车;③上海市所有的中学生;④香港超过100层的高楼.
[解析]①②中研究的对象不确定,因此不能构成集合.
[答案]③④
2.下列所给关系正确的个数是________.
【导学号:48612007】
①π∈R;②2 3 ∈/Q;③0∈N*;④|-4|∈/N*.
[解析]∵π是实数,23是无理数,0不是正整数,|-4|=4是正整数,∴①②正确,③④不正确,正确的个数是 2.
[答案] 2
3.已知集合S中三个元素a,b,c是△ABC的三边长,那么△ABC一定不是下面给出的________.
①锐角三角形;②直角三角形;③钝角三角形;④等腰三角形.
[解析]由元素的互异性知a,b,c均不相等.
[答案]④
4.若x∈N,则满足2x-5<0的元素组成的集合中所有元素之和为________.
[解析]由2x-5<0,得x<5
2,又x∈N,∴x=0,1,2,故所有元素之和为 3.
[答案] 3
5.判断下列语句是否正确?
【导学号:48612008】
(1)由1,2,2,4,2,1构成一个集合,这个集合共有6个元素;
(2)2012年末世界上的人构成一个无限集;
(3)某一时刻,地球的所有卫星构成一个集合;
(4)高一(1)班性格开朗的女生构成一个集合.
[解](1)不正确,由集合中元素的互异性可知,该集合有3个元素.
(2)不正确,2012年末世界上的人构成一个有限集.
(3)正确.
(4)不正确,因为性格开朗没有一个明确的标准,所以性格开朗的女生构不成集合.。