纳米陶瓷的应用及发展趋势
纳米陶瓷材料的研究现状及应用

纳米陶瓷材料的研究现状及应用
1.功能涂层:纳米陶瓷材料的高硬度和高抗磨性使其成为制备高质量
涂层的理想材料。
纳米陶瓷涂层可以应用于飞机、汽车、船舶等工程机械
设备的表面,提高其抗腐蚀性、耐磨性和耐高温性。
2.生物医学材料:纳米陶瓷材料具有优异的生物相容性和生物稳定性,因此广泛应用于医学领域。
例如,纳米陶瓷颗粒可以用于制备人工骨髓和
骨折修复材料,其高强度和生物活性有助于骨骼再生。
此外,纳米陶瓷材
料还可以用于制备人工关节和牙科修复材料等。
3.电子器件:纳米陶瓷材料的高介电常数和热稳定性使其成为制备高
性能电子器件的理想材料。
例如,纳米陶瓷材料可以用于制备高密度的电
子器件,提高电子器件的工作效率和可靠性。
4.环境保护:纳米陶瓷材料可以用于制备高效的催化剂和吸附剂,用
于处理工业废水和废气等污染物。
纳米陶瓷材料的高比表面积和活性位点
可以提高催化剂和吸附剂的活性和选择性。
总之,纳米陶瓷材料的研究和应用已经取得了很大的进展。
随着纳米
技术的不断发展,相信纳米陶瓷材料在各个领域的应用前景会更加广阔。
同时,纳米陶瓷材料的制备和性能的研究也是一个具有挑战性和发展潜力
的领域。
纳米生物医用陶瓷的应用及展望

3 11用于细胞 分 离 ..
8 O年代初 , 人们开 始利用 纳米微 粒进行 细胞分离 。 建
立 了用纳米 S O 微粒 实现细胞 分离 的新技术 。纳米包 覆 i。 体 尺寸约 3 n .因而 胶体溶液 在离 心作用 下很容易产 生 0m
等条件 让其水 解 、 聚合, 溶胶 一凝胶 而形 成一种 空 间骨 密度 梯度 ; 经 易实现 纳米 S O 粒 子与细胞 的分 离 。 i
维普资讯
20 0 6年第 3 期
( 11 ) 第 1期
佛 山 陶 瓷
3 5
纳米生物医用陶瓷 的应用及展望
涂 浩 闫 玉 华
( 武汉 理工大学生物医用材料 与工程研究 中心 武汉 40 7) 30 0
摘 要 本文概叙 了纳米生物医用 陶瓷的特性 ,介绍 了纳米 陶瓷 的主要制备方法 , 分 析了纳米陶瓷在生物 医学 中的主要 应用 和发展 。 关健词 生物陶瓷 , 纳米技术 , 纳米陶瓷
便 这一特点 , 将磁性 纳米 粒子 制成 药物 载体 , 过静 脉注 通
射 到动物体 内 ,在外加磁 场 作用 下通 过纳米 微粒 的磁性
主要 方法 有 : 冷等 静 压成 形 、 高压 成形 、 胶 等 静 导航 , 超 橡 使其 移动到 病变 部位 , 到定 向治疗 的 目的。动物 达
.. 架 结构 , 再脱水 焙烧得 到产物 的一种方法 。此 法在制 备复 3 12 用 作 药物 栽 体
合氧化物纳米 陶瓷材料时具有很大 的优越性 。 聚相合成 凝 已被用于生产小于 1n 0 m的 S O、1 3 T O 纳米 团。 i2 和 i2 A0
( )纳米 陶瓷成形 2
人 们利用 纳米 级粒 子使 药物在 人体 内 的传 输更 为方
纳米陶瓷涂层作用

纳米陶瓷涂层作用全文共四篇示例,供读者参考第一篇示例:纳米陶瓷涂层是一种新型的表面涂层技术,具有超强的抗磨损、耐腐蚀、耐高温和导热性能。
纳米陶瓷涂层的制备过程中采用了纳米材料,使其具有良好的机械性能和导热性能。
它广泛应用于汽车、航空航天、电子、建筑等领域,为人们的生活和生产提供了便利。
本文将对纳米陶瓷涂层的作用进行详细介绍。
一、纳米陶瓷涂层的作用1.抗磨损:纳米陶瓷涂层具有非常高的硬度和耐磨性,能有效地减少表面磨损,延长使用寿命。
