微电子计算例题ppt课件

合集下载

微电子器件基础第六章习题解答课件

微电子器件基础第六章习题解答课件

垒 区
电 子 扩
N 中
散性
区区
反向小注入下,P区接电源负极,N区接电源正 极,势垒区电场强度增加,空间电荷增加,势垒 区边界向中性区推进。
势垒区与N区交界处空穴被势垒区强电场驱向P 区,漂移通过势垒区后,与P区中漂移过来的空 穴复合。中性N区平衡空穴浓度与势垒区与N区 交界处空穴浓度形成浓度梯度,不断补充被抽取 的空穴,对PN结反向电流有贡献。
注入空穴在N区与势垒区交界处堆积,浓 度比N区平衡电子浓度高,形成浓度梯度, 产生流向中性N区的空穴扩散流,扩散过 程中不断与中性N区漂移过来的电子复合, 经过若干扩散长度后,全部复合。
3、 解、
VR
P
N
IR
n p0 np
pn0
pn
xp 0 x n
x
JR(JpJn)
Jp
Jn
P空
中穴 势
性 区
扩 散 区
k0T q
2 i
np
2
npp1Ln
1
nLp
kq0Tnpi212
n p
1
pLn
1
nLp
kq0Tbb1i22

5、 解、 硅突变PN结,
n 5 c ,p m 1 1 6 s ;0 p 0 . 1 c ,n m 5 1 6 s 0
N区、P区多子浓度, nn0nq 1n51.611 0 1913 59.0 31104 cm 3 pp0pq 1p0.11.61 1 0 19501 0.31107 cm 3
正向小注入下,忽略势垒区复合和表面复合,空穴电流密度等于势垒区 与空穴扩散区交界处的空穴扩散电流密度,电子电流密度等于势垒区与电 子扩散区交界处电子扩散电流密度,
Jp qDp ddpn xx xxn qDp pLnp0ekq0TV1 Jn qD n ddnp xx xxp qD n nLpn0ekq0TV1

华南理工大学计算微电子学

华南理工大学计算微电子学
B)半经验解析模型----根据主要旳物理现象,对器件旳不 同工作区域进行近似求解. 解析模型旳优点:
A)描述了物理过程和几何构造之间旳关系; B)描述了器件旳电学特征. 2)查表模型----建立器件特征数据库(系数表),经过查表 得到新器件旳电流和电导值. 3)经验模型----模型方程基于试验数据旳曲线拟合.
非晶硅TFT
多晶硅TFT
有机TFT
第一章 MOSFET基础
● 半导体方程

泊松方程:
2
0 si
q
0 si
(p n ND
NA)

q s
(
p
n
ND
NA)

q
0 si
(p
n
ND
NA)
② 电子与空穴旳连续性方程:
n t
1 q
Jn
R
p t
1 q
Jp
R
上式中,R = U - G ,U、G 、R 分别为复合率、产生率和净
-1.0 V -0.5 V 0V
2.0x10-8
4.0x10-8
0
-1
-2
-3
-4
-5
-6
V (V) DS
I (A)
DS
-5.0x10-7 -4.0x10-7
-3.0x10-7
-2.0x10-7 -1.0x10-7
0.0
1.0x10-7
0
-1
P3HT-TFT with HfTiO as gate dielectric
Cox[V G (t) s (t)] Qs (t)
V G (t) V G V G (t)
(1)
s (t) s s (t)

