难加工材料
机械行业难加工材料与结构的加工技术(ppt 80页)

外型面难加工结构件主要有:薄壁件、叶片、涡轮盘 、微小微细零件外型面及其它特殊复杂的型面。
内型面难加工结构主要有:蜂窝结构、阵列孔、有特 殊要求的小孔、窄缝及其它特殊复杂的形腔结构。
南京航空航天大学机电学院052系
难加工材料的加工技术
南京航空航天大学机电学院052系
难加工材料与结构概述-分类
(4)低温性能好 钛合金在低温和超低温下能保 持力学性能。
(5)化学活性大 钛的化学活性大,与大气中的 O2、N2、H2、CO、CO2、水蒸气、氨气等均产 生剧烈的化学反应。
(6)导热性差 钛的导热系数低,约为Ni的1/4, Fe的1/5,Al的1/14
(1)钛合金具有密度小、强度高、能耐各种酸、碱、 海水、大气等介质的腐蚀等一系列优良的力学、物理 性能,因此在航空、航天、核能、船舶、化工、冶金 、医疗器械等工业中得到了越来越广泛的应用。
南京航空航天大学机电学院052系
难加工材料与结构概述-应用
1.钛合金
记忆钛合金镜架
钛合金刀具
南京航空航天大学机电学院052系
2.主要内容:
1)难加工材料
1)难加工材料的分类
2)难加工材料的应用
2) 难加工结构
南京航空航天大学机电学院052系
难加工材料与结构概述-分类
1.钛合金 2.高温合金 3.不锈钢 4.高强度钢与超高强度钢 5.复合材料 6.硬脆性材料
南京航空航天大学机电学院052系
难加工材料与结构概述-应用
2.高温合金
低膨胀、恒弹性、高弹 性高温合金
精密合金高温合金不锈钢棒
南京航空航天大学机电学院052系
难加工材料有哪些

难加工材料有哪些难加工材料是指那些在加工过程中难以获得理想加工表面质量和形状精度,以及难以获得较高的加工效率的材料。
这些材料通常具有高硬度、高强度、高熔点、高塑性变形抗力、高切削温度等特点。
难加工材料的加工难度主要表现在切削加工、磨削加工和电火花加工等方面。
下面将介绍一些常见的难加工材料。
1. 高硬度合金钢。
高硬度合金钢是一种具有较高硬度和强度的金属材料,通常用于制造刀具、模具等工具。
由于其硬度高,切削加工时易导致刀具磨损严重,加工表面质量难以保证。
2. 耐磨铸铁。
耐磨铸铁是一种具有较高硬度和耐磨性能的铸铁材料,常用于制造耐磨零件。
在磨削加工过程中,由于其硬度高、磨损性能好,磨削难度大,加工效率低。
3. 钛合金。
钛合金是一种具有优良的耐腐蚀性能和高强度重量比的金属材料,广泛应用于航空航天、航空发动机、航空航天器等领域。
由于其熔点高、塑性变形抗力大,切削加工难度大,易引起刀具磨损严重。
4. 陶瓷材料。
陶瓷材料具有优良的耐磨、耐腐蚀性能,常用于制造高温零部件、切削工具等。
然而,由于其脆性大、导热性差,磨削加工难度大,易导致加工表面裂纹和破损。
5. 难加工不锈钢。
难加工不锈钢是一种具有较高硬度和耐腐蚀性能的不锈钢材料,常用于制造化工设备、食品加工设备等。
由于其切削性能差,易导致刀具磨损,加工难度大。
6. 高硬度陶瓷。
高硬度陶瓷是一种具有极高硬度和耐磨性能的材料,常用于制造切削工具、轴承零件等。
然而,由于其脆性大、导热性差,磨削加工难度大,加工效率低。
综上所述,难加工材料主要包括高硬度合金钢、耐磨铸铁、钛合金、陶瓷材料、难加工不锈钢和高硬度陶瓷等。
这些材料在加工过程中具有较高的硬度、强度和耐磨性能,因此加工难度大,加工效率低。
针对这些材料的加工难题,需要采用合适的切削工艺、磨削工艺和电火花加工工艺,以提高加工质量和效率。
难加工材料的主要种类及应用领域

难加工材料的主要种类及应用领域难加工材料是指具有较高硬度、强度和耐磨性的材料,其加工性和可塑性较差。