特别是在汽车行业中,纳米陶瓷涂层可以保护车身表面不受划伤和颜色褪色的影响,使车辆更加美观和耐用。
2.耐腐蚀:纳米陶瓷涂层具有很强的耐腐蚀性能,可以有效地防止金属和其他材料受到酸碱和化学腐蚀的侵蚀。
在海洋、化工、航空航天等行业中,纳米陶瓷涂层被广泛应用于金属件的防护,保证设备的正常运行。
3.耐高温:纳米陶瓷涂层具有良好的耐高温性能,可以在高温环境下保持稳定的性能。
它不仅可以保护材料不受高温氧化、热膨胀等影响,还可以有效地提高材料的使用温度,扩大其应用范围。
4.导热性能:纳米陶瓷涂层具有较高的导热性能,可以有效地提高材料的导热效果,降低材料的热阻。
在电子和通讯领域,纳米陶瓷涂层被广泛应用于散热器和导热器件中,提高设备的稳定性和性能。
1.溶胶-凝胶法:溶胶-凝胶法是一种较为简单且成本较低的制备方法,通过对可溶性金属盐和有机物进行混合,形成溶胶,然后再通过加热脱溶,形成凝胶,最后进行烧结处理,形成纳米陶瓷涂层。
2.物理气相沉积法:物理气相沉积法是一种高温高压下进行涂层制备的方法,采用真空蒸发、溅射等技术,将纳米陶瓷颗粒沉积在基材表面,形成均匀、致密的纳米陶瓷涂层。
3.化学气相沉积法:化学气相沉积法是一种在高温高压下进行化学反应,在基材表面形成纳米陶瓷涂层的方法,具有成本低、环境友好等优点,被广泛应用于工业生产领域。
1.汽车行业:纳米陶瓷涂层可以应用在汽车车身和零部件表面,提高车辆的抗磨损、耐腐蚀性能,增强车辆的外观和使用寿命。
纳米陶瓷材料的研究现状及应用

纳米陶瓷材料的研究现状及应用
首先,纳米陶瓷材料的制备方法不断丰富和完善。
传统的陶瓷制备方
法无法获得纳米级尺寸的陶瓷颗粒,而通过纳米技术的手段,例如溶胶凝
胶法、水热法和微乳液法等,可以制备出具有纳米级尺寸和高比表面积的
陶瓷颗粒。
其次,纳米陶瓷材料的性能得到显著提升。
由于纳米材料具有高比表
面积、尺寸效应和量子效应等特点,纳米陶瓷材料在力学强度、热稳定性、电学性能和光学性能等方面表现出优异的性能。
例如,纳米氧化锆陶瓷具
有高硬度、高抗磨损性和高耐久性,可以应用于高性能切削工具和汽车发
动机零件等领域。
此外,纳米陶瓷材料还可以通过添加适量的催化剂和稀土元素等进行
改性,使其具备更多的功能性和应用潜力。
例如,通过添加银、铜等催化剂,可以显著提高纳米氧化锌陶瓷的光催化活性,使其具备处理水污染和
空气净化的能力。
纳米陶瓷材料的应用范围非常广泛。
在能源领域,纳米陶瓷材料可以
用于制备高性能的锂离子电池和固体氧化物燃料电池的电极材料,提高电
池的能量密度和循环寿命。
在医疗领域,纳米陶瓷材料可以用于制备人工
骨骼、人工关节和人工血管等生物医用材料,具备优异的生物相容性和机
械性能。
此外,纳米陶瓷材料还可以用于电子元器件、光学器件和薄膜材
料等领域。
总之,纳米陶瓷材料的研究已经取得了很多重要进展,在各个领域有
着广泛的应用前景。
随着纳米技术和先进制备方法的不断发展,相信纳米
陶瓷材料在材料科学和工程中将发挥更加重要的作用。
纳米陶瓷技术

纳米陶瓷技术摘要:纳米陶瓷粉体是介于固体与分子之间的具有纳米数量级尺寸的亚稳态中间物质。
随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。
纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。
本文对纳米陶瓷的这些主要的特异性能及其制备进行了阐述。
关键词:纳米陶瓷;性能;制备陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。
