3.1.2空间向量的数乘运算(共14张)

合集下载

3.1空间向量及其运算

3.1空间向量及其运算

当堂自测
4.已知 A,B,C 三点不共线,O 为平面 ABC 外一点,若 1→ 2→ → → 确定的点 P 与 A,B,C 共面,则 由向量OP= OA+ OB+λOC 5 3 2 λ=________ . 15
向量概念的应用
例 1 (1)下列关于空间向量的说法中正确的是( D ) A.若向量 a,b 平行,则 a,b 所在直线平行 B.若|a|=|b|,则 a,b 的长度相等而方向相同或相反 → ,CD → 满足|AB → |>|CD → |,则AB → >CD → C.若向量AB → 与CD → 满足AB → +CD → =0,则AB → ∥CD → D.若两个非零向量AB
范老师下班回家,先从学校大门口骑自行车向北行驶 2 000 m, 再向西行驶 2 500 m, 最后乘电梯上升 30 m 到 10 楼的住处. 在 这个过程中, 范老师从学校大门口回到住处所发生的总位移就是 三个位移的合成(如图所示),它们是不在同一平面内的位移.如 何刻画这样的位移呢?
复习与预习
当堂自测
1.在平行六面体 ABCD -A1B1C1D1 中,M 为 AC 与 BD 的交 → → → 点.若A1B1=a,A1D1=b,A1A=c,则下列 → 向量中与B 1M相等的向量是 ( A ) 1 1 1 1 A.- a+ b+c B. a+ b+c 2 2 2 2 1 1 1 1 C. a- b+c D.- a- b+c 2 2 2 2
[解析] (2)若 2ke1-e2 与 e1+2(k+1)e2 共线, 则 2ke1-e2=λ[e1+2(k
2k=λ, 1 +1)e2],∴ ∴k=- . 2 -1=2λ(k+1),
[小结 ] 可以利用向量之间的关系判断空间任意三点共线, 这 与利 用平 面向量 基本 定理 判断平 面内 三点共 线是 相似 的.结合共线向量的有关知识可知,要证空间中 E, F, B 三点共线,只需证明下面结论中的一个成立即可: → → → → → → → → (1)EB=mEF;(2)AB=AE+λEF;(3)AB=nAE+(1-n)AF.

空间向量及其运算_图文

空间向量及其运算_图文
Βιβλιοθήκη 3.1.2空间向量及其运算
一、预习内容: ⑴怎样的向量叫做共线向量? ⑵两个向量共线的充要条件是什么? ⑶空间中点在直线上的充要条件是什么? ⑷什么叫做空间直线的向量参数表示式? ⑸怎样的向量叫做共面向量? ⑹向量p与不共线向量a、b共面的 充要条件 是什么? ⑺空间一点P在平面MAB内的充要条件是什 么?
• (2)考虑一些未知的向量能否用基向量表示.
• (3)如何对已经表示出来的向量进行运算,才能 获得需要的结论.
2. 向量作为沟通“数”和“形”的桥梁,是利用数形 结合解题的一种重要载体.学习者要逐步掌握向量 运算的各种几何意义,才能较好的利用效率这一工 具来灵活解题.请注意以下的基本知识技能:
评注:⑴证明分两方面: 一是存在性;二是惟一性.
⑵若三向量 不共面, 则所有空间向量所组成的 集合是:
空间向量基本定理推论:
设O,A,B,C是不共面的四点,则对空间任 一点P,都存在唯一的三个有序实数x,y,z,使
二、例题分析: 例1、已知A,B,C三点不共线,对平面外任一 点,满足条件:
试判断:点P与A,B,C是否一定共面?
在空间中具有大小和方向的量叫作向量.
同向且等长的有向线段表示同一向量或相等 向量. ⑵向量的表示: 用有向线段表示
2、空间向量的运算: ⑴定义:
与平面向量运算一样,空间向量的加法、减 法与数乘向量运算如下(如图)
注:空间向量的加法、减法及数乘运算是 平面向量对应运算的推广
3、平行六面体:
平行四边形ABCD平移向量 a 到A’B’C’D’的 轨迹所形成的几何体,叫做平行六面体.记作 ABCD—A’B’C’D’. 它的六个面都是平行四边形,每个面的边叫 做平行六面体的棱 .