这些材料通常需要使用特殊的加工工艺和设备来进行加工和形成。
主要的难加工材料包括高速钢、高铬铸铁、硬质合金、陶瓷材料、航空铝合金和钛合金等。
以下将对每种材料的性质和应用领域进行详细介绍。
高速钢:高速钢是一种含有大量合金元素(如钨、钼、钴等)的高温刚性材料。
其具有耐高温、耐磨和耐热腐蚀的特点,硬度较高,加工性较差。
高速钢广泛应用于切削工具、模具零件和刀具等领域,如数控机床刀具、高硬度切削刀具等。
高铬铸铁:高铬铸铁是一种具有较高强度和硬度的铸造材料。
其含有较高的铬含量,能够增加材料的耐磨性和耐蚀性。
高铬铸铁被广泛应用于矿山机械、冶金工程、水处理设备和石化设备等领域,如磨矿机、破碎机、球磨机等。
硬质合金:硬质合金是一种由硬质颗粒(如碳化钨、碳化钼等)和金属结合剂(如钴或镍)组成的复合材料。
硬质合金具有较高的硬度和耐磨性,广泛应用于切削和研磨工具、矿山工具、粉末冶金等领域,如车削刀片、铣削刀片、刨刀等。
陶瓷材料:陶瓷材料是由金属元素和非金属元素形成的非金属材料。
其具有较高的硬度、耐磨性和耐腐蚀性。
陶瓷材料广泛应用于高温炉具、电子器件、医疗器械和化学工业等领域,如陶瓷刀具、瓷砖、陶瓷零件等。
航空铝合金:航空铝合金是一种具有良好强度和轻质的金属材料。
其具有较高的硬度和耐磨性,加工难度较大。
航空铝合金广泛应用于航空航天工业和汽车工业的结构部件,如飞机主机壳、发动机部件、汽车车身等。
钛合金:钛合金是一种具有较高强度和轻质的金属材料。
其具有较高的硬度、耐腐蚀性和耐高温性,加工性较差。
钛合金被广泛应用于航空航天工业、化工设备和医疗器械等领域,如航空发动机零部件、化工反应容器、人工关节等。
综上所述,难加工材料主要包括高速钢、高铬铸铁、硬质合金、陶瓷材料、航空铝合金和钛合金等。
这些材料具有较高的硬度、强度和耐磨性,但加工性较差。
刀片材质分类

涂层CVD用途材质/ISO用分类代号特征P钢 T9005/ P05 - P10 钢加工用材质。
P钢 T9015/ P10 - P20 通过双桥效果可实现良好的覆盖抗剥落性。
采用专用基P钢 T9025/P20 - P30 及4种材质系列可应用到钢材车削加工的所有领域。
P钢 T9035/P30 - P40 T9005:在高速切削等要求耐磨损性的领域内,能发挥良好性能。
T9015:耐磨损性和抗崩刃性的平衡性合宽范围的切削条件。
T9025:在轻型~中等断续切削中,发挥良好的抗崩刃性。
T9035:具有极高抗崩刃性,更适用于强断续切削。
M不锈钢 T6020/M15 – M25 不锈钢加工用材质。
M不锈钢 T6030/M25 – M35 采用专用基体和高致密性涂层的组合,大幅度提高了抗极度磨损性和抗崩刃性。
T6020:适用中速~高速领域,连续~轻型断续切削。
T6030:适用低速~中速领域,有极高抗崩刃性,连续~断续切削。
K铸铁 T5104/K05 – K15 铸铁、球墨铸铁材质。
K铸铁 T5115/K10 – K20 涂层采用比以往更精细更高硬度的柱状晶体Ti(K铸铁 T5125/K15 – K30 C,N)膜,大幅度提高了耐磨损性。
并且通过和高强度K铸铁 T5010/K05 –K15 专用微粒硬质合金基体的组合,使T5100系列3种材K铸铁 T5020/K10 – K25 质在FC.FCD车削加工的广泛领域内实现了卓越的性能。
T5105:可在高速,连续切削中发挥良好的耐磨损性和抗塑性变形性。
T5115:从连续切削到连断续,断续切削的广泛领域中,可实现稳定加工的通用材质。