但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。
所以随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。
一、纳米陶瓷纳米陶瓷是80年代中期发展起来的先进材料。
利用纳米技术开发的纳米陶瓷材料是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,为替代工程陶瓷的应用开拓了新领域。
二、纳米陶瓷材料的性能研究2.1 力学性能研究表明当陶瓷材料成为纳米材料后,材料的力学性能得到极大改善,主要表现在以下三个方面: 1)断裂强度大大提高;2)断裂韧性大大提高;3)耐高温性能大大提高。
与此同时,材料的硬度、弹性模量、热膨胀系数都会发生改变。
不少纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4~5倍。
在陶瓷基体中引入纳米分散相并进行复合,不仅可大幅度提高其断裂强度和断裂韧性,明显改善其耐高温性能,而且也能提高材料的硬度、弹性模量和抗热震、抗高温蠕变的性能。
2.2 低温超塑性陶瓷的超塑性是由扩散蠕变引起的晶格滑移所致,扩散蠕变率与扩散系数成正比,与晶粒尺寸的3次方成反比,普通陶瓷只有在很高的温度下才表现出明显的扩散蠕变。
而纳米陶瓷的扩散系数提高了3个数量级,晶粒尺寸下降了3个数量级,因而其扩散蠕变率较高,在较低的温度下,因其较高的扩散蠕变速率而对外界应力做出迅速反应,造成晶界方向的平移,表现出超塑性,使其韧性大为提高。
纳米陶瓷涂层技术

纳米陶瓷涂层技术纳米陶瓷涂层技术是指利用纳米技术制备的陶瓷涂层,主要应用于金属、玻璃、塑料等材料表面,能够提供优异的耐磨、耐腐蚀、耐高温等性能。
本文将从纳米陶瓷涂层的基本原理、制备方法、应用领域及发展前景等方面进行探讨,以期对读者有所帮助。
一、基本原理纳米陶瓷涂层是指由纳米级陶瓷颗粒组成的薄膜,在表面涂覆于物体表面。
与普通涂层相比,纳米陶瓷涂层具有优异的耐磨、耐腐蚀、耐高温等性能,主要原理如下:1.纳米级陶瓷颗粒具有较高的硬度和抗磨损性能,能够有效增强涂层的耐磨损性能。
2.纳米级陶瓷颗粒对外界腐蚀介质具有较强的抵抗能力,能够有效提高涂层的防腐蚀性能。
3.纳米级陶瓷颗粒具有较高的热稳定性和耐高温性能,能够有效提高涂层的耐高温性能。
基于以上原理,纳米陶瓷涂层能够为物体表面提供优异的保护效果,广泛应用于汽车、航空航天、医疗器械等领域。
二、制备方法纳米陶瓷涂层的制备方法多种多样,常见的有物理气相沉积、化学气相沉积、溶胶-凝胶法、电沉积法等。
下面将分别对几种常见的制备方法进行介绍:1.物理气相沉积法物理气相沉积法是利用物质的物理性质在真空或低压环境下进行涂层制备的一种方法。
具体步骤包括蒸发源的加热、蒸发源的蒸发、蒸发物质的传输和沉积在衬底表面等过程。
通过控制沉积条件和衬底温度,可以制备出具有优异性能的纳米陶瓷涂层。
2.化学气相沉积法化学气相沉积法是利用气相化学反应在衬底表面进行涂层制备的一种方法。
具体步骤包括气相前驱体的裂解、反应产物的沉积和涂层的形成等过程。
通过选择合适的前驱体和反应条件,可以制备出具有优异性能的纳米陶瓷涂层。
3.溶胶-凝胶法溶胶-凝胶法是利用溶胶和凝胶过程在衬底表面进行涂层制备的一种方法。
具体步骤包括制备溶胶、溶胶成型、凝胶和烧结等过程。
通过控制溶胶的成分和制备条件,可以制备出具有优异性能的纳米陶瓷涂层。
4.电沉积法电沉积法是利用电化学反应在电极表面进行涂层制备的一种方法。