人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算

人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算

导入新课复习上一节课,我们借助“类比思想”把平面向量的有关概念及加减运算扩展到了空间.(1) 加法法则及减法法则平行四边形法则或三角形法则. (2) 运算律加法交换律及结合律.两个空间向量的加、减法与两个平面向量的加、减法实质是一样的.因为:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量.因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.我们知道平面向量还有数乘运算及相应的运算律.借助类比思想,同样可以定义空间向量的数乘运算及相应的运算律.教学目标知识目标正确理解共线、方向向量等基本概念;初步掌握数乘运算,理解运算律;熟练掌握共线向量基本定理、推论及应用.能力目标经历知识形成探索过程,体验“类比”思想,并逐步学会“分析、归纳、抽象、概括等思维方法.情感目标1. 通过自主探究与合作交流,不断体验“成功”,激发学习热情和求知欲,充分体现学生的主体地位;2. 通过类比思想和方法的应用,感受和体会数学思想的魅力,培养学“做数学”的习惯和热情.教学重难点重点共线向量概念、基本定理及推论.难点共线概念的正确理解及较复杂的三点共线判定.知识要点1. 空间向量数乘运算的定义与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘(multiplication of vetor by salar)运算.(1)结果仍然是一个向量;(2)方向:当λ>0时,λa与a方向相同;当λ<0时,λa与a方向相反;当λ=0时,λa是零向量0; (3)大小: λa的长度是a长度的|λ|倍.aλa(λ<0)a λa(λ>0)2.数乘运算的运算律显然,空间向量的数乘运算满足分配律及结合律()λ(a +b )=λa +λbλ+μa =λa +μaλ(μa )=(λμ)a 即:知识要点(1) λa与a 之间是什么关系?(2) λa 与a 所在直线之间的关系?对于空间向量的数乘运算的运算律的证明,方法与证明平面向量数乘运算的运算律类似.知识要点3.共线向量(或平行向量)的定义表示空间向量的有向线段所在直线互相平行或重合,则称这些向量叫共线向量(colliner vectors)或平行向量(parallel vectors)记作a//b(1)向量平行与直线平行的比较;(2)关注零向量; (3)对空间任意两个向量a 与b ,如果 ,那么a 与b 有什么相等关系?反过来呢?b //a 零向量与任何向量平行(1)当我们说a,b共线时,表示a,b的两条有向线段所在直线既可能是同一直线,也可能是平行线;(2)当我们说a // b时,也具有同样的意义.知识要点4.共线向量基本定理对于空间任意两个向量a ,b(b≠0),a // b的充要条件是存在实数λ,使a = λb(1)b≠0的理解.若b=0,则a任意,λ不唯一;(2)若a // b,b // c,则a一定平行于c吗?(不一定,考虑中间向量为零向量)5.共线向量基本定理的推论如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对于空间任意一点像O ,点P 在直线l 上的充要条件是存在实数t ,使 OP = OA + ta. (1) AaOP B其中向量a叫做直线l的方向向量(direction vector)在l上取AB=a,则(1)式可化为OP = (1- t)OA + t OB.(2)说明: (1),(2)都叫做空间直线的向量参数表示式.由此可知,空间任意直线由空间一点及直线的方向向量唯一确定.知识要点6.共面向量定义平行于同一平面的向量,叫做共面向量(coplanar vectors).空间任意两个向量总是共面的,但空间任意三个向量既可能是共面的,也可能是不共面的.7.共面向量的定理如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在唯一的有序实数对(x、y),使p = x a + y b8.