微电子学概论PPT课件

微电子学概论PPT课件
的分类 微电子学
的特点
集成电路的分类
导论
晶体管的 发明
集成电路 发展历史
集成电路 的分类
微电子学 的特点
集成电路的分类
器件结构类型 集成电路规模 使用的基片材料 电路形式 应用领域
器件结构类型分类
导论
晶体管的 发明
集成电路 发展历史
集成电路 的分类
微电子学 的特点
集成电路(IC)产值的增长率(RIC)高于电子 工业产值的增长率(REI)
电子工业产值的增长率又高于GDP的增长率 (RGDP)
一般有一个近似的关系
RIC≈1.5~2REI REI≈3RGDP
微电子学发展情况
导论
晶体管的 发明
集成电路 发展历史
集成电路 的分类
微电子学 的特点
世界GDP和一些主要产业的发展情况
晶体管的 发明
集成电路 发展历史
集成电路 的分类
微电子学 的特点
1947年12月13日 晶体管发明 1958年 的一块集成电路 1962年 CMOS技术 1967年 非挥发存储器 1968年 单晶体管DRAM 1971年 Intel公司微处理器
摩尔定律
导论 晶体管的
发明 集成电路
发展历史 集成电路
高集成度、低功耗、高性能、高可靠性是微电 子学发展的方向
微电子学的渗透性极强
它可以是与其他学科结合而诞生出一系列新的 交叉学科,例如微机电系统(MEMS)、生物芯 片等
作业
微电子学?
导论 晶体管的
微电子学核心?
发明 微电子学主要研究领域?
集成电路 发展历史
微电子学特点?
集成电路 集成电路?
的分类
例如数模(D/A)转换器和模数(A/D)转换器等

《微电子技术发展的》课件

《微电子技术发展的》课件

03 微电子技术的关键技术
高性能材料技术
硅基材料
硅基材料是微电子技术中最常用 的材料,具有优良的物理和化学 性质,能够满足集成电路制造的
要求。
高k材料
高k材料是指介电常数大于二氧化 硅的材料,能够提供更快的晶体管 开关速度和更低的功耗。
金属材料
金属材料在微电子技术中用于连接 和传输电流,常用的金属有铜、铝 等。
05 微电子技术的挑战与对策
微电子技术的物理极限挑战
总结词
随着微电子技术不断进步,物理 极限成为技术发展的瓶颈之一。
详细描述
随着芯片上集成的晶体管数量不 断增加,量子效应、热效应和信 号干扰等问题愈发严重,制约了 微电子技术的进一步发展。
微电子技术的环境影响挑战
总结词
微电子技术发展过程中对环境的影响 逐渐受到关注。
微电子技术是计算机和信息技术发展的基 础,推动了计算机硬件和软件技术的不断 进步。
工业自动化
医疗保健
微电子技术应用于工业自动化领域,提高 了生产效率、降低了能耗,推动了工业自 动化的发展。
微电子技术在医疗保健领域的应用包括医 疗设备、医疗器械和生物芯片等,为医疗 诊断和治疗提供了先进的技术手段。
微电子技术的发展历程
微电子技术在计算机领域的应用案例
集成电路设计
微电子技术是计算机集成电路设计的基础,为计 算机硬件提供了高效、可靠的性能。
存储器技术
微电子技术推动了存储器技术的发展,如闪存、 RAM等,提高了计算机存储容量和读写速度。
处理器技术
微电子技术为处理器设计提供了高性能、低功耗 的技术支持,推动了计算机性能的不断提升。
20世纪50年代
集成电路的发明,实现了电子 器件的小型化。

《微电子技术》课件

《微电子技术》课件
军事
微电子技术用于制造军事设备 ,如导弹制导系统、雷达、通
信设备等。
微电子技术的发展趋势
纳米技术
随着芯片上元件尺寸的 不断缩小,纳米技术成 为微电子技术的重要发
展方向。
3D集成
通过将多个芯片垂直集 成在一起,实现更高的
性能和更低的功耗。
柔性电子
柔性电子是将电子器件 制造在柔性材料上的技 术,具有可弯曲、可折
将杂质元素引入半导体材料中的 技术。
离子注入掺杂
利用离子注入机将杂质离子注入 到半导体材料中的技术。
化学气相掺杂
利用化学气相沉积的方法,将含 有杂质元素的化合物沉积到半导
体材料中的技术。
04
集成电路设计
集成电路设计流程
需求分析
明确设计要求,分析性能指标,确定设计规 模和复杂度。
逻辑设计
根据规格说明书,进行逻辑设计,包括算法 设计、逻辑电路设计等。
《微电子技术》 ppt课件
contents
目录
• 微电子技术概述 • 微电子器件 • 微电子工艺技术 • 集成电路设计 • 微电子封装技术 • 微电子技术发展面临的挑战与机遇
01
微电子技术概述
微电子技术的定义
微电子技术是一门研究在微小 尺寸下制造电子器件和系统的 技术。
它涉及到利用半导体材料、器 件设计和制造工艺,将电子系 统集成在微小尺寸的芯片上。
02
微电子技术领域的竞争非常激烈,企业需要不断提升自身的技
术水平和产品质量,以获得竞争优势。
客户需求多样化
03
客户需求多样化,要求企业提供更加定制化的产品和服务,以
满足不同客户的需求。
新材料、新工艺的机遇
新材料的应用

