纳米陶瓷的制备与应用

合集下载

纳米技术在陶瓷领域方面的应用

纳米技术在陶瓷领域方面的应用

纳米技术在陶瓷领域方面的应用近年来,纳米技术的发展与应用不断推进,其在陶瓷领域中也得到了广泛的应用。

纳米技术可以改善陶瓷的性能,使陶瓷具有更强的力学性能、导电性能、光学性能和磁性能,因此在电子、光电和生物医学等领域中有着广泛的应用前景。

传统的陶瓷材料压制成型通常需要高温烧结,而烧结温度高、能耗大,造成环境污染,也影响了陶瓷的性能。

利用纳米技术制备陶瓷则可以克服这些问题。

制备方法主要有两种:一种是直接将纳米粉体压制成型(或喷雾成型、光刻成型),再在较低温度下(通常为数百度)烧结,即所谓的等离子烧结法;另一种是先利用溶胶-凝胶法、气溶胶-凝胶法和单分散小球体法等方法制备出纳米粉体,再制备出坯体进行烧结。

这种方法可以降低烧结温度,提高了陶瓷的制备效率。

纳米陶瓷材料的力学性能和韧性优化纳米陶瓷材料因其晶粒尺寸较小,其具有比传统陶瓷材料更高的力学性能。

利用纳米技术制备的陶瓷材料可以通过组成优化、控制晶粒尺寸及晶体相呈现、晶界工程、界面增韧等方式提高陶瓷的韧性和断裂强度。

例如,增加材料晶界密度可以使材料更韧性,降低晶界能则有助于增加材料的韧性和疲劳寿命。

由于其具有更小的晶粒尺寸和新颖的能级结构,纳米材料表现出与传统陶瓷材料不同的光学性质。

利用纳米技术,可以制备出具有强透光性和色散的陶瓷,应用于光电显示、电子显示、光学存储等领域。

例如,利用纳米颗粒制备出的金红石陶瓷可具有较高的透光率和折射率,而掺入稀土元素则可以增强其荧光性能。

利用纳米技术,可以在陶瓷材料中引入导电粒子,如碳纳米管和氧化铟纳米晶。

这些导电粒子可以提高陶瓷的导电性能,使其应用于微电子器件、高功率电子器件、电磁屏蔽材料等领域。

例如,利用碳纳米管制备出的陶瓷复合材料可具有较高的导电性和机械强度,可应用于电池电极材料、电磁屏蔽等。

纳米陶瓷材料的生物医学应用纳米技术可以改变材料表面结构,如疏水性和亲水性、电荷、粘附力等,从而制得表面对细胞有更好的覆盖性能,并可用于载药、组织工程等。

纳米陶瓷材料的研究现状及应用

纳米陶瓷材料的研究现状及应用

纳米陶瓷材料的研究现状及应用
1.功能涂层:纳米陶瓷材料的高硬度和高抗磨性使其成为制备高质量
涂层的理想材料。

纳米陶瓷涂层可以应用于飞机、汽车、船舶等工程机械
设备的表面,提高其抗腐蚀性、耐磨性和耐高温性。

2.生物医学材料:纳米陶瓷材料具有优异的生物相容性和生物稳定性,因此广泛应用于医学领域。

例如,纳米陶瓷颗粒可以用于制备人工骨髓和
骨折修复材料,其高强度和生物活性有助于骨骼再生。

此外,纳米陶瓷材
料还可以用于制备人工关节和牙科修复材料等。

3.电子器件:纳米陶瓷材料的高介电常数和热稳定性使其成为制备高
性能电子器件的理想材料。

例如,纳米陶瓷材料可以用于制备高密度的电
子器件,提高电子器件的工作效率和可靠性。

4.环境保护:纳米陶瓷材料可以用于制备高效的催化剂和吸附剂,用
于处理工业废水和废气等污染物。

纳米陶瓷材料的高比表面积和活性位点
可以提高催化剂和吸附剂的活性和选择性。

总之,纳米陶瓷材料的研究和应用已经取得了很大的进展。

随着纳米
技术的不断发展,相信纳米陶瓷材料在各个领域的应用前景会更加广阔。

同时,纳米陶瓷材料的制备和性能的研究也是一个具有挑战性和发展潜力
的领域。

纳米陶瓷材料的研究现状及应用

纳米陶瓷材料的研究现状及应用

纳米陶瓷材料的研究现状及应用
首先,纳米陶瓷材料的制备方法不断丰富和完善。

传统的陶瓷制备方
法无法获得纳米级尺寸的陶瓷颗粒,而通过纳米技术的手段,例如溶胶凝
胶法、水热法和微乳液法等,可以制备出具有纳米级尺寸和高比表面积的
陶瓷颗粒。

其次,纳米陶瓷材料的性能得到显著提升。

由于纳米材料具有高比表
面积、尺寸效应和量子效应等特点,纳米陶瓷材料在力学强度、热稳定性、电学性能和光学性能等方面表现出优异的性能。

例如,纳米氧化锆陶瓷具
有高硬度、高抗磨损性和高耐久性,可以应用于高性能切削工具和汽车发
动机零件等领域。

此外,纳米陶瓷材料还可以通过添加适量的催化剂和稀土元素等进行
改性,使其具备更多的功能性和应用潜力。

例如,通过添加银、铜等催化剂,可以显著提高纳米氧化锌陶瓷的光催化活性,使其具备处理水污染和
空气净化的能力。

纳米陶瓷材料的应用范围非常广泛。

在能源领域,纳米陶瓷材料可以