T5125:适合强断续切削,较为强韧,很难出现突发性崩刃。
车螺纹专用 T313V 车螺纹专用。
采用抗塑性变形优良的基体和高致密性涂层的组合,可实现较高的加工面粗糙度和尺寸精度。
用途材质/ISO用分类代号特征P钢 T3030/P20 – P40 钢,不锈钢加工用材质。
难加工材料

难加工材料材料加工是指对原料进行加工改造,使其达到设计要求的一系列工艺。
在材料加工中,有些材料由于其特殊的性质,使得加工变得困难,需要采取一些特殊的加工方法。
下面就为大家介绍几种难加工材料及其加工方法。
首先,难加工材料之一是高温合金。
高温合金由于其高熔点和高硬度,使得加工变得困难。
在加工高温合金时,常用的加工方法包括电火花加工、激光加工和超音波加工等。
电火花加工是利用电火花放电腐蚀工件表面,使其形成所需轮廓的一种加工方法。
激光加工则是利用激光束将工件表面的材料熔融并挥发,从而获得所需形状。
超音波加工是利用超音波振动工具切割工件表面的一种加工方法。
其次,还有难加工材料是复合材料。
复合材料由于其由不同性质的材料组合而成,使得加工变得困难。
在加工复合材料时,常用的加工方法包括研磨加工、射出成型和压制成型等。
研磨加工是利用砂轮或研磨片对工件表面进行切削磨削的一种加工方法。
射出成型是将熔融的复合材料通过射出机加热喷射到模具中,并经冷却固化得到所需形状。
压制成型则是利用压力将熔融的复合材料填充到模具中,经冷却固化得到所需形状。
最后,还有难加工材料是硬质合金。
硬质合金由于其高硬度和脆性,使得加工变得困难。
在加工硬质合金时,常用的加工方法包括电火花加工、磨削加工和激光加工等。
电火花加工能够在硬质合金表面形成一层陶瓷膜,从而减小工件和工具的接触面积,降低切削力,从而使得加工更容易进行。
磨削加工则是利用砂轮或研磨片对硬质合金表面进行切削磨削的一种加工方法。
激光加工则是利用激光束将硬质合金表面的材料熔融并挥发,从而实现加工目的。
综上所述,对于难加工材料,我们需要结合其特殊性质采取相应的加工方法。
这些方法中包括电火花加工、激光加工、超音波加工、研磨加工、射出成型和压制成型等。
这些方法能够较好地克服难加工材料的特点,实现高质量、高效率的加工过程。
典型难加工零件工艺分析及编程

绿色制造的推广
要点一
环保材料
采用环保材料,如可回收材料、低毒材料等,减少对环境 的污染。
要点二
节能技术
采用节能技术,如高效加工技术、能源回收技术等,降低 能源消耗和排放。
THANKS
感谢观看
工艺分析的方法
工艺流程规划
根据零件的结构和加工要求,规划合理的加工流 程和顺序。
刀具与夹具选择
根据加工要求和零件结构,选择合适的刀具和夹 具,确保加工过程的稳定性和精度。
ABCD
加工参数确定
根据材料特性、刀具性能和加工条件,选择合适 的切削速度、进给速度和切削深度等参数。
工艺风险评估
对工艺流程和参数进行风险评估,确保加工过程 的安全性和可靠性。
编程技巧的应用
总结词
运用有效的编程技巧可以提高程序的可读性和执行效率。
详细描述
使用条件语句、循环语句和子程序等结构化编程技巧,可以简化复杂的加工过程。同时,利用优化算法和并行处 理技术可以提高程序的运行速度。
数控编程软件的使用
总结词
熟练掌握数控编程软件是实现高效编程的关键。
详细描述
常用的数控编程软件包括Mastercam、Fusion 360和SolidWorks等。这些软件提供了丰富的库函数 和工具,可以帮助程序员快速生成准确的数控代码。此外,程序员还需要了解如何设置工件坐标系、 选择合适的加工策略和刀具路径优化等技术。
降低生产成本
准确的工艺分析有助于减少 材料浪费、降低能耗和减少 刀具磨损,从而降低生产成 本。
