信号与系统0-1
信号与系统课件(奥本海姆+第二版)+中文课件.pdf

解:因为 x[n] = e jω0n = cos ω0n + j sin ω0n (欧拉公式)
则有 e jω0n = 1
∑ ∑ ∞
∞
E∞ = x[n] 2 = 1= ∞
n=−∞
n=−∞
∑ P∞
=
lim
N→∞
1N 2N +1n=−N
x[n] 2
= lim N→∞
1 ×(2N 2N +1
+1)
=1
所以是功率信号
控制
执行机构
网络
图 1 控制系统
R+
uc (t)
x (t)
C
uc (t)
-
t
图 2 RC电路
6 / 94
二、信号的分类 信号的分类方法很多。
1、确定性信号与随机信号 按信号与时间的函数关系来分,信号可分为确定性信号与随
机信号。 1)、确定性信号——指能够表示为确定的时间函数的信号。 当给定某一时间值时,信号有确定的数值。 例如:正弦信号、指数信号和各种周期信号等。 2)、随机信号——不是时间t的确定函数的信号。 它在每一个确定时刻的分布值是不确定的。 例如:电器元件中的热噪声等。
11 / 94
5、连续时间信号和离散时间信号——按自变量的取值是否连续来分。
1、连续时间信号——自变量是连续可变的,因此信号在自变量的连续值上 都有定义。我们用t表示连续时间变量,用圆括号(.)把自变量括在里面。例 如 图一的 x(t)。
x (t)
x [n]
X[1] X[-1]
0
t
图一 连续时间信号
1)、时间特性——波形、幅度、重复周期及信号变化的快慢等。 ω
2)、频率特性——振幅频谱和相位频谱。即从频域 来研究信号的变化情 况。
王瑞兰信号与系统答案01

习题一1-1 画出下列各信号的波形。
(1)2()5e 3e ,0t t f t t --=-> (2)sin()(),0at f t t at=> (3)()(3),k f k -=-0<k ≤6 (4)()e ,k f k =0≤k <4 1-2 判断下列信号是连续时间信号还是离散时间信号?是否是数字信号? (1)cos()k π (2)e sin()t t αω- (3)1()4k1-3 判断下列信号是否为周期信号?如果是周期信号,求出它的最小周期。
(1)1()cos(8)sin(12)f t t t =- (2)j102()e t f t = (3)31()cos()53f k k π=+(4)4()cos()2sin(4)4f k k k ππ=+ 1-4 已知连续信号波形()f t 如题1-4图所示,试画出1(2),(32),(1)2f t f t f t -+--的 波形图。
1-5 已知连续信号(32)f t -的波形如题1-5图所示,试画出()f t 的波形图。
1-6 已知离散信号()f k 的波形如题1-6图所示,试画出1(2),(22),()3f k f k f k -+-的波形图。
题1-4图题1-5图题1-6图1-7 设系统的初始状态为(0)x ,激励为()∙f ,各系统的全响应()∙y 与激励和初始状态 的关系如下,试分析各系统是否是线性的。
(1)0()e (0)()d tty t x bf ττ-=+⎰(2)0()()(0)sin ()d ty t f t x f τττ=+⎰(3)()2(0)3()k y k x f k =+ (4)0()(0)()kj y k kx f j ==+∑1-8 下列微分或差分方程所描述的系统,是线性的还是非线性的?是时变的还是时不变 的?(1)()2()4()y t y t f t '-= (2)()2()()y t ty t f t '''-=(3)()4()(2)()3y t y t y t f t '+=+ (4)2()2(1)2()(1)y k y k f k f k --=--(5)()4(1)(1)y k y k f k --=- (6)()2(1)(1)2()y k k y k f k ---= 1-9 判断下列系统是否为线性、时不变、因果系统。
《信号与系统》第一章知识要点+典型例题

y() 表示系统的输出。
1、线性系统与非线性系统 若系统满足下列线性性质: (1)可分解性 全响应 y () 可分解为零输入响应 y zi () 与零状态响应 y zs () 之和,即
y() y zi () y zs ()
(2)齐次性 零输入响应 y zi () 满足齐次性,零状态响应 y zs () 满足齐次性,即
( t ) 、 ( t ) 的重要性质
1
( t )dt 1 ,
t
( t )dt 0 , ( t )dt ( t ) ( k ) (k )
f ( k ) ( k ) f (0) ( k ) f ( k ) ( k k 0 ) f ( k 0 ) ( k k 0 )
f ( t ) ( t a )dt f (a )
k
f ( k ) ( k ) f (0)
(at )
5
1 (t ) a
1 b (at b) ( t ) a a f ( t ) ( t ) f (0) ( t ) f (0) ( t ) f ( t ) ( t ) f (0) ( t ) f (0) ( t )
2
。
而对离散的正弦(或余弦)序列 sin( k ) [或 cos( k ) ]( 称为数字角频率,单位为 rad ), 只有当
2
为有理数时才是周期序列,其周期 N M
2
, M 取使 N 为整数的最小整数。
如对信号 cos(6 k ) ,由于
2
2 1 为有理数,因此它是周期序列,其周期 N 1 。 6 3
信号与系统陈后金版答案

第二步:求差分方程的齐次 解: 2 求差分方程的齐次 第二步 h [ 0 ] = C 1 + C 2 r −5r /6 +1/ 6 = 0 1 k1 1 k 1 特征方程为: [ ( + 特征方程为=hCk1 ] = )[3 (C 2) ( −) 2 ( 求 ] u [ C ] = 3, C 2 = − 2 h [1] ⇒ ) 出 k1 ∴r =1/ 2, r2 =1/3 2 3 3 1 2