用于制备高性能的锂离子电池和固体氧化物燃料电池的电极材料,提高电
池的能量密度和循环寿命。

在医疗领域,纳米陶瓷材料可以用于制备人工
骨骼、人工关节和人工血管等生物医用材料,具备优异的生物相容性和机
械性能。

此外,纳米陶瓷材料还可以用于电子元器件、光学器件和薄膜材
料等领域。

总之,纳米陶瓷材料的研究已经取得了很多重要进展,在各个领域有
着广泛的应用前景。

随着纳米技术和先进制备方法的不断发展,相信纳米
陶瓷材料在材料科学和工程中将发挥更加重要的作用。

纳米陶瓷材料

纳米陶瓷材料

评述与专论纳米陶瓷材料摘要:纳米陶瓷材料的超塑性、强度大为提高,对材料的电学、热学、力学性质产生重要影响,为材料的利用开拓了一个崭新的领域,已成为材料科学研究的热点之一。

本文对纳米陶瓷的制备、烧结、性能和应用做了简要综述。

并对其面临问题提出解决思路。

关键词:纳米陶瓷;制备;性能; 应用Nano-scale ceramic materialAbstract:Nanoceramics has superior performances in electricity, thermology and mechanism, because of its improvement in superplasticity and intensity, which has extended to a new domain thus becoming a hotspot in materials science. In this text, a brief summery of preparation, sinter, property and application of nanoceramics will be reported, and possible solution of faced problems will be proposed.Key words:nanoceramics; preparation; properity;application.陶瓷是人类最早使用的材料之一, 在人类发展史上起着重要的作用。

但是,由于传统的陶瓷材料脆性大, 韧性和强度较差、可靠性低, 使陶瓷材料的应用领域受到较大限制。

随着纳米技术的广泛应用, 纳米陶瓷随之产生。

纳米材料从根本上改变了材料的结构,可望得到诸如高强度金属和合金、塑性陶瓷、金属间化合物以及性能特异的原子规模复合材料等新一代材料,为克服材料科学研究领域中长期未能解决的问题开拓了新的途径。

量子膜纳米陶瓷膜

量子膜纳米陶瓷膜

量子膜纳米陶瓷膜引言量子膜纳米陶瓷膜是一种先进的材料,具有许多独特的性质和应用潜力。

本文将深入探讨这种材料的特点、制备方法、应用领域以及未来发展方向。

特点量子膜纳米陶瓷膜是由纳米颗粒组成的薄膜材料,具有以下特点:1.尺寸效应:由于其纳米尺寸,量子膜纳米陶瓷膜的物理和化学性质与传统材料有很大差异。

纳米尺寸使得材料的表面积增大,导致更高的反应活性和更好的催化性能。

2.量子效应:量子膜纳米陶瓷膜中的纳米颗粒在尺寸上受到限制,使得其电子和光学性质发生变化。

量子效应使得这种材料具有独特的光电性能,例如量子点材料在光电转换中的应用。

3.高温稳定性:量子膜纳米陶瓷膜具有良好的高温稳定性,能够在高温环境下保持其结构和性能。

这使得它在高温应用领域具有广泛的应用前景。

4.机械性能:由于其纳米结构,量子膜纳米陶瓷膜具有优异的力学性能,例如高硬度、高强度和高韧性。

这使得它在耐磨损、防腐蚀等领域具有广泛的应用。

制备方法量子膜纳米陶瓷膜的制备方法多种多样,以下是其中几种常见的方法:1.溶胶-凝胶法:该方法通过溶胶的凝胶化过程来制备纳米陶瓷膜。

首先,将金属或金属盐溶于溶剂中形成溶胶,然后通过加热、蒸发等方法使溶胶凝胶化形成凝胶,最后通过烧结或热处理得到纳米陶瓷膜。

2.磁控溅射法:该方法利用磁场和电场将金属靶材的原子或离子释放到基底上,形成纳米颗粒并沉积成膜。

磁控溅射法制备的纳米陶瓷膜具有较高的纯度和致密性。

3.溶液法:该方法通过将金属或金属盐溶解在溶剂中,然后通过溶剂蒸发或还原反应使金属离子形成纳米颗粒并沉积成膜。

溶液法制备的纳米陶瓷膜制备简单、成本较低。

应用领域量子膜纳米陶瓷膜具有广泛的应用领域,以下是其中几个重要的应用领域:1.能源领域:量子膜纳米陶瓷膜在能源领域具有重要的应用潜力,例如作为太阳能电池的光电转换层、燃料电池的催化剂和电解质材料等。