共面向量的定理的推论空间一点P位于平面MAB内的充分必要条件是存在有序实数对x、y,使MP = xMA + yMB或对空间任一定点O,有OP = OM + xMA + yMB.Ma AbB A' p P对空间任意一点O 和不共线的三点A 、B 、C ,试问满足向量关系式(其中x+y+z=1)的四点P 、A 、B 、 C 是否共面?OP =xOA+yOB +zOC解答原式可以变形为OP=(1-y-z)OA+yOB+zOC,OP-OA=y(OB-OA)+z(OC-OA), AP=y AB+z AC,所以,点P与点A,B,C共面.例题如下图,已知平行四边形ABCD,过平面AC外一点O作射线OA、OB、OC、OD,在四条射线上分别取点E、F、G、H,并且使OE OF OG OH====kOA OB OC OD求证:四点E、F、G、H共面.D'A'B'C'DA B CO分析:欲证E,F,G,H四点共面,只需证明EH,EF,EG共面.下面我们利用AD,AB,AC共面来证明.证明:因为 所以 OE=kOA ,OF=kOB , OG=kOC ,OH=kOD. 由于四边形ABCD 是平行四边形,所以AC=AB+AD. 解答OE OFOGOH====kOA OB OC OD继续因此EG=OG-OE=kOC-kOA=k AC=k(AB+AD)=k(OB-OA+OD-OA)=OF-OE+OH-OE=EF+EH.由向量共面的充要条件知E,F,G,H四点共面.课堂小结1.空间向量的数乘运算.2.空间向量的数乘运算的运算律.满足分配律及结合律.3.共线向量与共面向量共线向量 共面向量 定义 向量所在直线互相平行或重合. 平行于同一平面的向量,叫做共面向量. 定理 推论 运用 判断三点共线,或两直线平行 判断四点共线,或直线平行于平面)0a (b //a ≠b λa =p b a b y αx p +=ABt OA OP +=AC y AB x OA OP ++=共面1)y (x OBy OA x OP =++=1)z y (x 0OC z OB y OA x OP =++=++=高考链接1.(2006年福建卷)已知|OA|=1,|OB|= ,OA·OB=0,点C 在∠AOB 内,且∠AOC=30°,设OC=mOA+nOB (m 、n ∈R),则 等于_______. 3nm 3D. 33 C. 3B. 31 A. BOA =1,OB =3,OA.OB =0,解析: 点C 在AB 上,且∠AOC=30°设A 点坐标为(1,0),B 点的坐标为(0, )C 点的坐标为(x ,y)=( , ) OC =mOA+nOB(m,n R)∈33434则∴ 3n m ,41,n 43m ===课堂练习1.选择(1)若对任一点O 和不共线的三A,B,C,且有 则x+y+z=1是四点P 、A 、B 、C 共面的() A. 必要不充分条件 B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件 R),z y,(x,OC z OB y OA x OP ∈++= C(2)对于空间任意一点O ,下列命题正确的是(). A.若 ,则P 、A 、B 共线 B.若 ,则P 是AB 的中点C.若 ,则P 、A 、B 不共线D.若 ,则P 、A 、B 共线 OP =OA+t AB3OP =OA+AB OP=OA -t AB OP=-OA+AB A(3)下列命题正确的是()CA.若a与b共线,b与c共线,则a与c共线B.向量a,b,c共面就是它们所在的直线共面C.零向量没有确定的方向D.若a // b,则存在唯一的实数λ使得a = λb解答A.中向量b为零向量时要注意,B.中向量的共线、共面与直线的共线、共面不一样,D.中需保证b不为零向量.答案C.点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处.像零向量与任何向量共线等性质,要兼顾 .2.解答题已知:且m,n,p不共面.若a∥b,求x,y的值.,p2yn8m1)(xb0,p4n2m3a+++=≠--=空间向量在运算时,注意到如何利用空间向量共线定理.解答 ∵a // b,且a ≠0, ∴b= λ a ,即 又∵m ,n ,p 不共面,∴.p 4λn 2λm 3λp 2y n 8m 1)(x --=+++8.y 13,x ,42y 2831x =-=∴-=-=+习题答案1. (1)AD; (2)AG;(3)MG2. (2)x=1; (2)x=y=1/2; (3) x=y=1/2;3.CA QBRPSO。

