第五章功率电子电路
电力电子技术第五章直流-直流变流电路PPT课件

(5-37) O
i
t
o
当tx<t0ff时,电路为电流断续工作状态, tx<t0ff是电流断续的条件,即
m
1 e 1 e
(5-38)
i
i
1
2
I
20
O
t
tt
t
t
on
1
x
2
t
off
T
c)
图5-3 用于直流电动机回馈能 量的升压斩波电路及其波形
c)电流断续时
16/44
5.1.3 升降压斩波电路和Cuk斩波电路
◆斩波电路有三种控制方式
☞脉冲宽度调制(PWM):T不变,改变ton。 ☞频率调制:ton不变,改变T。 ☞混合型:ton和T都可调,改变占空比
5/44
5.1.1 降压斩波电路
■对降压斩波电路进行解析
◆基于分时段线性电路这一思想,按V处于通态和处于断态两个过程 来分析,初始条件分电流连续和断续。
◆电流连续时得出
3/44
5.1.1 降压斩波电路
■降压斩波电路(Buck Chopper)
◆电路分析
☞使用一个全控型器件V,若采用晶闸
管,需设置使晶闸管关断的辅助电路。
☞设置了续流二极管VD,在V关断时
给负载中电感电流提供通道。
☞主要用于电子电路的供电电源,也
可拖动直流电动机或带蓄电池负载等。
◆工作原理
☞ t=0时刻驱动V导通,电源E向负载
☞输出电流的平均值Io为
EI1 U o I o
Io
Uo R
1
E R
(5-24) (5-25)
☞电源电流I1为
I1
Uo E
Io
高频电子线路(第五章 高频功率放大器)

高频功率放大器和低频功率放大器的共同 特点都是输出功率大和效率高。
7
(3)高频功率放大器的种类
谐振功率放大器(学习重点)
特点是负载是一个谐振回路,功率放大增益可
以很大,一般用于末级; 不易于自动调谐。
宽带功率放大器(了解即可)
特点是负载是传输线变压器,可在很宽的频带
工作状态 甲类 乙类 甲乙类 丙类 丁类 半导通角 c=180° c=90° 90° <c<180° c<90° 开关状态 理想效率 50% 78.5% 50%<h<78.5% h>78.5% 负 载 电阻 推挽,回路 推挽 选频回路 选频回路 应 用 低频 低频,高频 低频 高频 高频
90%~100%
由于这种周期性的能量补充,所以振荡回路能维持振 荡。当补充的能量与消耗的能量相等时,电路中就建立起 动态平衡,因而维持了等幅的正弦波振荡。
34
问题二:半流通角θc通常多大合适?
如果θc取值过大,趋向甲类放大器,则效率 太低; 如果θc取值过小,效率虽然提高了,但输出 功率的绝对值太小(因为iC脉冲太低); 这是一对矛盾,根据实验折中,人们通常 取
gC (vB VBZ )(当vB VBZ )
外部电路关系:
vB VBB Vbm cos t
v C V CC V cm cos t
31
(4)对2个问题的解释
问题一(可能会引起同学们困惑的问题)
为什么iC的波形时有时无,而输出的波形vo却能
是连续的?