提高产品质量
合理的工艺安排和参数选择 有助于减小加工误差,提高 零件的精度和一致性,从而 提高产品质量。
保障生产安全
正确的工艺分析可以避免因 不合理的加工方法和参数导 致的设备故障或生产事故, 保障生产安全。
难加工材料

摘要:阐述了难加工材料的特点,重点介绍了对难加工材料进行车削加工时应采取的措施,列举了几种不同材料车削时应选取的参数。
引言在压缩机的生产过程中,经常会接触到一些难加工的材料,如制造压缩机叶轮的材料有一种含有Cr、Ni、Mo等合金元素的高强度结构钢,这种钢材一经调质处理达到一定的硬度时,很难车削。
钦合金叶轮因为钦合金元素的存在给车削带来诸多麻烦,大型硬齿面齿轮,渗碳淬火的过程会造成一些需要加工的表面过硬而难以车削加工;还有一些运输机械常用紫铜等纯金属制造的套类零件也给车削带来相当大的麻烦。
为了解决这些难加工材料的车削加工问题,需要对难加工材料的特性有足够的了解,然后采取有针对性的措施才能予以解决。
1 难加工材料的加工特点1.何谓难加工材料所谓难加工材料,主要是指切削加工性能差的材料。
金属材料切削加工性的好坏,主要是从切削时的刀具耐用度、已加工表面的质量及切屑形成和排除的难易程度3个方面来衡量。
只要上述这3个方面有一项明显的差,就可认为是难加工材料。
常见的难加工材料有高强度钢、不锈钢、高温合金、钦合金、高锰钢和纯金属(如紫铜)等。
2.难加工材料的切削特点a.车削温度:在切削难加工材料时,切削温度一般都比较高,主要原因有以下两方面。
i.导热系数低:难加工材料的导热系数一般都比较低(纯金属紫铜等除外),在切削时切削热不易传散,而且易集中在刀尖处。
ii.热强度高:如镍基合金等高温合金在500一800℃时抗拉强度达到最高值。
因此在车削这类合金时,车刀的车削速度不宜过高,一般不宜超过10m/min,否则刀具切人工件的切削阻力将会增大。
b.切削变形系数和加工硬化:难加工材料中的高温合金和不锈钢等,这些材料的变形系数都比较大。
在较小的切削速度开始,变形系数就随着车削速度的增大而增大,在切削速度大约达到6m/min的情况下,切屑的变形系数将达到最大值。
由于车削过程中形成切屑时的塑性变形,金属产生硬化和强化,使切削阻力增大,刀具磨损加快,甚至产生崩刃。
工件切削加工性

刃和刀尖的强度,一般取γ。=-4—0º,主偏角kr适当减小,刀
尖圆弧半径rε适当加大。
淬硬钢的组织为回火马氏体,硬度达HRC60以上,塑性
和导热系数都很低。其加工性及刀具材料、刀具几何参数的 选择基本上与冷硬铸铁同。对它们进行精加工,可采用CBN 刀具。
κr= 45° ~ 75°、λs= -10 °
6.钛合金切削加工性分析
1).钛合金特点和分类
a)密度小(约为 4.5g / cm3 ),比钢约小一倍。
b)强度极限高(可达σb=0.981~1.37GPa), 钛合金的比强度(单位重量强度)很高,尤其在高温下比强度仍 很高,这一点对航空、航天工业尤为重要。
工件切削加工性
表 7– 1 材料可加工性分级
分级
名称及种类
Kv
1 很容易切削材料 一般有色金属
> 3.0
2
易切削钢
容易切削材料
3
较易切削钢
2.5 ~ 3.0 1.6 ~ 2.5
4
一般钢及铸铁
1.0 ~ 1.6
普通材料
5
稍难切削材料 0.65 ~ 1.0
6
较难切削材料 0.5 ~ 0.65
7
难切削材料
理 ;对镍基高温合金可采用固溶处理(淬火)
b)、首选一足够的vc以保证加工质量,再选f 、ap
c)、选择合适的刀具材料和角度 连续切:YG6X、YW1 断续切:M42、501、B201