2.传感器:量子膜纳米陶瓷膜在传感器领域具有广泛的应用,例如气体传感器、压力传感器和湿度传感器等。

纳米陶瓷材料制备技术

纳米陶瓷材料制备技术

纳米陶瓷材料制备技术邱安宁5990519118 F9905104陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用.但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使它的应用受到了较大的限制,随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性.英国著名材料专家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径,因此纳米陶瓷的研究就成了当今材料科学研究的热点领域.纳米材料一般指尺寸为1~100nm,处于原子团族和宏观物体交接区域内的粒子.而从原子团族制备材料的方法,称这为纳米技术.纳米材料由于具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应而产生奇异的力学、电学、磁学、热学、光学和化学活性等特性,它既是一种新材料又是新材料的重要原料[3 ].所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上.由于界面占有可与颗粒相比拟的体积百分比,小尺寸效应以及界面的无序性使它具有不同于传统陶瓷的独特性能.本文将描述纳米陶瓷的主要制备技术及加工中的理论问题,并利用在材料加工的原理就其典型应用进行讨论。

2.1决定陶瓷性能的主要因素决定陶瓷性能的主要因素组成和显微结构,即晶粒、晶界、气孔或裂纹的组合性状,其中最主要的是晶粒尺寸问题,晶粒尺寸的减小将对材料的力学性能产生很大影响.图1是陶瓷材料的晶粒尺寸与强度的关系图,其中的实线部分是现在已达到的,而延伸的虚线部分则是希望达到的[2 ].从图中可见晶粒尺寸的减小将使材料的力学性能有数量级的提高,同时,由于晶界数量级的大大增加,使可能分布于晶界处的第二相物质的数量减小,晶界变薄使晶界物质对材料性能的负影响减小到最低程度;其次,晶粒的细化使材料不易造成穿晶断裂,有利于提高材料韧性;再次,晶粒的细化将有助于晶粒间的滑移,使材料具有塑性行为.因此,纳米陶瓷将使材料的强度、韧性和超塑性大大提高,长期以来人们追求的陶瓷增韧和强化问题在纳米陶瓷中可望得到解决[4, 5].由于纳米材料中有大量的界面,这些界面为原子提供了短程扩散途径及较高的扩散速率,并使得材料的烧结驱动力也随之剧增,这大大加速了整个烧结过程,使得烧结温度大幅度降低.纳米陶瓷烧结温度约比传统晶粒陶瓷低6 0 0℃,烧结过程也大大缩短[3 , 5],以纳米TiO2 陶瓷为例,不需要加任何助剂,1 2nmTiO2 粉可以在低于常规烧结温度40 0~6 0 0℃下进行烧结,同时陶瓷的致密化速率也迅速提高[3 ].通过对Y2 O3 浓度为3%的ZrO2 纳米粉末的致密化和晶粒生长这2个高温动力学过程进行研究表明,由于晶粒尺寸小,分布窄,晶界与气孔的分离区减小以及烧结温度的降低使得烧结过程中不易出现晶粒的异常生长.控制烧结的条件,已能获得晶粒分布均匀的陶瓷体[6].美国和西德同时报道,成功地制备了具有清洁界面的纳米陶瓷TiO2 (1 2nm),与粒度为1 . 3μmTiO2 陶瓷相比得到相同硬度,而烧结温度降低,因而,纳米粉末的出现,大大改变了材料的烧结动力学,使陶瓷烧结得以很大的改善[5].所谓超塑性是指在拉伸试验中,在一定的应变速率下,材料产生较大的拉伸形变,一般陶瓷中,并不具备金属那样的晶格滑移系统,很难具备超塑性,在纳米材料中利用晶界表面众多的不饱和链,造成沿晶界方向的平移,超塑性就可能实现.如Nieh等人在四方二氧化锆中加入Y2 O3 的陶瓷材料中观察到超塑性达80 0 % ,Si3 N4纳米陶瓷同样存在超塑性行为,是微米级Si3 N4陶瓷的2 1 . 4% [2 , 5].上海硅酸盐研究所研究发现,纳米3Y-TZP陶瓷(1 0 0nm左右)在经室温循环拉伸试验后,其样品的断口区域发生了局部超塑性形变,形变量高达380 % ,并从断口侧面观察到了大量通常出现在金属断口的滑移线[2 ]. tsuki等人对制得的Al2 O3 -SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2 O3 晶界处的纳米SiC粒子发生旋转并嵌入Al2 O3 晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2 O3 -SiC纳米复相陶瓷的蠕变能力[7].最近研究发现,随着粒径的减小,纳米TiO2 和ZnO陶瓷的形变敏感度明显提高,如图2所示,由于这些试样气孔很少,可以认为这种趋势是细晶陶瓷所固有的.最细晶粒处的形变率敏感度大约为0 .0 4,几乎是室温下铅的 1 / 4,表明这些陶瓷具有延展性,尽管没有表现出室温超塑性,但随着晶粒的进一步减少,这一可能是存在的[4].由于纳米陶瓷的晶粒尺寸极小,纳米材料具有极大的晶面,晶面的原子排列混乱,纳米晶粒易在其它晶粒上运动,使纳米陶瓷在受力时易于变形而不呈现脆性.