微电子课件

微电子课件

电阻率
影响迁移率的因素: 有效质量 平均弛豫时间(散射〕
体现在:温度和 掺杂浓度
q
m
半导体中载流子的散射机制: 晶格散射( 热 运 动 引 起) 电离杂质散射
散射机理 晶格散射
杂质散射
+ +
迁移率与掺杂浓度的关系
迁移率与温度的关系
总复习第2章
pn结部分 (1)什么叫pn结,如何形成的
gm

iDቤተ መጻሕፍቲ ባይዱuGS
|uDS 常数
结型场效应管
栅源电压对沟道的控制作用
在栅源间加负电压uGS ,令uDS =0 ①当uGS=0时,为平衡PN结,导电沟道最宽。 ②当│uGS│↑时,PN结反偏,形成耗尽层,导电沟道变窄,沟
道电阻增大。 ③当│uGS│增加到一定值Up时 ,沟道会完全合拢。
结型场效应管
半导体的能带结构
导带
Eg
价带
价带:被电子填充的能量最高的能带 导带: 未被电子填充的能量最低的能带 禁带:导带底与价带顶之间能带 带隙:导带底与价带顶之间的能量差
金属导体Eg=0
绝缘体Eg很大 10eV以上
半导体Eg适中 在0.1-5eV
典型半导体禁带宽度
Si
1.1
Ge 0.67
GaAs 1.43
集成电路按器件结构可分为什么类型,各有什么特 点?
总复习第2章半导体物理
回答以下概念 (1)能带结构:导带、价带、禁带,多数载流子、 少数载流子, (2)本征、n型、p型半导体(费米能级位置) (3)施主杂质、受主杂质、施主能级、受主能级 (4)费米能级 (6)迁移率、晶格散射、杂质散射
什么叫迁移率,迁移率与温度以及掺杂浓度有什么 变化关系,并说明原因?

微电子技术课件

微电子技术课件
微电子技术在消费电子领域的应用日 益普及,如智能手机、平板电脑、数 字电视等。
汽车电子
微电子技术在汽车电子领域的应用不 断增多,如发动机控制、车载信息娱 乐系统、自动驾驶技术等。
微电子技术发展趋势
摩尔定律的末日
超越硅基材料
随着集成电路的技术极限逐渐逼近,摩尔 定律的末日已经来临,微电子技术将不再 追求效能的极致。
为了突破技术瓶颈,微电子技术将研究硅 基以外的材料,如碳纳米管、二维材料等 。
生物芯片与光电子集成
绿色环保与可持续发展
微电子技术与生物技术、光电子技术的结 合将成为未来的发展趋势,如生物芯片、 光电子集成等。
绿色环保和可持续发展成为微电子技术发 展的重要方向,如研究低功耗设计、绿色 制造技术等。
02
散方程。
漂移运动
02
在外电场作用下,载流子受到电场力作用而产生漂移运动,遵
循漂移方程。
复合过程
03
电子和空穴在半导体中相遇时会发生复合过程,释放出能量。
03
CATALOGUE
器件结构与工艺
二极管结构与工艺
01
02
03
PN结
由P型半导体和N型半导体 形成的结,具有单向导电 性。
二极管结构
包括PN结、引线和封装等 部分,有硅二极管和锗二 极管等类型。
微电子技术课件
contents
目录
• 微电子技术概述 • 半导体物理基础 • 器件结构与工艺 • 微电子电路设计基础 • 微电子封装与测试技术 • 应用领域与发展趋势展望
01
CATALOGUE
微电子技术概述
定义与发展历程
定义
微电子技术是指利用微电子学原理, 在微米级尺度上研究、设计、制造和 应用电子元器件、集成电路和系统的 一门技术。