高速钢刀具:γo=15 ° ~20°、αo=12 ° 、κr=45 ° 硬质合金刀具:γo=5° ~ 10°、αo= 8° ~ 15° 、
在自动机床或自动生产线上,常常以切屑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难加工材料绪论:1.难加工材料分类?特点?2.难切削材料有哪些特点?3.改善难切削材料切削加工性的基本途径有哪些?第一章淬火钢的切削加工1.1 什么是淬火钢?它有哪些切削特点?1.2怎样选择切削淬火钢的刀具材料?1.3切削淬火钢的实例有哪些?第二章不锈钢的切削加工第三章高强度钢和超高强度钢的切削加工第四章高锰钢的切削加工第五章冷硬铸铁和耐磨铸铁的切削加工第六章钛合金的切削加工第七章高温合金的切削加工第八章热喷涂材料的切削加工第九章难熔金属和纯金属的切削加工第十章其他难加工材料绪论:1.难切削材料分哪几类?各有什么特点?难加工材料,科学地说,就是切削加工性差的材料,即硬度>HB250,强度σb>1000MPa,延伸率>80%,冲击值αK>0.98MJ/m2,导热系数K<41.8W(m·K)。
难加工材料种类很多,从金属到非金属材料的范围也很广泛,初步可分为以下八大类:(1)微观高硬度材料:如玻璃钢、岩石、可加工陶瓷、碳棒、碳纤维、各种塑料、胶木、树脂、合成材料、硅橡胶、铸铁等。
这类材料的特点是含有硬质点相,其中有的研磨性很强。
由于这些材料的耐磨性很好,切削时起磨料作用,故刀具主要承受磨料磨损,在高速切削时也同时伴随着物理、化学磨损。
(2)宏观高硬度材料:如淬火钢、硬质合金、陶瓷、冷硬铸铁、合金铸铁、喷涂材料(镍基、钴基)等。
这类材料的主要特点是硬度高。
切削这类材料时,由于切削力大,切削温度高,刀具主要是磨料磨损和崩刃。
(3)加工时硬化倾向严重的材料,如不锈钢、高锰钢、耐热钢、高温合金等。
这类材料的塑性高、韧性好、强度高,强化系数高。
切削加工时的切削表面和已加工表面硬化现象严重。
由于这类材料的强度高,导热系数低,切削温度高,切削力大,刀具主要承受磨料磨损、粘结磨损和热烈磨损。
(4)切削温度高的材料:如合成树脂、木材、硬质橡胶、石棉、酚醛塑料、高温合金、钛合金等。
这类材料的导热系数很低。
切削这类材料时,刀具易产生磨料磨损、粘结磨损、扩散磨损和氧化磨损。
(5)高塑性材料:如纯铁、纯镍、纯铜等。
由于这类材料延长率大于50%,塑性高,切削时塑性变形很大,易产生积屑瘤和鳞刺,刀具主要时磨料磨损和粘结磨损。
(6)高强度材料:是指强度σb>1000MPa的材料,如奥氏体不锈钢、高锰钢、高温合金和部分合金钢。
由于它们的强度高,切削时的切削力大,切削温度高,不仅刀具易磨损,而且切屑不易处理。
(7)化学活性大的材料:如钛、镍、钴及及其的合金。
这类材料化学活性大、亲和性强,切削加工时易粘结在刀具上,与刀具材料产生化学、物理反应、相互扩散。
(8)稀有高熔点材料:是指熔点高于17000C的难熔金属材料,如钨、钼、铌、钽、锆、铪、钒、铼的纯金属及其合金。
由于这些材料本身的熔点高,在切削加工时切削力大,切屑变形也大,刀具主要是磨料磨损和粘结磨损。
2.难切削材料有哪些切削特点?(1)切削力大:难切削材料大都具有高的硬度和强度,原子密度和结合力大,抗断裂韧性和持久塑性高,在切削过程中切削力大。
一般难切削材料的单位切削力是切削45钢的单位切削力的1.25-2.5倍。
(2)切削温度高:多数的难切削材料,不仅具有较高的常温硬度和强度,而且具有高温硬度和高温强度。
因此,在切削过程中,消耗的切削变形功率大,加之材料本身的导热系数小,切削区集中了大量的切削热,形成很高的切削温度。