(3) 计算固有响应与强迫响应 计算固有响应与强迫响应:
1 7 1 k 4 1 k y[k ] = [ − ( ) + ( ) ]u[k ] 完全响应: 完全响应 2 2 2 3 3 7 1 k 4 1 k 固有响应: yh [k ] = [− ( ) + ( ) ]u[ k ] 固有响应 2 2 3 3 1 强迫响应: 强迫响应 y p [k ] = u[k ] 2 (4) 计算瞬态响应与稳态响应 计算瞬态响应与稳态响应:
特征根为 s1 = -2, s2 = -5, 又因为 n > m , 所以: 则 h ( t ) = K 1e − 2 t u ( t ) + K 2 e − 5 t u ( t )
h '(t ) = − 2 K 1e −2 t u (t ) + K 1δ (t ) − 5 K 2 e −5 t u (t ) + K 2δ (t ) = − 2 K 1e −2 t u (t ) − 5 K 2 e −5 t u (t ) + ( K 1 + K 2 )δ (t ) h ''(t ) = 4 K 1e −2 t u (t ) − 2 K 1δ (t ) + 25 K 2 e −5 t u (t ) − 5 K 2δ (t ) + ( K 1 + K 2 )δ '(t ) 代入方程有: = K 1 + K 2 = '( t ) = 2 K 2δ ( t ) + 5 K∴K2 + (7/3; K1 )δ −1/3; 2δ '( t ) + 3δ ( t ) 1δ ( t )
信号与系统课后习题与解答第一章

1-1分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:图1-1所示信号分别为⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21(a )连续信号(模拟信号);(b )连续(量化)信号;(c )离散信号,数字信号;(d )离散信号;(e )离散信号,数字信号;(f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问)(1);)sin(t e at ω-(2);nT e -(3);)cos(πn (4);为任意值)(00)sin(ωωn (5)。
221⎪⎭⎫ ⎝⎛解由1-1题的分析可知:(1)连续信号;(2)离散信号;(3)离散信号,数字信号;(4)离散信号;(5)离散信号。
1-3 分别求下列各周期信号的周期T :(1);)30t (cos )10t (cos -(2);j10t e (3);2)]8t (5sin [(4)。
[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期;对于分量cos (30t ),其周期。
由于5T 1π=15T 2π=为的最小公倍数,所以此信号的周期。
5π21T T 、5T π=(2)由欧拉公式)t (jsin )t (cos e t j ωωω+=即)10t (jsin )10t (cos e j10t +=得周期。
5102T ππ==(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-⨯=所以周期。
信号与系统答案1

∫
∞
e jω0t [δ (t +T) δ (t T)]dt = e jω0 (T ) e jω0 (T )
= 2 j sin(ω0T)
2-5: (4)
x(t)
2 0 2 3 5
t
2 -1 0
x(t+1)
1 2 4
t
2 -3 0
x(t/3+1)
3 6 12
t
2-9:
x(t) = et [u(t 1) u(t 2)] + tδ (t 3), 求 (1) (t), x '(t) x ∵x(t) = et [u(t 1) u(t 2)] + 3δ (t 3)
3-31:
5 1 y[k ] y[k 1] + y[k 2] = x[k ], y(1) = 0, y(2) = 1, 6 6 x[k ] = u[k ]
根据单位脉冲响应的定义,应满足方程 解: (1) 根据单位脉冲响应的定义 应满足方程: 应满足方程 5 1 h[k ] h[k 1] + h[k 2] = δ [k ] 6 6 第一步:求等效初始条件 第一步 求等效初始条件 :
t
3-4 已知离散时间 系统,输入 x1[k ] = δ [k 1] 时,输出 已知离散时间LTI系统 输入 输出; 系统 输出
1 k 1 y1[k ] = ( ) u[k 1], 求当输入x2 [k ] = 2δ [k ] + u[k ]时系统响应y2 [k ]. 2
x2 [k ] = 2 x1[k + 1] +
2-13:(3)
x[3k ]
2 1 1
2
k
-1 0 1 2
2-13:(4)
信号与系统0-和0+初始值举例
于是由上式得 [y’(0+) – y’(0-)] + 3[y(0+) – y(0-)]=2 考虑 y(0+) = y(0-)=2 ,所以 y’(0+) – y’(0-) = 2 , y’(0+) = y’(0-) + 2 =2
■
第 2页
由于等号右端为2t故yt应包含冲激函数从而22页页对式1两端积分有
0-和0+初始值举例1