具体步骤包括电解液的选择、电极的处理、电沉积过程和电沉积后的处理等过程。
纳米陶瓷材料ppt课件

纳米陶瓷材料的应
04
用领域
航空航天领域
飞机发动机部件
纳米陶瓷材料具有优异的耐高温 性能,可用于制造飞机发动机的 部件,如涡轮叶片、燃烧室等。
轻量化结构材料
纳米陶瓷材料具有较低的密度和良 好的力学性能,可用于制造轻量化 的结构材料,如飞机框架、机身等 。
隐身材料
纳米陶瓷材料可以吸收电磁波,用 于制造隐身材料,如隐形飞机的外 壳、雷达吸收层等。
抗疲劳性
由于其纳米级的结构,使 得陶瓷材料在承受反复应 力时具有更高的抗疲劳性 。
热学性能
高热导率
纳米陶瓷材料具有很高的热导率 ,使其在高温环境下保持稳定的 热性能。
抗热冲击
由于其微小的热容量,使得纳米 陶瓷材料在经历快速温度变化时 不易破裂。
光学性能
透明性
某些纳米陶瓷材料具有优秀的透明性 ,可与玻璃相媲美。
汽车工业领域
发动机部件
纳米陶瓷材料可用于制造汽车发 动机的部件,如活塞、气缸套、
涡轮增压器等。
轻量化结构材料
纳米陶瓷材料可用于制造轻量化 的汽车结构材料,如刹车片、离
合器片等。
耐磨材料
纳米陶瓷材料具有较好的耐磨性 能,可用于制造汽车零部件,如
轴承、齿轮等。
能源领域
燃料电池
纳米陶瓷材料可以作为燃料电池的隔膜材料,提 高燃料电池的性能和寿命。
拓展应用领域及市场
总结词
纳米陶瓷材料具有广泛的应用前景,需要拓 展新的应用领域和市场。
详细描述
纳米陶瓷材料具有优异的物理、化学和机械 性能,使其在许多领域具有潜在的应用价值 。未来需要加强研究和开发,发掘新的应用 领域和市场,并推动纳米陶瓷材料的商业化 应用。
加强基础研究及理论探索
纳米材料的研究进展以及应用前景研究

纳米材料的研究进展以及应用现状1.绪论从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1~100纳米范围内的一种固体材料。
主要包括晶态、非晶态的金属、陶瓷等材料组成。
因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。
这些特殊性质所表现出来的有导电、导热、光学、磁性等。
目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。
纳米科学技术也引起了科学家的重视,在当代的科学界有着举足轻重的地位。
纳米技术的范围包括纳米加工技术、纳米测量技术,纳米材料技术等。
其中纳米材料技术主要应用于材料的生产,主要包括航天材料、生物技术材料,超声波材料等等。
从1861年开始,因为胶体化学的建立,人们开始了对直径为1~100纳米粒子的研究工作。
然而真正意义上的研究工作可以追溯到20世纪30年代的日本为了战争的胜利进行了“沉烟实验”,由于当时科技水平落后研究失败。
2.纳米材料的应用现状研究表明在纺织和化纤制品中添加纳米微粒,不仅可以除去异味和消毒。
还使得衣服不易出现折叠的痕迹。
很多衣服都是纤维材料制成的,通常衣服上都会出现静电现象,在衣服中加入金属纳米微粒就可消除静电现象。
利用纳米材料,冰箱可以消毒。
利用纳米材料做的无菌餐具、无菌食品包装用品已经可以在商场买到了。
另外利用纳米粉末,可以快速使废水彻底变清水,完全达到饮用标准。
这个技术可以提高水的重复使用率,可以运用到化学工业中。
比如污水处理厂、化肥厂等,一方面使得水资源可以再次利用,另一方面节约资源。
纳米技术还可以应用到食品加工领域,有益健康。