室温下的纳米TiO2 陶瓷晶体表现出很高的韧性,压缩至原长度的 1 / 4仍不破碎.另外,在微米级的陶瓷中引入纳米相,可以抑制基体晶粒长大,使组织结构均化,有利于改善陶瓷材料的力学性能.1 988年Izaki等首先用纳米碳化硅补强氮化硅陶瓷使氮化硅陶瓷力学性能显著改善[3 ].3.制备工艺和方法为获得纳米陶瓷,必须首先制备出小尺寸的纳米级陶瓷粉末,随着世界各国对纳米材料研究的深入,它的制备方法也日新月异,出现了热化学气相反应法、激光气相法、等离子体气相合成法、化学沉淀法、高压水热法、溶胶-凝胶法等新方法,以上各种方法都各有优缺点,为了便于控制反应的条件及粉末的产率、粒径与分布等,实际上也常采用两种或多种制备技术.3.1热化学气相反应法(CVD法)是目前世界上用于制备纳米粉体的常用方法,CVD法制备纳米粉体工艺是一个热化学气相反应和形核生长的过程.在远高于热力学计算临界反应温度条件下,反应产物蒸气形成很高的过饱和蒸气压,使得反应产物自动凝聚形成大量的核,这些核在加热区不断长大聚集成颗粒,在合适的温度下会晶化成为微晶.随着载气气流的输运和真空的抽送,反应产物迅速离开加热区进入低温区,颗粒生长、聚集、晶化过程停止,最后进入收集室收集起来,就可获得所需的纳米粉体 .此工艺过程可通过调节浓度、流速、温度和组成配比等工艺参数获得最佳工艺条件,实现对纳米粉体组成、形貌、尺寸和晶相等的控制.3.2激光气相法(LICVD法)激光气相法是以激光为快速加热热源,利用反应气体分子对特定波长激光束的吸收布产生热解或化学反应,在瞬时完成气相反应的成核、长大和终止,形成超细微粒.通常采用连续波CO2 激光器,加热速率快,高温驻留时间短,迅速冷却,可获得均匀超细,最低颗粒尺寸小于 1 0nm的粉体.该方法反应中心区域与反应器之间被原料气隔离,污染小,能够获得稳定质量的粒径范围为小于50nm的超细粉末,晶粒粒径尺寸可控,同种成分的粉体,激光法可通过合成参数控制粉体的晶型.并适合于制备用液体法和固相法不易直接得到的非氧化物(氮化物,碳化物等),缺点是原料制造价格高,设备要求高,费用贵.3.3等离子体气相合成法(PCVD)pcvd法是制备纳米陶瓷粉体的主要手段之一,它具有高温急剧升温和快速冷却的特点,是制备超细陶瓷粉体的常用手段.目前采用得最多的是热等离子法.等离子气相合成法又分为直流电弧等离子体法(DC法),高频等离子体法(RF法)和复合等离子体法.其中的复合等离子法则是采用DC等离子体法和RF等离子体法二者合一的方式,利用二相相互补充来制备超细陶瓷粉体.该法制得的纳米粉纯度高,稳定性好,效率高 .ee等人采用复合等离子体法,用多级注入的方法以制备Si3 N4和Si3 N4/SiC复合粉体,最终得到颗粒尺寸在1 0~30nm的Si3 N4纳米粉体.在Si3 N4纳米粉体制备过程中,采用分级注入方式对产物中总氮含量、游离硅含量和a-Si3 N4含量都有很大影响.采用三级注入方式,产物基本都是无定型Si3 N4.等离子体法制备技术容易实现批量生产,产率高达 2 0 0~ 1 0 0g/h[1 1 ].高压水热法可有效克服粉末在煅烧过程中颗粒的长大及超细粉末易团聚的弱点.可将化学深沉法制备的Zr(OH)4置于高压中处理,使氢氧化物进行相变,控制高压处理的温度和压力,可制得颗粒尺寸为 1 0~ 1 5nm,形状规则的氧化锆超细粉末.通过对不同前驱体,不同酸碱度及不同矿化剂参与条件下,氧化锆相形成,晶粒生成等机理的研究表明,水热法是极有应用前景的粉末制备工艺3.5溶胶-凝胶(SOL-GEL)法此方法的基本工艺过程包括:醇盐或无机盐水解→SOL-GEL→干燥、焙烧→纳米粉体.有人用醇盐水解SOL-GEL制备出平均粒径小于6nm的TiO2 纳米粉末.也可利用有机金属化合物作起始原料,制备非氧化物超细陶瓷粉体[1 3 ].目前大多数人认为溶液的pH值、溶液浓度、反应温度和反应时间4个主要参数对溶胶-凝胶化过程有重要影响,适当地控制这4个参数可制备出高质量的纳米粉末.如纳米Al2 O3 粉可用低浓度的硝酸铝和氢氧化钠溶液反应生成偏铝酸钠,硝酸中和至pH值为7. 6 ,得到Al(OH)3 凝胶,过滤洗涤后,再加入硝酸形成Al(OH)3 溶胶,在溶胶中通入氨气,至pH值为1 0 ,分离凝胶干燥、焙烧得到纳米Al2 O3 粉体.用此法制备Al2 O3 粉体可通过蒸馏或重结晶技术保证原料的纯度,整个工艺过程不引入杂质离子,有利于高纯纳米粉的制备[1 4].该法在生产上应用较广,但原料价格高,高温热处理时,易使颗粒快速团聚等,故同时可引入冷冻、加压干燥法或形成乳浊液等技术来减小粉体颗粒的团聚.CVD法、LICVD法、PCVD法和SOL-GEL法是制备非氧化物纳米陶瓷粉体主要方法.CVD法对设备要求不高,操作简便,而且便于放大,但较难获得 2 0nm以下的粉体.PCVD法和SOL-GEL法对设备要求较高,但易于获得均匀超细(小于2 0nm)的高纯度、污染小的纳米粉体.SOL-GEL法是最便利的方法,易于大规模生产,缺点是纯度难以保证.3.典型应用(碳化硅及氮化硅纳米粉体制备工艺)3.1热化学气相反应法(CVD法)制备Si C,Si3 N4的硅源主要是硅卤化物和硅烷类物质,如Si Cl4,Si H4,(CH3 )2 Si Cl2 ,Si(CH3 )4等。