例1:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t) 已知y(0-)=2,y’(0-)= 0,f(t)=ε(t),求y(0+)和y’(0+)。 解:将输入f(t)=ε(t)代入上述微分方程得 y”(t) + 3y’(t) + 2y(t) = 2δ(t) + 6ε(t) (1) 利用系数匹配法分析:上式对于t=0-也成立,在0-<t<0+ 区间等号两端δ(t)项的系数应相等。 由于等号右端为2δ(t),故y”(t)应包含冲激函数,从而 y’(t)在t= 0处将发生跃变,即y’(0+)≠y’(0-)。 但y’(t)不含冲激函数,否则y”(t)将含有δ’(t)项。由于 y’(t)中不含δ(t),故y(t)在t=0处是连续的。 第 1页 ■ 故 y(0+) = y(0-) = 2
对式(1)两端积分有
0
0
y' ' (t )dt 3 y' (t )dt 2 y(t )dt 2 (t )dt 6 (t )dt0 0 0Fra bibliotek 00
0
0
0
由于积分在无穷小区间[0-,0+]进行的,且y(t)在t=0连续, 故 0 0 y(t )dt 0, (t )dt 0
信号与系统 人民邮电出版社 第二版第一章 课后答案
w
w
.k hd
第一章 信号与系统的基本概念 习题
南京邮电大学 信号分析与信息处理教学中心
aw
信号与系统
2006.1
.c
SIGNALS AND SYSTEMS
om
.c
∫
1 2 0
1-1 下列信号中哪些是周期信号,哪些是脉冲信号?哪 些是能量信号?哪些是功率信号它们的平均功率各为多 少? ω 0t ω 0t j (ω 0t +θ )
om
∫
q
w
画系统 x (t ) q ∑ 模拟图:
∫
15
∑
y (t )
w
5
11
15
w
aw
) 1-23 已知某系统的数学模型为 y " ( t ) + a y ' ( t ) + a y ( t ) = b ' x ( t ) + b x ( t, 其模拟图如下,试导出微分方程中的系数 a1, a0 , b1, b0 与模拟图 与模拟 中的系数 α1,α0 , β1, β0的关系。 解:设辅助函数 q" x(t ) β0 β1 如图所示,则 q" = β 0 x + α 0 y + α1q' y (t ) q' q"
w
w
1 y ( t ) = {[[ x1( t ) + x2 ( t )]2 [[ x1( t ) x2 (t )]2 } 4 = x1(t ) x2 ( t )
.k hd
对所假设系统,有:
q(3) (t ) = x (t ) 5q" (t ) 11q' (t ) 15q(t )
信号与系统第二版课后答案
4-4如题图4-4所示是一个实际的信号加工系统,试写出系统的频率特性H(j)。
题4-4图
解由图可知输出
取上式的傅氏变换,得
故频率特性
4-5设信号f(t)为包含0 ~m分量的频带有限信号,试确定f( 3t)的奈奎斯特采样频率。
解由尺度特性,有
即f( 3t)的带宽比f(t)增加了3倍,即=3m。从而最低的抽样频率s=6m。故采样周期和采样频率分别为
解设T为系统的运算子,则可以表示为:
不失一般性,设f(t) =f1(t) +f2(t),则
;
故有
显然
即不满足可加性,故为非线性时不变系统。
1-6判断下列方程所表示的系统的性质。
(1) (2)
(3) (4)
解(1)线性;(2)线性时不变;(3)线性时变;(4)非线性时不变。
1-7试证明方程 所描述的系统为线性系统。式中a为常量。
读者也可以用图形扫描法计算之。结果见点,则
f1(t) *f2(t) =f1(t) *[(t)+(t2)+(t+ 2)]
=f1(t)+f1(t2)+f1(t+ 2)
结果见图p2-10(b)所示。
图p2-10
2-11试求下列卷积。
(a)
(b)
解(a)因为 ,故
试证明:
(1)
(2)利用(1)的结果,证明阶跃响应
证(1)因为
y(t)=f(t)h(t)
由微分性质,有
y(t)=f(t)h(t)
再由积分性质,有
(2)因为
s(t)=(t)h(t)
由(1)的结果,得
3-1求题3-1图所示周期信号的三角形式的傅里叶级数表示式。
信号与系统(吴大正)-完整版答案-纠错修改后版本
第一章 信号与系统1-1画出以下各信号的波形【式中)()(t t t r ε=】为斜升函数。
〔2〕∞<<-∞=-t et f t,)( 〔3〕)()sin()(t t t f επ=〔4〕)(sin )(t t f ε= 〔5〕)(sin )(t r t f = 〔7〕)(2)(k t f kε= 〔10〕)(])1(1[)(k k f kε-+=解:各信号波形为 〔2〕∞<<-∞=-t e t f t,)(〔3〕)()sin()(t t t f επ=〔4〕)=tfε)(sin(t〔5〕)rf=t(t)(sin〔7〕)f kεt=2()(k〔10〕)(])1(1[)(k k f k ε-+=1-2 画出以下各信号的波形[式中)()(t t t r ε=为斜升函数]。
〔1〕)2()1(3)1(2)(-+--+=t t t t f εεε 〔2〕)2()1(2)()(-+--=t r t r t r t f 〔5〕)2()2()(t t r t f -=ε 〔8〕)]5()([)(--=k k k k f εε 〔11〕)]7()()[6sin()(--=k k k k f εεπ〔12〕)]()3([2)(k k k f k ---=εε解:各信号波形为〔1〕)2()1(3)1(2)(-+--+=ttttfεεε〔2〕)2()1(2)()(-+--=t rt rt rtf〔5〕)2()2()(ttrtf-=ε〔8〕)]5()([)(--=k k k k f εε〔11〕)]7()()[6sin()(--=k k k k f εεπ〔12〕)]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。
写出图1-4所示各序列的闭合形式表达式。
1-41-5 判别以下各序列是否为周期性的。