纳米技术运用到建筑的装修领域,可以使墙面涂料的耐洗刷性可提高11倍。
玻璃和瓷砖表面涂上纳米材料,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。
这样就可以节约成本,提高装修公司的经济效益。
使用纳米微粒的建筑材料,可以高效快速吸收对人体有害的紫外线。
纳米材料可以提高汽车、轮船,飞机性能指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米陶瓷的应用及发展趋势摘要:介绍了纳米材料的特性以及纳米陶瓷的制备方法。
针对纳米陶瓷特有的性能,进一步分析了纳米技术在陶瓷领域的最新应用及发展状况,并认为纳米陶瓷将在工程领域乃至日常生活中得到更广泛的应用。
关键词:纳米技术; 纳米陶瓷;前景预测前言当人们在研究中发现,纳米材料存在小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应等基本特性,近几十年来纳米材料备受世界各国的关注。
纳米材料的这些特性使得纳米材料有着传统材料无法比拟的独特性能和极大的潜在应用价值。
传统的陶瓷材料质地较脆,韧性和强度都较差,因而使其应用受到了较大的限制。
随着纳米技术的广泛应用,纳米陶瓷随之产生。
所谓纳米陶瓷材料,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。
目前,虽然纳米陶瓷还有许多关键技术需要解决,但其优良的保温和高温力学性能,使其在切削刀具、轴承、汽车发动机部件等许多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻环境下起着其他材料不可替代的作用。
1纳米技术与纳米陶瓷1.1 纳米技术与纳米复合材料纳米技术是20 世纪90年代出现的一门新兴技术,它是在0.10- 100nm的尺度空间内,研究电子、原子和分子的运动规律和特性。
纳米材料研究是目前材料科学研究的一个热点, 其相应发展起来的纳米技术,被公认为21世纪最有前途的科研领域。
在纳米材料中,纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级;高浓度晶界及晶界原子的特殊结构,导致材料的力学性能、磁性、光学性能乃至热力学性能的改变。
纳米相材料与普通的金属、陶瓷和其它固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。
纳米材料具有常规粗晶粒材料所不具备的奇异特性和反常特性,例如纳米铁材料的断裂应力比一般铁材料高12倍;纳米相铜的强度比普通的铜坚固 5倍,而且硬度随颗粒尺寸的减小而增大。
利用纳米技术开发的纳米陶瓷材料,就是由纳米级显微结构组成的新型陶瓷材料,是在纳米长度范围内(1-100 nm) 的纳米复合材料。
2.纳米陶瓷的特性2.1 表面效应纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后,所引起的性质上的变化。
当粒径在10 nm以下时,将显著增加表面原子的比例。
当粒径降到1 nm 时,表面原子的比例达到90 %以上,原子几乎全部集中到纳米粒子的表面。
由于纳米粒子表面原子数的增多,表面原子的配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。
2.2 体积效应由于纳米粒子的体积极小,所包含的原子数很少,相应地质量极小。
因此,许多现象就不能用通常由无限个原子组成的块状物质的性质加以说明, 这种特殊的现象称之为体积效应。