问题二(有的题目已知条件不给θc,而解题 中又需要θc )
通过LC回路,滤去无用分量,只留下 Icm1cosωt分量
Chap05_高频功率放大器

高频电子电路主讲:朱家富 重庆文理学院电子电气工程学院第五章 高频功率放大器主要内容: ¾ 概述 ¾ 谐振功率放大器的工作原理 ¾ 晶体管谐振功率放大器的折线近似分析法 ¾ 晶体管功率放大器的高频特性 ¾ 高频功率放大器的电路组成 ¾ 丁类(D类)功率放大器 ¾ 戊类(E类)功率放大器 ¾ 宽带高频功率放大器 ¾ 功率合成器 ¾ 晶体管倍频器《高频电子电路》 重庆文理学院主讲:朱家富P2功率放大电路是一种以输出较大功率为目的的放大电路。
三种组态的基本放大电路CE电压增益:− β ⋅ (Rc // RL ) >> 1rbe电流增益: β《高频电子电路》 重庆文理学院CC(1+ β ) ⋅ (Re // RL ) ≈ 1 rbe + (1+ β )(Re // RL )β+1主讲:朱家富CBβ ⋅ (Rc // RL ) >> 1 rbeαP31. 功率放大电路的主要特点 ⑴ 允许轻微非线性波形失真。
输出功率Po= Vom 2×I om 2=1 2 Vom I om要想Po大,应使Vom 和Iom都要大。
ΔABQ 功率三角形《高频电子电路》 重庆文理学院主讲:朱家富P4⑵ 管子工作在接近极限状态。
《高频电子电路》 重庆文理学院主讲:朱家富P52. 要解决的问题) 提高输出功率 ) 减小失真(线性度) ) 管子的保护 ) 提高效率η=输出功率 直流电源提供的直流功率=Po P==Po PDC《高频电子电路》 重庆文理学院主讲:朱家富P63. 提高效率的途径η=输出功率 直流电源提供的直流功 率=Po P==Po Po + PTP= (直流电源功率 ) = Po (交流功率) + PT (直流功耗)∫ P==1 TT0 VCC ⋅ iC dtvi= 0vi= V0sinωt) 降低静态功耗,即减小静态电流。
电力电子技术(第二版)第5章答案知识讲解

第五章1.换流方式有哪几种?各有什么特点?答:换流方式有4种:①器件换流。
利用全控型器件的自关断能力进行换流称为器件换流。
②电网换流。
由电网提供换流电压称为电网换流。
这种换流方式应用于由交流电网供电的电路中,它是利用电网电压自动过零并变负的性能来实现换流的。
③负载换流。
由负载提供换流电压称为负载换流。
这种换流方法多用于直流电源供电的负载电路中。
④强迫换流。
设置附加的换流电路,给欲关断的晶闸管强迫施加反向电压或反向电流的换流方式称为强迫换流。
换流回路的作用是利用储能元件中的能量,产生一个短暂的换流脉冲,使原来导通的晶闸管电流下降到零,再使它承受一段时间反压,便可关断。
强迫换流通常利用附加电容上所储存的能量来实现,因此也称电容换流。
2.什么是电压型和电流型逆变器?它们各有什么特点?答:⑴直流侧是电压源的逆变器称为电压型逆变器。
电压型逆变器的特点如下:①直流侧为电压源,或并联有大电容,相当于电压源。
直流侧电压基本无脉动,直流回路呈现低阻抗。
②由于直流电压源的箝位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关;而交流侧输出电流波形和相位随负载阻抗情况的不同而不同。
③当交流侧为阻感负载时,需要提供无功功率,直流侧电容起缓冲无功能量的作用。
逆变桥各臂反并联的二极管为交流侧向直流侧反馈无功能量提供了通道。
④直流侧向交流侧传送的功率是脉动的。
因为直流电源电压无脉动,故传送功率的脉动由直流侧电流的脉动来实现。
⑵直流侧电源为电流源的逆变器称为电流型逆变器。
电流型逆变器有如下特点:①直流侧串联有大电感,相当于电流源。
直流侧电流基本无脉动,直流回路呈现高阻抗。
②各开关管仅是改变直流电流流通途径,交流侧输出电流波形为矩形波,与负载阻抗角无关。