如果是,确定其周期。
〔2〕) 63cos()443cos()(2ππππ+++=kkkf〔5〕)sin(2cos3)(5tttfπ+=解:1-6 信号)(tf的波形如图1-5所示,画出以下各函数的波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Conjugation of complex
z a jb re
j
j
z a jb re
z z 2a
*
zz z r
2
2
1 z 1 2 2 a jb z z r
Finite sum formula
1 (1 ....
Integer : 2, 53, -27, n, m
rational : 2.65, -31/56 , n/m real : include rational and irrational
All these numbers can be expressed on a line :
number axis.
2 2e
j0
3 3e j
2
j 4 4e
j
j 4 4e
4
3
j
2
1 j 2e
1 j 3 2e
j
j
Example: Different forms for complex
e 1
j0
e
e
j / 2
j
j
j
e
1
1 e 1 j 3 2 2 j / 4 1 j e 2 1 j / 3 e 3 j 2
Key points in signal and system
The properties of basic signals and simple systems; The properties of signal combinations
and system connections;
Teaching arrangement
Text book:Signals and systems(Oppenhaim)
Software for experiment :MATLAB
Time-domain ( 1-2) : 30% Frequency-domain (3-8) : 40%
Complex-domain (9-10) : 30%
Complex number
z a jb re
j
Imaginary note: j 1 Euler’number: e 2.71828 ...
Rectangular form of complex number
z a jb
Real part
Imaginary part
j / 6
Euler’s relation
e
j
cos j sin
1 j j cos e e 2
1 j j sin e e j2
exponential function to sinusoidal function
yt
System: Operations to the functions:
Our work in signals and systems
Signal analysis
System response System design
Main method in signal and system
Signals and systems
Teacher:张鹰 Email: zhangyin@.
Introduction
What is the signal and the system ? What is our work ? How to deal with it ?
Definition of signals and systems
Any complex thing can be divide to its simple parts !
Complex signal <==> combinations of basic signals Complex system <==> connection of simple systems
2 N 1
) 1
N
N n 1 N n 0 1
N 1
1 1
Infinite sum formula
1 1 n 0
n
1
Complex plane
Each complexsented by a point in complex plan
a r cos
b r sin
r
1 2 2 2 a b
1
tg
b a
Example: Different forms for complex
Calculation rules for complex
z1 a1 jb1 r1e
j 1
z 2 a2 jb2 r2 e
j 2
z1 z 2 a1 a2 j b1 b2
z1 z 2 r1 r2 e
1 1 j1 e z1 r1
General definition:
Signal: Any phenomena which changed with
variables (time,space,…) System: The relation (operations) between signals
Strict definition: Signal: Functions of time: xt
b Imz
a Rez
Both a and b are real numbers !
Pole form of complex number
z re
Magnitude phase
j
r z
z
Both r and θ are real numbers !
0r
Homework and Excises
Homework Exercises in class Test in class Experiment of MATLAB Final exam 2% 6% 2% 10% 80%
Mathematic Review
The representations of numbers