精密加工用纳米b4c研磨陶瓷制备关键技术与应用

精密加工用纳米b4c研磨陶瓷制备关键技术与应用

精密加工用纳米b4c研磨陶瓷制备关键技术与应用在当今工业领域中,精密加工技术的发展已成为了提高生产效率和产品质量的重要手段之一。

而纳米B4C研磨陶瓷作为一种新型材料,因其硬度高、耐磨性好等特点,被广泛应用于精密加工领域。

本文将在从浅入深的方式探索精密加工用纳米B4C研磨陶瓷制备的关键技术和应用,旨在更好地理解这一主题。

1. 纳米B4C研磨陶瓷的基本性质Boron Carbide,化学式为B4C,是一种硬度极高的陶瓷材料。

其硬度仅次于金刚石和氮化硼,且具有良好的导热性、耐磨性和耐腐蚀性,因而被广泛应用于领域。

而纳米B4C由于具有更小的颗粒尺寸和更均匀的结构,使得其性能相较于传统B4C材料提升了许多。

2. 纳米B4C研磨陶瓷在精密加工中的应用精密加工工艺要求对材料的硬度和耐磨性有很高的要求,而纳米B4C研磨陶瓷正是满足了这一需求。

在电子、航空航天等领域,纳米B4C研磨陶瓷被广泛应用于磨削、抛光、切割等工序,提高了加工效率和加工质量。

3. 纳米B4C研磨陶瓷的制备关键技术纳米B4C研磨陶瓷的制备主要包括材料选择、粉末制备、成型和烧结等工艺。

在材料选择上,需要选择优质的硼和碳源材料,并通过物理或化学方法将其制备成纳米级别的B4C粉末。

成型和烧结工艺也是影响纳米B4C研磨陶瓷质量的重要因素。

4. 个人观点和总结精密加工用纳米B4C研磨陶瓷制备的关键技术与应用,对于提高工业生产效率、改善产品质量具有重要意义。

通过对纳米B4C研磨陶瓷的深入了解,可以更好地指导实际生产中的工艺和应用。

对于纳米材料研究领域也有着重要的推动作用。

以上是我对精密加工用纳米B4C研磨陶瓷制备关键技术与应用的一些认识和观点,希望能对您有所帮助。

精密加工用纳米B4C研磨陶瓷制备关键技术与应用是一个非常重要的课题,这种新型材料在精密加工领域具有巨大的潜力。

本文将继续探讨该主题,并深入分析纳米B4C 研磨陶瓷的制备关键技术和应用,以及对工业生产的影响。

纳米陶瓷涂层技术

纳米陶瓷涂层技术

纳米陶瓷涂层技术纳米陶瓷涂层技术是指利用纳米技术制备的陶瓷涂层,主要应用于金属、玻璃、塑料等材料表面,能够提供优异的耐磨、耐腐蚀、耐高温等性能。

本文将从纳米陶瓷涂层的基本原理、制备方法、应用领域及发展前景等方面进行探讨,以期对读者有所帮助。

一、基本原理纳米陶瓷涂层是指由纳米级陶瓷颗粒组成的薄膜,在表面涂覆于物体表面。

与普通涂层相比,纳米陶瓷涂层具有优异的耐磨、耐腐蚀、耐高温等性能,主要原理如下:1.纳米级陶瓷颗粒具有较高的硬度和抗磨损性能,能够有效增强涂层的耐磨损性能。

2.纳米级陶瓷颗粒对外界腐蚀介质具有较强的抵抗能力,能够有效提高涂层的防腐蚀性能。

3.纳米级陶瓷颗粒具有较高的热稳定性和耐高温性能,能够有效提高涂层的耐高温性能。

基于以上原理,纳米陶瓷涂层能够为物体表面提供优异的保护效果,广泛应用于汽车、航空航天、医疗器械等领域。

二、制备方法纳米陶瓷涂层的制备方法多种多样,常见的有物理气相沉积、化学气相沉积、溶胶-凝胶法、电沉积法等。

下面将分别对几种常见的制备方法进行介绍:1.物理气相沉积法物理气相沉积法是利用物质的物理性质在真空或低压环境下进行涂层制备的一种方法。

具体步骤包括蒸发源的加热、蒸发源的蒸发、蒸发物质的传输和沉积在衬底表面等过程。

通过控制沉积条件和衬底温度,可以制备出具有优异性能的纳米陶瓷涂层。

2.化学气相沉积法化学气相沉积法是利用气相化学反应在衬底表面进行涂层制备的一种方法。