《微电子器件》课件

《微电子器件》课件
新型微电子器件
随着科技的不断发展,新型微电子器件的研究也 在不断推进。目前,新型微电子器件主要集中在 柔性电子器件、生物可穿戴器件、量子器件等领 域。
生物可穿戴器件
生物可穿戴器件是指能够与人体直接接触并监测 人体生理参数的微电子器件。目前,生物可穿戴 器件的研究重点在于提高其舒适性、准确性和稳 定性。
描述模拟电路性能的参数,表示输入与输出 之间的线性关系。
微电子器件的测试方法与设备
测试方法
包括功能测试、性能测试和可靠性测试等。
测试设备
如示波器、信号发生器、频谱分析仪等。
测试环境
需要控制温度、湿度、电磁干扰等环境因素 。
测试标准
根据不同应用领域制定相应的测试标准。
微电子器件可靠性分析
可靠性定义
02
微电子器件的基本结构与 原理
半导体材料基础
半导体材料的分类
元素半导体、化合物半导体、掺 杂半导体等。
半导体的基本性质
导电性、光学特性、热学特性等。
半导体的能带结构
价带、导带、禁带等概念及其对电 子跃迁的影响。
PN结与二极管
PN结的形成
01
扩散、耗尽层、空间电荷区等概念。
二极管的伏安特性
02
性能和热管理技术。
机械可靠性
微电子器件在受到机械 应力时容易发生损坏, 机械可靠性问题不容忽 视。目前,机械可靠性 的研究重点在于提高微 电子器件的抗冲击和抗
振动性能。
电气可靠性
微电子器件在长时间工 作过程中容易出现电迁 移、氧化等问题,影响 其电气性能。目前,电 气可靠性的研究重点在 于提高微电子器件的稳
柔性电子器件
柔性电子器件具有轻薄、可弯曲、可折叠等特点 ,被广泛应用于可穿戴设备、智能家居等领域。 目前,柔性电子器件的研究重点在于提高其稳定 性、可靠性和生产效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 5 108
3 3.21022 个原子/cm3
说明:以上计算的原子体密度代表了大多数 材料的密度数量级
例题2: 计算硅原子的体密度,其晶格常数为 a 5.43A
8 5.43108
3 51022 个原子/cm3
特定原子面密度 例题3:
2 a 2a
2
2 5 108
2
5.661014 个原子/cm2
说明:不同晶面的面密度是不同的
2. 波粒二象性
例题4:
计算对应某一粒子波长的光子能量
已知波长 633nm
能量为
E h hc
6.6251034 2.9979108 632.8109
3.13861019 J
换算为更为常见的电子伏形式
3.1386 1019 E 1.61019 1.96ev
半导体器件基础
例题
1. 基本的晶体结构
(a)简立方 (b)体心立方 (c)面心立方
1 个原子 2 个原子 4 个原子
例题1:
计算简立方、体心立方和面立方单晶的原 子体密度,晶格常数为 a 5A
1 5 108
3 0.81022 个原子/cm3
2 5 108
3 1.61022 个原子/cm3
设费米能级位于价带上方0.3eV处,Eg=1.42eV
n0
Nc
exp
Ec EF
kT
4.7 1017
exp
1.12 0.0259ຫໍສະໝຸດ 0.0779cm3p0
Nv
exp
Ev EF
kT
7.0 1018
exp
0.3 0.0259
6.531013 cm3
说明:此半导体为 n 型半导体
0.25 0.0259
1.81015 cm3
说明:某个能级被占据的概率非常小,但是 因为有大量能级存在,存在大的电子浓度值 是合理的。
例题11:
计算T=400K 时硅中的热平衡空穴浓度
设费米能级位于价带上方0.27eV处,T=300K时硅 中有效价带状态密度值为 Nv 1.041019 cm3
设费米能级位于导带下方0.25eV处,T=300K时硅中有效
导带状态密度值为 Nc 2.81019 cm3
f
(E)
1
1
exp
Ec
EF kT
exp
Ec EF
kT
exp
0.25 0.0259