2.3量子尺寸效应当纳米粒子的尺寸下降到某一值时,金属粒子界面附近电子能级由准连续变为离散能级;并且纳米半导体微粒存在不连续的分子轨道能级使得能隙变宽的现象,称为纳米材料的量子尺寸效应。
3纳米陶瓷粉体纳米陶瓷粉体是介于固体与分子之间的具有纳米尺寸( 1-100 nm) 的亚稳态中间物质。
随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。
具体地讲,纳米粉体材料具有以下优异的性能: ( 1)纳米陶瓷材料具有极小的粒径、大的比表面积和高的化学性能, 可以降低材料的烧结致密化程度、节约能源;( 2)使材料的组成结构致密化、均匀化,改善陶瓷材料的性能,提高其使用可靠性;( 3)可以从纳米材料的结构层次( 1- 100 nm)上控制材料的成分和结构,有利于充分发挥陶瓷材料的潜在性能,而使纳米材料的组织结构和性能的定向设计成为可能。
另外,陶瓷是由陶瓷原料成型后烧结而成的,而且陶瓷粉料的颗粒大小决定了陶瓷材料的微观结构和宏观性能。
如果粉料的颗粒堆积均匀、烧成收缩一致且晶粒均匀长大,则颗粒越小产生的缺陷就越小,所制备的材料的强度就相应越高,这就可能出现一些大颗粒材料所不具备的独特性能。
4.纳米陶瓷的制备方法4.1物理制备方法物理制备方法主要是蒸发凝聚法和高能机械球磨法两种。
蒸发凝聚法:在真空蒸发室内充入低压惰性气体,加热金属或化合物蒸发源,由此产生的原子雾与惰性气体原子碰撞而失去能量,凝聚而成纳米尺寸的团簇,并在液氮冷却棒上聚集起来,最后得到纳米粉体。
1987年美国Argonne实验室的Siegles采用此法成功地制备了Ti02纳米陶瓷粉体,粉体粒径为5—20nm。
高能机械球磨法:利用机械摩擦的方法得到纳米晶粒。
是将粉体放在一个密闭的容器中,随着容器的旋转、振动或剧烈摇动而得到超细微粒。
采用此法已制备了19nm左右的压电陶瓷粉体。
此外还有机械粉碎、电火花爆炸法等其他物理制备技术。
一般说来,纳米陶瓷粉体物理制备方法的工艺条件较为苛刻,应用范围较窄,粉体粒径控制较为困难,而化学制备方法是在液相和气相条件下,首先形成离子或原子,然后逐步长大,形成所需要的粉体,容易得到粒径小、纯度高的超细粉体。
4.2化学制备方法化学制备方法分为气相化学法和液相化学法。
气相化学法:是在远高于热力学计算临界反应温度条件下,反应产物蒸气形成很高的过饱和蒸汽压,使其自动凝聚形成大量的晶核。
这些晶核在加热区不断长大,聚集成颗粒。
随着气流进入低温区,颗粒生长、聚集、晶化过程停止,最终在收集室内收集得到纳米陶瓷粉体。
上海硅酸盐研究所的研究人员在1100~1400℃温度下,分别用Si(CH3)2C12、NH3、H2作为硅、碳、氮源和载气,制得了平均粒径为30~50nm的SiC纳米粉和平均粒径小于35nm无定形SiC/Si3N4纳米复合粉体。
气相化学合成按加热热源可分为电阻法、等离子体法、激光法和电子束法等。
对于原料容易挥发、蒸汽压高、反应温度不是太高的、反应性高的有机硅、金属氯化物或其它化合物,采用电阻加热法即可。
目前有产业化趋势的制备方法是等离子体法和激光法。
等离子体法是纳米陶瓷粉体制备的常用方法之一,用该方法制得了A1203、Si3N4、Si3N4/SiC、AlN、ZrN、TiN等氮化物纳米陶瓷粉体。
激光诱导气相沉积法的基本原理是利用反应气体分子(或光敏剂分子)对特定波长激光束的吸收,引起反应气体分子激光光解、激光热解、激光光敏化和激光诱导化学合成反应,经成核生长成超细粉末。