课件1:3.1.2 空间向量的数乘运算(共线与共面向量)

课件1:3.1.2 空间向量的数乘运算(共线与共面向量)

∴EH ∥FG且|EH |=43|FG |≠|FG |.
又 F 不在直线 EH 上, ∴四边形 EFGH 是梯形.
规律方法 判断向量 a,b 共线的方法有两种: (1)定义法 即证明 a,b 所在基线平行或重合. (2)利用“a=xb⇒a∥b”判断 a,b 是空间图形中的有向线段,利用空间向量的运算性质, 结合具体图形,化简得出 a=xb,从而得 a∥b,即 a 与 b 共 线.
存在有序实数组{x,y,z},使得 p= xa+yb+zc
.
其中,表达式 xa+yb+zc 叫做向量 a,b,c 的线性表
达式或线性组合, a,b,c 叫做空间的一个基底,记 作 {a,b,c} ,a,b,c 都叫做基向量.
互动探究
题型一:共线向量的判定 例 1 如图 3-1-11 所示,已知四边形 ABCD 是空间四边形,E,H 分别是边 AB,AD 的中点,F, G 分别是边 CB,CD 上的点,且C→F=23C→B,C→G=23C→D. 求证:四边形 EFGH 是梯形.
图 3-1-11
【思路探究】 (1)E→H与F→G共线吗?怎样证明? (2)|E→H|与|F→G|相等吗? 【自主解答】 ∵E,H 分别是 AB、AD 的中点, ∴A→E=21A→B,A→H=12A→D, 则E→H=A→H-A→E=12A→D-12A→B=12B→D =21(C→D-C→B)=12(32C→G-32C→F) =43(C→G-C→F)=34F→G,
(2)由(1)知向量M→A,M→B,M→C共面,三个向量的基线又 过同一点 M,
∴M、A、B、C 四点共面, ∴M 在面 ABC 内.
规律方法 1.空间一点 P 位于平面 MAB 内的充分必要条件是存在有序 实数对(x,y),使 MP xMA yMB.满足这个关系式的点 P 都 在平面 MAB 内;反之,平面 MAB 内的任一点 P 都满足这个 关系式.这个充要条件常用于证明四点共面.

【优化方案】2012高中数学 第3章3.1.2空间向量的数乘运算课件 新人教A版选修2-1

【优化方案】2012高中数学 第3章3.1.2空间向量的数乘运算课件 新人教A版选修2-1

的中心, 的中点,求下列各式中, , 的中心,Q 是 CD 的中点,求下列各式中,x,y 的值. 的值. → → → → (1)OQ=PQ+xPC+yPA; → → → → (2)PA=xPO+yPQ+PD.
思路点拨】 【 思路点拨 】 解答本题需准确画图, 解答本题需准确画图 , 先利用三 角形法则或平行四边形法则表示出指定向量, 角形法则或平行四边形法则表示出指定向量 , 再 根据对应向量的系数相等,求出 、 的值即可 的值即可. 根据对应向量的系数相等,求出x、y的值即可.
(4)用上述结论证明 或判断 三点 A、B、C 共线时,只需证 用上述结论证明(或判断 用上述结论证明 或判断)三点 、 、 共线时, → → → → 即可.也可用“ 明存在实数 λ,使AB=λBC或AB=µAC即可.也可用“对 , → → → 空间任意一点 O,有OB=tOA+(1-t)OC”来证明三点共 , - 线. 2.对向量共面的充要条件的理解 . (1)空间一点 P 位于平面 MAB 内的充分必要条件是存在有 空间一点 → → → 序实数对(x, 使 y), 序实数对 , , MP=xMA+yMB.满足这个关系式的点 满足这个关系式的点 P 都在平面 MAB 内; 反之, 反之, 平面 MAB 内的任一点 P 都满 足这个关系式.这个充要条件常用以证明四点共面. 足这个关系式.这个充要条件常用以证明四点共面.
→ → → ∴EF=A1F-A1E 4 2 2 2 2 = a- b- c= (a- b-c). - - = - - . 5 15 5 5 3 2 2 → → → → 又EB=EA1+A1A+AB=- b-c+a=a- b-c, - + = - - , 3 3 → 2→ 所以 , , 三点共线. ∴EF= EB.所以 E,F,B 三点共线. 5