而交流侧输出电压波形和相位因负载阻抗角的不同而异,其波形常接近正弦波。
③当交流侧为阻感负载时,需要提供无功功率,直流侧电感起缓冲无功功率能量的作用。
因反馈无功能量时电流并不反向,故开关管不必反并联二极管。
第五章 三相电路

电工技术(电工学I)第五章三相电路three phasecircuit江苏大学电气信息工程学院School of electric and information,UJS内容5.1三相电源5.2负载星形连接的三相电路5.3负载三角形连接的三相电路5.4三相电路的功率5.5安全用电相电压与线电压在对称三相电路中的关系三相对称电源和对称负载的概念相电流与线电流在对称三相电路中的关系对称三相电路电压、电流和功率的计算方法重点5.1三相电源电能可以由谏璧发电厂三峡水力发电站秦山核电站深圳展览中心屋顶的太阳能发电站等转换而得。
而各种电站、发电厂,其能量的转换由三相发电机来完成。
水能(水力发电)、热能(火力发电)、核能(核能发电)、化学能(电池)、太阳能(太阳能电站)、新疆达坂城的风力发电机群风能1、三相电源SNCXBAYZ图5.1.1三相交流发电机示意图工作原理:动磁生电定子+_转子+e A e B e C++–––(末端)(首端) ABC X YZ 图5.1.2三相绕组示意图AX 每相电枢绕组_++_ee+⨯⨯⨯三相对称电动势的表达式ωte Ae Be CSN +•++•••+SN SN+•++••A•+ωXYCBZSNA 相B 相C 相三相对称电动势的相量表示法与前面瞬时值表示法和波形曲线表示法对应三相对称正弦交流电也可用相量表示法表示:通常把这三个“幅值相等、频率相同、相位互差120”的电动势称为三相对称电动势。
它们的特点为:E mBe Ae Ce ●三相对称电动势出现最大值的先后顺序称为三相电源的相序:A -B -C -A 称为正相序正相序●供电系统三相电源的相序为A -B -C -A2、三相电源的相序A -C -B -A 称为负相序3、三相电源的星形连接(1) 连接方式在低压系统,中性点通常接地,所以也称地线。
U p U LCA NB NAB C中性线(零线、地线) 中性点端线(相线、火线)相电压:相线与中性线间的电压C B A U U U 、、Au Bu Cu 线电压:相线与相线间的电压CA BC AB U U U 、、ABu CAu BCu(2)线电压与相电压的关系BA AB U U U -=C B BC U U U -=ACA U U U -=C 根据KVL 定律ANB CAu Bu Cu ABu BCu CAu 30°相量图AU CU BU ABU 30°30°CUB CA U由相量图可得303AAB U U =︒=303BBC U U ︒=303CCA U U 同理()AB A B A BU U U U U =-=+- BU AU CU ︒AB U 12L U PU BU- 3L PU U =线电压超前相电压30°UA·UB·UC·UCA·300U AB··-UBUBC·在日常生活与工农业生产中,常用的电压模式127V 220V 220V 380V 380V 660VP L P L P L U U U U U U ======、、、3. 三相电源的三角形连接p连接结论:电源Δ形时 线电压相电压 l U U AB CBCU CAu BC u ABu电力系统的负载,可以分成两类。
5第五章--逆变电路教学教材

5-18
5.2.2 三相电压型逆变电路
典型的三相电压型逆变电路(变压变频调速器)
5-19
5.2.2 三相电压型逆变电路
三个单相逆变电路可组合成一个三相逆变电路 应用最广的是三相桥式逆变电路
图5-9 三相电压型桥式逆变电路
5-20
5.2.2 三相电压型逆变电路
基本工作方式——180° 导电方式
2)电压型逆变电路的特点
(1)直流侧为电压源或 并联大电容,直流侧电压 基本无脉动。