液相化学方法是通过液相来合成粉体,包括沉淀、溶胶凝胶、喷雾热解、水热合成。
沉淀法:在金属盐溶液中加入适当的沉淀剂得到陶瓷前驱体沉淀物,再将其煅烧形成纳米陶瓷粉体。
为了避免严重的硬团聚,往往引入冷冻干燥、超临界干燥、共沸蒸馏等技术手段。
已制备Y-TZP和Y203一Zr02粉体。
溶胶凝胶法:是20世纪60年代发展起来的一种方法,早期主要用于制备陶瓷材料,其原理是将醇盐溶解于有机溶剂中,通过加入蒸馏水使醇盐水解、聚合、形成溶胶,然后随着水的加入转变成凝胶。
凝胶在真空状态下低温干燥,得到疏松的干凝胶,再将其高温煅烧,可得到氧化物纳米陶瓷粉体。
采用溶胶凝胶法很容易合成A1203、Fe23、Zr02以及氧化物复合粉等纳米粉体。
喷雾热解法:将金属盐溶液以雾状喷人高温气氛中,此时立即引起溶剂的蒸发和金属盐的热分解,随后因过饱和而析出固相,从而直接得到氧化物纳米粉体。
或者将溶液喷人高温气氛中干燥,然后再经热处理形成粉体。
水热合成法:是在密闭反应器中以水溶液作为反应体系,通过将水溶液加热至临界温度(或接近临界温度)来进行材料制备。
利用超临界的水热合成装置,可连续获得Fe203、Ti02、Zr02、BaO·6Fe23、Fe34、NiO、Ce02等一系列纳米氧化物粉体。
国外采用气相氢氧焰水解法大批量生产纳米二氧化钛粉体,对于CdS、In2S3、ZnS、SnS2、CoS2等纳米粉体都可用热合成。
5.纳米陶瓷的应用及其发展趋势纳米陶瓷是纳米材料的一个分支,是指平均晶粒尺寸小于100nm的陶瓷材料。
纳米陶瓷属于三维的纳米粉体材料,其晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的。
从以上纳米陶瓷的微观结构分析,纳米陶瓷最可能获得的性能有以下几方面:室温超塑性是纳米陶瓷最具吸引力的潜在性能之一,也是纳米陶瓷最具应用前景的方面之一。
众所周知.普通陶瓷材料由于太硬太脆,加工极困难.很难像金属一样进行切割、钻孔等操作,这也是普通陶瓷材料的应用受局限的原因之一。
纳米陶瓷的室温超塑性将使得陶瓷在保留其耐化学腐蚀、耐高温高压等优良性能的前提上,有可能像其他材料一样进行锻造、挤压、拉拔、弯曲等特种加工,不需磨削,直接制备精密尺寸的零件。
高韧性是纳米陶瓷的另一项潜在的优良性能。
陶瓷材料尽管有耐磨损、耐腐蚀等优异性能,但由于其固有的脆性,在人们心妇中总是以一种“易碎品”的形象存在,其应用范围远远小于钢铁、塑料等主流的应用材料,纳米陶瓷的出现将有可能彻底改变其形象。
研究已充分表明,纳米陶瓷可在比普通陶瓷低几百度的温度下完成烧结。
不少纳米陶瓷材料都已实现在1000℃以下致密化,而且还有可能继续大幅降低。
这样不仅可以节省大量宝贵的能源,同时也有利于环境的净化。
除了以上所列举的基于结构性能方面的应用,纳米陶瓷另一重要性能是在功能方面。
陶瓷材料的电、磁、光、声等性能常常与其晶界相有很大的关系。
由于纳米陶瓷的晶粒小,单位体积中晶界相的比例远远高于普通的粗晶粒陶瓷,同时晶界相的组成也可能与普通粗晶粒陶瓷有极大的不同,因此有可能给陶瓷的性能带来很多意想不到的变化。
纳米陶瓷作为一种新型的高性能陶瓷,将越来越受到世界各国科学家的关注。
纳米陶瓷材料的发展是现代物理和先进技术结合的产物, 是近年来发展起来的一门全新的科学技术,它将成为新世纪最重要的高新技术之一。
纳米陶瓷的研究与发展,必将引起陶瓷工业的发展与变革,引起陶瓷学理论上的发展乃至新的理论体系的建立,以适应纳米尺度的研究需要,从而使纳米陶瓷材料具有更佳的性能,使其在工程领域乃至日常生活中得到更广泛的应用。