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算a21

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算a21
①( AB + BC )+ CC1 ;②( AA1 + A1D1 )+ D1C1 ;③( AB + BB1 )+ B1C1 ;④ ( AA1 + A1B1 )+ B1C1 .
解析:(2)①( AB + BC )+ CC1 = AC + CC1 = AC1 ; ②( AA1 + A1D1 )+ D1C1 = AD1 + D1C1 = AC1 ; ③( AB + BB1 )+ B1C1 = AB1 + B1C1 = AC1 ; ④( AA1 + A1B1 )+ B1C1 = AB1 + B1C1 = AC1 .
3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算
课标要求:1.经历向量及其运算由平面到空间推广的过程,了解空间向量的 概念.2.掌握空间向量的加法、减法和数乘运算.3.理解空间共线向量和共 面向量定理及推论.
自主学习 课堂探究
知识探究
自主学习
1.空间向量及其长度的定义 与平面向量一样,在空间,我们把 具有大小和方向的量 叫做空间向量,
解析:容易判断D是假命题,共线的单位向量是相等向量或相反向量.故
选D.
2.空间两向量a,b互为相反向量,已知向量|b|=3,则下列结论正确的是
(D)
(A)a=b
(B)a+b为实数0
(C)a与b方向相同
(D)|a|=3
3.在下列条件中,使 M 与 A,B,C 一定共面的是( C )
(A) OM =3 OA -2 OB - OC (B) OM + OA + OB + OC =0

§3.1.1-3.1.2空间向量及其加减运算、数乘运算

§3.1.1-3.1.2空间向量及其加减运算、数乘运算

第一章空间向量与立体几何§3.1.1-3.1.2空间向量及其加减运算、数乘运算班级:_____姓名:__________ 编号:_____学习目标1、掌握空间向量单位向量、相反向量的定义2、用空间向量的运算意义及运算律解决问题3、掌握空间向量的数乘运算4、理解共线向量、共面向量的定理及推论5、用数乘运算把未知向量用已知向量表示自主预习(预习课本自主掌握以下概念和原理)1、空间向量的有关概念(1)定义:在空间,把具有_____和_____的量叫做空间向量;(2)长度:向量的___叫做向量的长度或__(3)表示法:①几何表示法:空间向量用_____表示②字母表示法:用字母表示,若向量a的起点是A,终点是B,则向量a也可以记作_____,其模记为_____或_____。