例如,当切削速度为75m/min时,不同材料的切削温度比切削45钢的切削温度高的情况是:TC-4高435 0C,GH2132高3200C,GH2036高2700C,1Cr18Ni9Ti高1950C。
(3)加工硬化倾向大:一部分难切削材料,由于塑性、韧性高,强化系数高,在切削过程中的切削力和切削热的作用下,产生巨大的塑性变形,造成加工硬化。
无论是冷硬的程度还是硬化层深度都比切削45钢高好几倍。
加之在切削热的作用下,材料吸收周围介质中的氢、氧、氮等元素的原子,而形成硬脆的表层,给切削带来很大的困难。
如高温合金切削后的表层硬化程度比基体大50-100%,1Cr18Ni9Ti奥氏体不锈钢85-95%,高锰钢(Mn13)高200%,其硬化层深度达0.1mm 以上。
(4)刀具磨损大:切削难切削材料的切削力大,切削温度高,刀具与切屑之间的磨檫加剧,刀具材料与工件材料产生亲和力作用,材料硬质点的存在和严重的加工硬化现象的产生,使刀具在切削过程中产生粘结、扩散、磨料、边界和沟纹磨损,而使刀具丧失切削的能力。
(5)切削难处理:材料的强度高,塑性和韧性大,切削时的切削呈带状的缠绕屑,既不安全,又影响切削过程的顺利进行,而且也不便于处理。
3.改善难切削材料切削加工性的基本途径有哪些?改善难切削材料切削加工性的途径是多方面的,但我们研究切削加工,只能从切削加工上去考虑,但也要因地制宜采用其他的加工工艺。
(1)选用合理的刀具材料。
(2)改善切削条件。
(3)选择合理的刀具几何参数和切削用量。
(4)对被加工材料进行适当的热处理(5)重视切屑控制(6)采用其他加工措施:如采用等离子加热切削、振动切削、电熔爆切削,都可以获得较高的切削效率。
第一章淬火钢的切削加工1.什么是淬火钢?它有哪些切削特点?淬火钢是指金属经过淬火后,组织为马氏体,硬度大于HRC50的钢。
它在难切削材料中占有相当大的比重。
加工淬火钢的传统方法是磨削。
但是为了提高加工效率,解决工件形状复杂而不能磨削和淬火后产生形状和位置误差的问题,往往就需要采用车削、铣削、镗削、钻削和铰削等切削加工方法。
淬火钢在切削时有以下特点。
(1)硬度高、强度高,几乎没有塑性:这是淬火钢的主要切削特点。
当淬火钢的硬度达到HRC50-60时,其强度可达σb=2100-2600 MP,按照被加工材料加工性分级规定,淬火钢的硬度和强度为9a级,属于最难切削的材料。
(2)切削力大、切削温度高:要从高硬度和高强度的工件上切下切屑,其单位切削力可达4500MP。
为了改善切削条件,增大散热面积,刀具选择较小的主偏角和副偏角。
这时会引起振动,要求要有较好的工艺系统刚性。
(3)不易产生积屑瘤:淬火钢的硬度高、脆性大,切削时不易产生积屑瘤,被加工表面可以获得较低的表面粗糙度。
(4)刀刃易崩碎、磨损:由于淬火钢的脆性大,切削时切屑与刀刃接触短,切削力和切削热集中在刀具刃口崩碎和磨损。
(5)导热系数低:一般淬火钢的导热系数为7.2W(m·K),约为45钢的1/7.材料的切削加工性等级是9a级,属于很难切削的材料。
由于淬火钢的导热系数低,切削热很难通过切屑带走,切削温度高,加快了刀具磨损。
2.怎样选择切削淬火钢的刀具材料?合理选择刀具材料,是切削加工淬火钢的重要条件。
根据淬火钢的切削慝点,刀具材料不仅要有高的硬度、耐磨性,耐热性,而且要有一定的强度和导热性。
(1)硬质合金:为了改善硬质合金的性能,在选择硬质合金时,应优先选择加入适量TaC或NbC的超细微粒的硬质合金。