(2)输出电压为矩形波, 输出电流因负载阻抗不同 而不同。
(3)阻感负载时需提供 无功功率。为了给交流侧 向直流侧反馈的无功能量 提供通道,逆变桥各臂并 联反馈二极管。
图5-5 电压型全桥逆变电路
5-12
5.2 电压型逆变电路
V4的栅极信号分别比V2、
V1的前移180°-。输 出电压是正负各为的脉
冲。
改变就可调节输出电压。
图5-7 单相全桥逆变 电路的移相调压方式
uG1
O
u G2 O
u G3 O
u G4 O
u
o
io
io
O
t1 t2
a)
uo t
3
b)
t t t t t
5-17
5.2.1 单相电压型逆变电路
3) 带中心抽头变压器的逆变电路
uo
o Ud
Ud
io
o
t3 t4
t1 t2
t5 t6
V1
V2
V1
V2
V4
V3
V4
V3
VD1 VD2 VD1 VD2
VD4 VD3 VD4 VD3
t t t
t
电路中的功率电子器件与应用

电路中的功率电子器件与应用功率电子器件是电路中的重要组成部分,它们在能源转换和电路控制中起着至关重要的作用。
本文将介绍功率电子器件的基本原理和常见的应用。
一、功率电子器件的基本原理功率电子器件是指用于控制和调节电能流动的电子元件,它们能够将电能从一种形式转换为另一种形式,如将直流电能转换为交流电能,或者改变电压、电流的大小等。
常见的功率电子器件包括晶闸管、开关管、三相桥式整流器等。
1. 晶闸管晶闸管是一种双向导电的功率电子器件,它能够实现对电流的控制。
晶闸管具有三个区域:p区、n区和p区。
在工作时,通过施加适当的控制信号,可以使晶闸管在导通和截止之间切换,从而实现对电流的控制。
2. 开关管开关管是一种具有开关功能的功率电子器件,它能够实现对电路的开关操作。
常见的开关管有二极管、场效应管和绝缘栅双极性晶体管等。
开关管的导通和截止由控制信号来实现,通常通过施加适当的电压来控制。
3. 三相桥式整流器三相桥式整流器是一种将交流电转换为直流电的功率电子器件。
它由六个二极管组成,可以实现对电流的整流和调节。
在交流输入端施加正弦交流电时,三相桥式整流器能够输出稳定的直流电。
二、功率电子器件的应用功率电子器件在各个领域中有广泛的应用,特别在能源转换、电力传输和电机控制等方面发挥着重要作用。
1. 电源变换功率电子器件可用于电源的变换和调节,将交流电转换为直流电或将直流电转换为交流电。
例如,电力逆变器可以将直流电源转换为交流电源,以供应非交流电设备或电网。
2. 电动汽车功率电子器件在电动汽车中是不可或缺的,它们用于电池充电、电机驱动和能量回收等。
电动汽车的高效率和低污染离不开功率电子器件的支持。
3. 变频调速功率电子器件在电机控制中起到关键作用,可以实现电机的变频调速。
这对于工业生产中需要根据实际需求调整电机速度的场合非常重要,如电梯、风力发电等。
4. 可再生能源功率电子器件在可再生能源领域中也有广泛的应用,如太阳能和风力发电。
电子技术基础(于宝明)第五章 习题答案

第五章 习 题5.1 由于功率放大电路中的BJT 常处于接近极限工作状态,因此,在选择BJT 时必须特别注意哪三个参数?答:1.功率BJT 的的散热2.器件工作不应进入二次击穿区3.使用时要降低额定值5.2 与甲类功率放大电路相比,乙类互补对称功率放大电路的主要优点是什么? 答:输出功率越大管耗低,效率高。
5.3 乙类互补对称功率放大电路的效率在理想情况可达到多少? 答:乙类互补对称功率放大电路的效率在理想情况可达到:%5.784πP P ηV o ≈== 5.4 设采用双电源互补对称电路,如果要求最大输出功率为5W ,则每只功率BJT 的最大允许管耗P CM 至少应大? 答:W 15X 2.0P 2.0R V π1P o L 2CC 2T1m ==×=≈ 5.5 设放大电路的输入信号为正弦波,问在什么情况下,电路的输出出现饱和及截止的失真?在什么情况下出现交越失真?用波形示意图说明这两种失真的区别。