6.43105
得到电子浓度为:
n0
Nc
exp
Ec EF
kT
2.8 1019
exp
5. 载流子浓度
本征半导体中
n0
Nc
exp
Ec EF
kT
p0
Nv
exp
EFv EEFv
kT
有效状态密度
Nc
2
2 mnkT
h2
3/ 2
,
Nv
2
2 mpkT
h2
3/ 2
电子和空穴的有效质量
mn mp
说明:T=300K时,有效状态密度数量级在10的19次方
例题10:
求导带中某个状态被电子占据的概率,并 计算T=300K 时硅中的热平衡电子浓度
Nv
2
2 mpkT
h2
3/ 2
Nvv 11.0.04411010919 3400340000003/23/21.610.60101910c1m9 c3m3
kT
0.0259
400 300
0.03453ev
得到空穴浓度为:
p0
Nv
exp
Ev EF
kT
1.60 1019
exp
基本概念
均匀半导体
由同一种材料组成,而且掺杂均匀的半导体。 例如:纯净的(本征)硅,杂质均匀分布的硅。
非均匀半导体
成份不同,或掺杂不均匀的半导体材料。 例如:纯净的(本征)硅,杂质均匀分布的硅。
平衡状态:热平衡状态,没有外界影响(如电压、电场、磁场 或者温度梯度等)作用于半导体上的状态。 在这种状态下,材料的所有特性与时间无关。
例题5: 计算一个粒子的德布罗意波长
已知电子的运动速度为 v 107 cm / s 105 m / s 电子动量为
p mv 9.111031 105 9.111026 kg m / s
德布罗意波长
h p
6.625 1034 9.111026
7.27 109 m
72.7
o
A
说明:典型电子的德布罗意波长的数量级
基本概念
元素半导体
由一种元素组成的半导体。
化合物半导体
基本概念
非简并半导体 简并半导体
基本概念
非简并半导体 简并半导体
3. 能级
例题6:
计算无限深势阱中电子的前三能级,势阱的宽 度为 a 5A
说明:从计算中可以看到束缚态电子能量数量级
4. 费米能级
例题7: 费米能级被电子占据的概率
f (E)
1
1
1
exp
E
EF kT
1
exp
EF EF kT
50%
说明:温度高于绝对零度时,费米能级量子 态被电子占据的概率为50%.
n0
Nc
exp
Ec EF
kT
2.8 1019
exp
0.22 0.0259
5.731015 cm3
p0
Nv
exp
Ev
EF kT
1.04 1019
exp
0.90 0.0259
8.43103 cm3
说明:此半导体为 n 型半导体
例题12’:
计算 T=300K 时砷化镓中的热平衡电子和 空穴浓度。 Nc 4.7 1017 cm3 Nv 7.01018 cm3
例题8:
令T=300K,试计算比费米能级高3kT的能 级被电子占据的概率
f (E)
1
1
1
exp
E
EF kT
1
exp
3KT kT
4.74%
说明:比费米能级高的能量中,量子态被电 子占据的概率远小于1.
例题9:
令 T=300K,费米能级比导带低 0.2 eV。求 (a)Ec 处电子占据概率; (b)Ec+kT 处电子占据概率.
0.27 0.03453
6.43
1015
cm3
说明:任意温度下的该参数值,都能利用 T=300K 时 Nv 的取值及对应温度的依赖关系求 出
例题12:
计算 T=300K 时硅中的热平衡电子和空穴
浓度
Nc 2.81019 cm3
Nv 1.04 1019 cm3
设费米能级位于导带下方0.22eV处,Eg=1.12eV
k 1.381023 J / K
kT 1.381023 300 4.141021 J 0.0259eV
fF
(E)
1
exp
1
E
EF kT
1
exp
1
0.2 0.0259
4.43104
fF
(E)
1
exp
1
E
EF kT
1
exp
1
0.0259 0.2 0.0259
1.6104
相关文档
最新文档