具体步骤包括气相前驱体的裂解、反应产物的沉积和涂层的形成等过程。

通过选择合适的前驱体和反应条件,可以制备出具有优异性能的纳米陶瓷涂层。

3.溶胶-凝胶法溶胶-凝胶法是利用溶胶和凝胶过程在衬底表面进行涂层制备的一种方法。

具体步骤包括制备溶胶、溶胶成型、凝胶和烧结等过程。

通过控制溶胶的成分和制备条件,可以制备出具有优异性能的纳米陶瓷涂层。

4.电沉积法电沉积法是利用电化学反应在电极表面进行涂层制备的一种方法。

具体步骤包括电解液的选择、电极的处理、电沉积过程和电沉积后的处理等过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第23卷第3期20∞年6月黔东南民族师范高等专科学校学报Jo啪al0fS0utheastGlli出ouNatiorlalTe8ch一8CoⅡegeVd.23No.3Jun.20Q5纳米陶瓷的制备与应用杨章富,邹勇(黔东南民族师范高等专科学校化学系,贵州凯里556000)【摘要】蚋米陶瓷改变了传统陶瓷的脆性,大幅度提高了材料的强度、硬度、韧性和超塑性.综述了近年国内外纳米陶瓷的性能、稍备工艺.提出目前在生产纳米陶瓷工艺上存在的主要问题及应用前景.[关奠词]蚋米陶瓷;嗣备工艺;应用【中圈分类号】m174.75+8【文献标识码】A【文章编号】1002—699“2005)03—00019—02hlcorporateapplicationandthepreparation0fnan0porcelmnYANGZhang—fu,ZOUY0ng(及卵,由,l耐矿洲l竹,s口舳国谢船Ⅳa砌础弛∞恼75蝴,肠讲,556000,‰)Ah嘶t:hlcorporatetheh丑lrdIne稻,t伽旧city蚰dSt尬ngtlltllatn8noporcelainchange8tllebrittleness0f训itioIl8lporcel8in,rai8髓mateIial鲫.bst蛐tially砒lde舶∞dpl龉ticity.Smm瑚d∞illrecemyea璐dom洲c姐diIltem撕伽Ialil地orpomteplqHu碰ontecllIlolo舒舡ldtlle劬ction0fnanoporcelain.Sllgg鹪ttll砒nawi8produciIlgtoill∞Ipomte印plicationpmspect舢ldmee】【istemmajorpmblemonrl锄potterstm.1妯ywords:IIlcorpomteapplicalion;nanoporcelain;pr印蹦ti∞所谓纳米陶瓷是指在显微结构中物相所具有的纳米级尺度的陶瓷材_|辟,就是说晶粒尺寸,晶界的宽度,第二相分布,缺陷尺寸等都是在纳米量级的水平上,它被认为是陶瓷研究发展的第三个台阶[I】.晦瓷粉料颗粒大小决定了陶瓷材料的徽观结构和宏观性能[2】.纳米陶瓷的力学性能,包括纳米陶瓷材料的硬度、断裂韧度和低温延展性等,在高温下其硬度、强度比普通尚瓷有较大提高,有助于解决陶瓷的强度和增韧问题.对纳米晶粒Si02进行研究表明[,J,纳米陶瓷具有在较低温度下烧结就能达到致密化的优越性.1998年址i等人用纳米碳化硅来补强氮化硅陶瓷使氮化硅陶瓷的力学性能显著改善【4】.许多纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4—5倍b】.在100℃下,纳米Ti02陶瓷的显微硬度为1300k∥—n2,而普通n02陶瓷的显徽硬度低于200k∥衄2.纳米陶瓷的晶粒尺寸极小,纳米材料具有极大的晶面,晶面的原子排列混乱。