答:1、甲类电路中在输入信号过大的情况下电路的输出端出现饱和及截止的失真:信号正半周使得NPN 管饱和。
信号负半周使得NPN 管截止。
而乙类放大器只会出现饱和失真。
2、甲类电路没有交越失真。
乙类放大器在U BB 之间电压小于2U BE 时会出现交越失真。
5.6 在输入信号为正弦波作用下,互补对称电路输出波形是否有可能出现线性(即频率)失真?为什么?答:在输入信号过大的情况下,出现饱和失真后,产生了新的频率。
所以互补对称电路输出波形出现了线性失真。
5.7 在甲类、乙类和甲乙类放大电路中,放大管的导通角分别等于多少?它们中哪一类放大电路效率高?答:甲类:180乙类:90甲乙类:180~2705.8 在图所示电路中,设BJT 的β=100,U BE =0.7V ,U CES =0,I CEO =0,电容C 对交流可视为短路。
输入信号u i 为正弦波。
(1)计算电路可能达到的最大不失真输出功率P om ;(2)此时R b 应调节到什么数值?(3)此时电路的效率η=?试与工作在乙类的互补对称电路比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合特性分析——图解法
iC1
ui
UCES
Q VCC
UCES
uCE
Uom
iC2
+ V CC
T1 uo
T2
RL
-V CC
负载上的最大不失真电压为Uom=VCC- UCES
三、分析计算
1.输出功率Po
Po=UoIoUo m 2
Uo mUo m 2 2RL 2RL
最大不失真输出功率Pomax
ui
Pom
ax
4
7
8.% 5
四.三极管的最大管耗
1
PT1=2π
0π(VCCUom sin t)•Uom RsLin td ( t)
R1L(VCC UomUo4m2)
问:Uom=? PT1最大, PT1max=?
用PT1对Uom求导,并令导数=0,得出: PT1max发生在Uom=0.64VCC处。
将Uom=0.64VCC代入PT1表达式:
c
c
ib
iC
b
T1
ib
iC
b
T1
复合NPN型
ib
b
T2 ie
ec
iC
T
T2
ie
ec
复合PNP型
iC
ib
b
T
ie
1 2
ie
e
e
晶体管的类型由复合管中的第一支管子决定。
4. 带复合管的OCL互补输出功放电路:
T1:电压推动级(前置级) u i
T2、R1、R2:UBE扩大电路
UCE 2
1 (VCC UomUom2)
RL
4
两管管耗
PT=2PT1
2 (VCC UomUom2)
RL
4
+ V CC
T1 uo
T2
RL
-V CC
3.电源供给的功率PE
PE=PoPT2VCCRUL om
当
Uom
VCC时,PEm
2
VC
2 C
RL
4.效率
= Po Uom
PE 4 VCC
最高效率max
UomVCC时, m
动态时:
ui
Tic11 uo
ui > 0V ui 0V
T1导通,T2截止 iL= ic1 ;
T1截止,T2导通 iL=ic2
T2
RL
ic2
-V CC
T1、T2两个管子交替工作,在负载上得到完整的正弦波。
输入输出波形图 ui
uo ´
死区电压
uo
ui
uo
交越失真
+ V CC
T1 uo
T2
RL
-V CC
效率()。
PO 100%
PE
Po: 负载上得到的交流信号功率。 PE : 电源提供的直流功率。
(5)功放管散热和保护问题
二. 甲类功率放大器分析
+ VCC
Ic
R b1
RL
Q
IcQ
ui
uce
uce
Q
1.三极管的静态功耗: PT UCEQ ICQ
电源提供的平均功耗:
若
UCEQ
1 2VCC
则
PE VCC ICQ
ICQ
VCQC3uCE
4.2 乙类互补对称功率放大电路
一. 结构
互补对称: 电路中采用两个晶
体管:NPN、PNP各 u i