4、空间向量的数乘运算:实数λ与空间向量的乘积____,成为向量的数乘运算。

5、向量a与向量λa的关系(1)分配律:λ(a+b)=________(2)结合律:()______aλμ=7、共线向量与直线的方向向量(1)共向向量的概念:表示空间向量的有向线段所在的直线______共线向量也叫______(2)两向量共线(平行)的充要条件:对于空间任意两个向量,(0)a b b≠,则a b的充要条件是存在实数λ,使______(3)直线的方向向量:如果l为经过点A且平行于已知非零向量a的直线,那么对于空间任一点O,点P在直线l上的充要条件是存在实数t,使OA OP ta=+①,其中a叫做直线l的______8、共面向量(1)共面向量的定义:平行于______的向量(2)三个向量共面的充要条件:如果两个向量,a b______,那么向量p与向量,a b共面的充要条件是存在唯一的有序实数对(,),x y使____p=【突破·核心知识】【知识梳理】【题型归纳】【随堂∙自我测评】1、对于空间非零向量AC BC AB ,,下列各式一定不成立的是( )A 、AB →+BC →=AC → B 、AB →-AC →=BC →C 、AB →+BC →=CA →D 、AB →-AC →=CB →2、设有四边形ABCD 中,o 为空间任意一点,且OCDO AO →→→→+=+OB ,则四边形ABCD 是A 、平行四边形B 、空间四边形C 、等腰梯形D 、矩形 3、→→→≠=ba,且ba →→、不共线时ba →→+与ba →→-的关系是( )A 、共面B 、不共面C 、共线D 、无法确定4、已知两个非零向量21,e e不共线,如21A B e e =+ ,2128AC e e =+ ,2133AD e e =- 求证:,,,A B C D 共面.5已知324,(1)82a m n p b x m n yp =--=+++,0a ≠ ,若//a b,求实数,x y 的值6.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC=++,试判断:点P与,,A B C 是否一定共面?【课后∙知能提升】1.在平行六面体ABCD -A 1B 1C 1D 1中,下列各式:①(111A D A A - )-AB; ② (1BC BB + )-11D C ;③ (1A D A B - )+1DD ; ④ (111B D A A -)-1DD,其中运算结果为向量11B D的是( ) A 、①② B 、③④ C 、②④ D 、①③2.在空间四边形ABCD 中,设AB a =,AD b =,M 点是BD 的中点,则下列对应关系正确的是( )A .1()2MA a b =+B .1()2MC a b =+C .1()2MD b a =- D .1()2MB b a =-3.空间四边形ABCD 中,AB a =,,,BC b AD c == 则CD =( )A .a b c +-B .c a b --C .a b c --D .b a c -+4.在长方体ABCD —A ′B ′C ′D ′中,向量AB '、AD ' 、BD是( )A .有相同起点的向量B .等长的向C .共面向量D .不共面向量5、向量,,a b c两两夹角都是60 ,||1,||2,||3a b c === ,则||a b c ++= 。

3.1.1与3.1.2空间向量及其加减与数乘运算

3.1.1与3.1.2空间向量及其加减与数乘运算
思考题:考虑空间三个向量共面的充要条件.


练习1
用AB 、AD 、AA 、 BD 、 DB1 1来表示A 1C 1
D1 C1
A1
B1
D
A
C B
空间向量的数乘
a( 0) a( 0)
数乘分配律: 数乘结合律:
(a b) a+b
( a) ( )a

类比平面向量的加法运算,你能推出空间加法 的运算律吗?
加法交换律
ab ba
加法结合律 (a b) c a (b c)
加法结合律:
O
(a b) c a (b c)
O
a
A
a
C
b
A
+
c c
C
b
B
c
b
B
推广:
(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;
复习回顾:平面向量
既有大小又有方向的量。 1、定义:
几何表示法:用有向线段表示 字母表示法: 用小写字母表示,或者用表示向量的 有向线段的起点和终点字母表示。 相等向量:长度相等且方向相同的向量
B A D C

2、平面向量的加法、减法与数乘运算
b
b
a
向量加法的三角形法则
练习2
在空间四边形ABCD中,点M、G分别是BC、CD 边的中点,化简 A (1) AB BC CD
D G M C
1 (2) AB ( BC BD) 2 1 (3) AG ( AB AC) 2
B

例2. 已知空间四边形ABCD中,G为△BCD的重心,E、F、H分 别为边CD、AD和BC的中点。化简下列各表达式,并标出化简 结果的向量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档