纳米晶粒易在其他晶粒上运动,使纳米陶瓷在受力时易于变形而不呈现臆性,而表现出一定的延展性和较好的韧性.纳米材料中有大量的界面,这些界面原子提供了短程扩散途径及较高的扩散速率,材料的烧结驱动力也随之剧增,加速了整个烧结过程,使得烧结温度大幅度降低.纳米晶体的自扩散率为传统晶体扩散率的10“至lO”倍,使纳米材料的固态反应可以在室温或低温下进行.纳米材料中利用晶界表面的不饱和链,造成沿晶界方向的平移,实现纳米陶瓷的超塑性【6-7】.由于纳米陶瓷硬度高、耐高温、耐磨损、质量轻和导热性好,使得它成为现代工业的基本材料之一.1纳米冉瓷的崩备工艺1.1气相合成法气相合成法主要有热化学气相反应法,激光气相法和等离子体气相合成法.1.I.I热化学气相反应法(cvD法).cvD法是目前世界上用于制备纳米粉体的常用方法,cvD法稍备纳米粉体工艺是一个热化学气相反应和形核生长的过程.在高于热力学计算,临界反应温度条件下,反应产物的蒸气形成很高的过饱和蒸气压,使得反应产物自动凝聚形成大量的核,这些核在加热区不断地长大聚积成颗粒,在合适的温度下会晶化成为徽晶.随着载气气流的输运和真空的抽送,反应产物迅速离开加热区进入低温区,颗粒生长、聚集、晶化过程停止,最后进入收集室收集起来,就可以获得所需的纳米粉体.此工艺过程可通过调节浓度、流速、温度和组成比例等工艺参数获得最佳工艺条件,实现对纳米粉体组成、形貌、尺寸和晶相等的控制.cvD法可制备出Sic,si3N4等单相粉体,并且被用来制备各种复合粉体.能制备出小于35姗的无定形Sic/si3N4纳米粉体,且做到sic/si3N‘比例可调,该设备简单,采用电阻炉外加热方式,通【收稿日期】2004~06一16[作者简介】杨章富(198l一),男,贵州剑河人,黔东南民族师范高等专科学校化学系Ol(本)学生;邹勇,黔东南民族师范高等专科学校化学系副教授,指导教师. 万方数据 万方数据纳米陶瓷的制备与应用作者:杨章富, 邹勇, YANG Zhang-fu, ZOU Yong作者单位:黔东南民族师范高等专科学校化学系,贵州,凯里,556000刊名:黔东南民族师范高等专科学校学报英文刊名:JOURNAL OF SOUTHEAST GUIZHOU NATIONAL TEACHERS COLLEGE年,卷(期):2005,23(3)引用次数:0次1.张立德纳米材料 20002.贡长生无机精细化学的生产 20003.施锦行纳米陶瓷的制备及其特性 1997(03)4.高勇纳米材料的性能及制备技术[期刊论文]-兵器材料科学工程 1997(06)5.田明原.施尔畏.仲维卓纳米陶瓷与纳米陶瓷粉末 1998(02)6.TATSUKI D.ATSUSHI N Tensile creep behavior of aluminal siuicon carbide nanocomposite 1994(12)7.王宏志.高濂.郭景坤纳米结构材料[期刊论文]-硅酸盐通报 1999(01)8.黄政仁.江东亮Sic和Si3N44纳米陶瓷粉末制备技术9.LeeS.CHOIuS.etal measuring thermal conductivity of fluids containing oxide manoparticles 199910.王宏志.高濂共沉淀制备纳米YAG粉体[期刊论文]-无机材料学报 2004(04)11.顾少轩.周静.刘静溶胶-凝胶法制备锐钛矿型TiO2薄膜[期刊论文]-硅酸盐通报1.学位论文杨绍文先进纳米ZrO<,2>陶瓷粉体制备工艺研究2005本文针对化学共沉淀法制备超细粉末对两相混合的特殊要求,提出了一种采用化工厂半成品或工业产品为基本原料,经加工提纯、水热合成胶体、团聚控制、低温煅烧处理技术制备高纯、超细纳米粉体材料,并辅以表面活性剂-稳定剂处理技术试验研究,确定了先进纳米ZrO2陶瓷粉体制备工艺流程;完成了先进纳米ZrO2陶瓷粉体制备工艺研究的实验室研究和扩大试验研究,提供全面而系统的研究成果。

试验以工业氯氧化锆为原料,加入沉淀剂氨水,采用化学共沉淀法制备先进纳米ZrO2陶瓷粉体,进行了纳米ZrO2粉体制备的实验室研究。

实验室研究主要考察了试验反应物ZrO2浓度、表面活性剂PEG添加量、反应终点pH、干燥和煅烧条件对粉体粒径、形貌和团聚状态的影响。

实验表明:在凝胶形成前预先向氯氧化锆混合溶液中加入适量的表面活性剂,包裹形成的氢氧化物微粒,改善了粒子的表面活性,使其相互隔离,表面活性剂起到了位阻效应和静电效应,从而起到分散剂作用,减少了颗粒的团聚现象;干燥及煅烧过程中,引入非离子型有机溶剂来改善胶粒的界面结构,减弱了界面间的表面张力,防止了硬团聚的形成,从而实现了粉末制备全过程的团聚控制。