一支; 两管特性一致。组
成互补对称式射极输 出器。
+ V CC
T1 uo
T2
RL
-V CC
二、工作原理(设ui为正弦波)
静态时:
+ V CC
ui = 0V ic1、ic2均=0(乙 类工作状态) uo = 0V
每管导通时间大
于半个周期,基
IBQ
本不失真。
uBE
t
uB1
iC
t UT ICQ
iC VCC /Re ib IBQ Q VCC uce
2.带前置放大级的功率放大器
I
R1
R
*
2
D
ui
T3
+ VCC
T1
R3
UP
uO
动画演示
R4
RL
T2
(甲乙类互补对称
电路的计算同乙类)
-V CC
3. 电路中增加复合管
增加复合管的目的:扩大电流的驱动能力。
a x(VCC 2 R U LCE)S 2
VCC 2 2RL
动画演示
+ V CC
T1 uo
T2
RL
-V CC
2.管耗PT 一个管子的管耗
P T1 =2 1 π0 π(V CC uo)R uo Ld(t)
ui
2 1 π0 π(V C C U os m itn )U oR s m Litn d( t)
最大输出功率:
11 Pom2(2VCC)ICQ
VCC uCE
电源提供的功率
P E 2 1 0 2 V C i C C d (t ) 2 1 0 2 V C ( I C C I Q C sm t i ) d n t V C I C CQ
此电路的最高效率
Pom 0.25
PE
甲类功率放大器存在的缺点:
PT PRL12VCCICQ
三 极 管 和 负RL载 的电 静阻 态 功 耗 相 等
2.动态功耗(当输入信号Ui时)
输出功率:
Po
U om 2
I om 2
1 2 U om I om
iC M
Iom
ICQ N
功率三角形
Q
要想PO大,就要 使功率三角形的面积
UCEQ
大,即必须使Vom 和
Uom
Iom 都要大。
• 输出功率小 • 静态功率大,效率低
三. BJT的几种工作状态
甲类:Q点适中,在正弦信号的 iC
整个周期内均有电流流过BJT。
动画演示
乙类:静态电流为0,BJT只在
正弦信号的半个周期内均导通。
ICQ
Q1
甲乙类:介于两者之间,
导通角大于180°
iC
UCEQ
iCBiblioteka VCC uCEICQ
Q2
VCC uCE
T1 T 1 uo
uo
T2
RL
RL
T2
- V CC
- VCC
4.3 甲乙类互补对称功率放大电路
一. 甲乙类双电源互补对称电路
1.基本原理
+ VCC
电路中增加 R1、D1、D2、R2支路
R1
静态时: T1、T2两管发射结电压分
别为二极管D1、 D2的正向导通
D1
压降,致使两管均处于微弱导 通状态——甲乙类工作状态
4.1 概 述 4.2 乙类互补对称功率放大电路 4.3 甲乙类互补对称功率放大电路
甲乙类双电源互补对称电路 甲乙类单电源互补对称电路
*4.4 集成功率放大器
(3) 电流、电压信号比较大,必须注意防止波形失真。
(4) 电源提供的能量应尽可能多地转换给负载,尽量 减少晶体管及线路上的损失。即注意提高电路的
PT1max0.2V2CRLC2 0.2Pom
选功率管的原则:
1. PCM PT1max =0.2PoM
PoM
VCC 2 2 RL
2.U(BR)CEO2VCC u i
+ V CC
T1 uo
T2
RL
-V CC
乙类互补对称功放的缺点
存在交越失真
ui
R1
t
ui D 1
uo
交越失真
ui
D2
t
R2
+ V CC + V C C
u
i
动态时:设 ui 加入正弦信号。正半 D 2 周 T2 截止,T1 基极电位进一步
提高,进入良好的导通状态;负 半周T1截止,T2 基极电位进一步
R2
降低,进入良好的导通状态。
T1 uo
RL
T2
- VCC
波形关系:
EWB演示——功放的交越失真
特点:存在较小的静态
iB
iB
电流 ICQ 、IBQ 。