因为在WC-Co类硬质合金中,加入TaC以后,可将其原来的8000C 高温强度提高150-300MP,常温硬度提高HV40-100.加入NbC以后,高温强度提高150-300MP,常温硬度提高HV70-150。
而且Ta和NbC 可以细化晶粒,提高硬质合金抗月牙洼磨损的能力。
TaC还可以降低磨檫系数,降低切削温度,增强硬质合金抗热烈和热塑性性变形的能力,同时也将WC的晶粒细化到0.5-1μm,其硬度提高HRA1.5-2,抗弯强度可提高600-800MP,高温硬度比一般硬质合金高。
常用来切削淬火钢的硬质合金牌号有:YS8、YN05、YN10、600、610、726、758、767、813等。
(2)热压复合陶瓷和热压氮化硅陶瓷:在Al2O3中加入TiC等金属元素并采用热压工艺,改善了陶瓷的致密性,提高了氧化铝基陶瓷的性能,使它的硬度提高到HRA95.5,抗弯强度可达800-1200MP,耐热性可达1200-13000C,在使用中可减少粘结和扩散磨损。
其主要牌号有AG2、AG3、AG4、LT35、LT55、AT6等。
氮化硅基陶瓷是在Si3N4中加入TiC等金属元素,其硬度为HRA93-94,抗弯强度为70-1100MP。
主要牌号有HS73、HS80、F85、ST4、TP4、SM、HDM1、HDM2、HDM3。
这两种陶瓷适用于车、铣、镗、刨削淬火钢。
(3)立方氮化硼复合片(PCBN)刀具:它的硬度为HV8000-9000,复合抗弯强度为900-1300MP,导热性比较高,耐热性为1400-15000C,是刀具材料最高的。
它十分适合于淬火钢的半精加工和精加工。
综上所述,切削淬火钢最好的刀具材料是立方氮化硼,其次是复合陶瓷,再其次是新牌号硬质合金。
3.怎样选择切削淬火钢时的切削用量?切削加工淬火钢的切削用量,主要是根据刀具材料、工件材料的物理、力学性能、工件形状、工艺系统刚性和加工余量来选择。
在选择切削用量三要素时,首先考虑选择合理的切削速度,其次是切削深度,再次是进给量。
(1)切削速度:硬质合金刀具速度为30-75m/min;陶瓷刀具速度为60-120m/min;立方氮化硼刀具速度为100-200m/min。
在连续切削和工件材料硬度太高时,应降低切削速度,一般约为上面最低切削速度的1/2.在连续切削时的最佳切削速度,以切下的切屑呈暗红色为宜。
(2)切削深度:一般根据加工余量和工艺系统刚性选择,一般情况下a p=0.1-3mm。
(3)进给量一般为0.05mm/r到0.4mm/r。
在工件材料硬度高或断续切削时,为了减小单位切削力,应当减小进给量,以防崩刃和打刀。
第二章不锈钢的切削加工1.什么是不锈钢?通常,人们把含铬量大于12%或含镍量大于8%的合金叫做不锈钢。
这种钢在大气中或在腐蚀性介质中具有一定的耐蚀能力,并在较高温度(>4500C)下具有较高的强度。
含铬量达16-18%的钢称为耐酸钢或耐酸不锈钢,习惯上通称为不锈钢。
钢中含铬量达12%以上时,在与氧化性介质接触中,由于电化学作用,表面很快形成一层富铬的钝化膜,保护金属内部不受腐蚀;但在非氧化性腐蚀介质中,仍不易形成坚固的钝化膜。
为了提高钢的耐蚀能力,通常增大铬的比例或添加可以促进钝化的合金元素,加Ni、Mo、Mn、Cu、Nb、Ti、W、Co等,这些元素不仅提高了钢的抗腐蚀能力,同时改变了钢的内部组织以及物理力学性能。
这些合金元素在钢中的含量不同,对不锈钢的性能产生不同的影响,有的有磁性,有的无磁性,有的能够进行热处理,有的不能热处理。
由于不锈钢所具有的上述特性,越来越广泛地应用于航空、航天、化工、石油、建筑和食品等工业部门及日常生活中。
所含有的合金元素对切削加工性影响很大,有时甚至很难切削。