合成过程中加入了稳定剂氧化钇,对形成氧化锆的晶型有重要作用,在烧结中也有促进致密化和抑制晶粒生长的作用。

运用X射线衍射仪,透射电镜,比表面积分析仪(BET)等对制备的ZrO2粉体的特性、粒径、形貌进行了表征。

分析了分散剂加入量、pH值及ZrO2的浓度对制备纳米ZrO2粉体质量的影响,并作出合理的分析。

试验确定的最佳试验条件为:ZrO2浓度:300g/1;PEG添加量:ZrO2摩尔数的10%;Y2O3添加量:ZrO2摩尔数的的3%(仅考虑粒径);反应终点pH:9.0。

试验得到纳米二氧化锆粉体粒径10nm,形貌为类球状,分布均匀,分散性好;外观为纯白色疏松粉末。

以实验室试验为基础,在中国地质科学院郑州矿产综合利用研究所湿法车间进行了纳米ZrO2粉体制备技术的扩大试验研究。

扩大试验进行了反应过程升温时间、反应温度、部分洗涤水和醇的返回系统等试验。

获得了产品粒径为10~50nm、分布均匀、分散性好、纯度高的二氧化锆产品。

该工艺各工序作业在半工业试验设备上均顺利实现,工艺过程操作可行,易于工业实施。

半工业试验与实验室比较,放大520倍,半工业试验共投入工业级原料ZrOCI2·8H2O87kg,制得纳米ZrO2产品30.89kg。

纳米ZrO2回收率94.14%。

工艺技术指标先进,经济效益显著。

2.学位论文于金伟高性能纳米陶瓷刀具及切削性能研究2008在现代化加工过程中,提高加工效率的最有效方法是采用高速切削加工技术,随着现代科学技术和生产的发展,越来越多地采用超硬难加工材料,以提高机器设备的使用寿命和工作性能。

而陶瓷刀具则以其优异的耐热性、耐磨性和化学稳定性以及高硬度,在高速切削领域和难加工材料方面显示了传统刀具无法比拟的优势。

特别是近几年来,随着纳米技术的发展,世界各国竞相在纳米陶瓷刀具领域投入大量的人力和财力进行研究,用纳米材料开发的刀具,其力学性能和使用性能会大大提高,生产纳米复合陶瓷刀具,将有巨大的市场前景。

纳米复相陶瓷刀具材料的研究成功有望从根本上解决陶瓷材料的脆性问题,比起传统刀具陶瓷刀具材料,它具有更高的抗弯强度、断裂韧度等力学性能。

本研究以氧化铝为基体,添加纳米级碳化物、硼化物和特殊添加剂,利用纳米陶瓷粉末的优异性能,提高材料的断裂韧性和抗疲劳性能,从陶瓷刀具切削可靠性要求出发,对纳米陶瓷刀具材料的组份、界面微观结构和制备工艺进行设计。

研究纳米陶瓷粉末增韧机理,从根本上解决陶瓷刀具材料脆性高的问题。

研究纳米陶瓷刀具的力学性能和切削性能,开发出适于高速硬态干式切削加工用高断裂韧性纳米陶瓷切削刀具。

本课题研究的理论成果对于深入认识纳米陶瓷刀具材料的微观本质、力学性能和切削性能之间的关系有着重要的理论意义,对于推动纳米陶瓷刀具材料的设计、开发、推广应用以及产业化进程有重要的指导作用。

3.学位论文陈锋纳米复合陶瓷粉体的制备及超塑成形20013Y-TZP(3mol﹪ yttria stabilized tetragonal zirconia polycrystal)是一种非常具有发展前景的具有超塑性的纳米陶瓷材料,该论文重点研究了3Y-TZP纳米陶瓷粉体的制备、烧结及超塑成形工艺.该文还研究了纳米YAG/Al<,2>O<,3>复合陶瓷材料的制备工艺.陶瓷材料的超塑性一直引起人们的广泛兴趣.该论文通过3Y-TZP陶瓷材料的胀形实验,实现了陶瓷材料的超塑成形.YAG/Al<,2>O<,3>复合材料是一种很在希望的耐高温结构材料,同时陶瓷基体中纳米第二相的引入,能非常有效提高陶瓷韧性,改善陶瓷的力学性能.该论文采用共沉淀法制备了YAG/Al<,2>O<,3>复合粉全,其粉体大小为100纳米左右,并通过XRD、TEM研究了煅烧时间,煅烧温度等工艺参数对粉体的组成,颗粒大小,以及形貌的影响,从而得出了比较理想的粉体煅烧时间和煅烧温度.4.期刊论文闫联生.余惠琴.宋麦丽.王涛纳米陶瓷复合材料研究进展-宇航材料工艺2003,33(1)介绍了纳米陶瓷复合材料的研究进展,包括纳米陶瓷复合材料的制备工艺、材料性能、纳米补强增韧机理以及纳米与传统补强增韧方法并用技术.5.学位论文刘晶冰水热与微波辅助法合成形貌可控的纳米功能陶瓷粉体2005与金属、塑料相比,陶瓷材料具有优异的耐高温和抗腐蚀等良好的性能,因此广泛地应用于尖端科技领域。

相关文档
最新文档