信号与系统实验四

合集下载

信号与系统实验(MATLAB 西电版)实验4 离散时间信号的时域基本运算_OK

信号与系统实验(MATLAB 西电版)实验4  离散时间信号的时域基本运算_OK

图 4.5 序列及其平移
2021/7/3
16
实验4 离散时间信号的时域基本运算
2.
已知序列f(k)={2,3,1,2,3,4,3,1},对应的k值为 -3≤k≤4 f1(k)=f(k-2),f2(k)=f(-k),f3(k)=f(k-1)ε(k), f4(k)=f(-k+2),f5(k)=f(k+1), f6(k)=f(k-2)ε(k),f7(k)=f(k+2)ε(k)
5) MATLAB x1=-2:2; %序列1 k1=-2:2; k0=2; k=k1+k0; f=x1; stem(k,f,′filled′); axis([min(k)-1,max(k)+1,min(f)-0.5,max(f)+0.5]); 序列及其平移如图4.5
2021/7/3
15
实验4 离散时间信号的时域基本运算
2021/7/3
17
实验4 离散时间信号的时域基本运算
(1) 在计算机中输入程序,验证并记录实验结果,经过 (2) 对于设计性实验,应自行编制完整的实验程序,重复 验证性实验的过程,并在实验报告中给出完整的自编程序。
2021/7/3
18
axis([min(k)-1,max(k)+1,min(f)-0.5,max(f)+0.5]);
序列及其翻转如图4.3所示。
2021/7/3
11
实验4 离散时间信号的时域基本运算
图 4.3 序列及其翻转
2021/7/3
12
实验4 离散时间信号的时域基本运算
4)
MATLAB
x1=-2:2;
%序列1
两个序列的乘法如图4.2
2021/7/3

信号与系统实验四实验报告

信号与系统实验四实验报告

实验四 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。

掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。

加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。

二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率sam f 大于等于2倍的信号最高频率m f ,即m sam f f 2≥。

时域抽样是把连续信号x (t )变成适于数字系统处理的离散信号x [k ] ;信号重建是将离散信号x [k ]转换为连续时间信号x (t )。

非周期离散信号的频谱是连续的周期谱。

计算机在分析离散信号的频谱时,必须将其连续频谱离散化。

频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。

三.实验内容1. 为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。

)102cos()(1t t x ⨯=π答: 函数代码为: t0 = 0:0.001:0.1;x0 =cos(2*pi*10*t0);plot(t0,x0,'r')hold onFs =50;t=0:1/Fs:0.1;x=cos(2*pi*10*t); stem(t,x); hold offtitle('连续信号及其抽样信号')函数图像为:)502cos()(2t t x ⨯=π同理,函数图像为:)0102cos()(3t t x ⨯=π同理,函数图像为:由以上的三图可知,第一个图的离散序列,基本可以显示出原来信号,可以通过低通滤波恢复,因为信号的频率为20HZ,而采样频率为50>2*20,故可以恢复,但是第二个和第三个信号的评论分别为50和100HZ,因此理论上是不能够恢复的,需要增大采样频率,解决的方案为,第二个信号的采样频率改为400HZ,而第三个的采样频率改为1000HZ,这样可以很好的采样,如下图所示:2. 产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘制波形。

信号与系统

信号与系统

《信号与系统》仿真作业实验一:连续信号的表示及可视化:f(t)=δ(t); f(t)=ε(t); f(t)=e at(分别取a>0与a<0);f(t)=R(t); f(t)=Sa(wt); f(t)=sin(2πft);(分别画出不同周期个数的波形)解:(1)f(t)=δ(t)的matlab表示:程序清单如下:》t=-5:0.01:5;k=(0-(-5))/0.01+1;y=zeros(size(t));y(k)=1/(0.01-(-0.01));plot(t,y);title('冲击函数f(t)=δ(t)')画出冲击函数的图形如下:冲击函数f(t)=δ(t)t(2) f(t)=ε(t )的matlab 表示及图形: 程序清单如下: 》t=-5:0.01:5; y=heaviside(t) plot(t,y)画出阶跃函数的图形如下:(3) f(t)=e at 的matlab 表示及图形: 程序清单如下: 》t=-10:0.01:10;y1=exp(0.1*t); y2=exp(-0.1*t); plot(t,y1,'r',t,y2,'b') 画出指数函数的图形如下:tf (t )=ε(t )(4) f(t)=R(t)的matlab 表示及图形: 程序清单如下: 》t=-5:0.01:5;y=heaviside(t+2)-heaviside(t-2); plot(t,y,'b') 画出窗函数的图形如下:(5) f(t)=Sa(wt) 的matlab 表示及图形: 程序清单如下:》ezplot('sin(t)./t',[-20,20]) grid ontf (t )=e atty =R 9t )画出抽样函数的图形如下:sin(t)/tt(6)f(t)=sin(2πft)的matlab表示及图形:程序清单如下:》ezplot('sin(2*pi*50*t)',[-.02,.02])grid on画出正弦函数的图形如下:实验二:离散信号的表示及可视化:f(t)=δ(n ); f(t)=ε(n ); f(t)=e an (分别取a>0与a<0); f(t)=R N (n ); f(t)=Sa(nw); f(t)=sin(nw );(分别取不同的w 值) 解:(1) 冲击序列f(n)=δ(n )的matlab 实现: 程序清单如下: 》n0=0; ns=-10; nf=10; n=[ns:nf];y=[zeros(1,n0-ns),1,zeros(1,nf-n0)];-0.02-0.015-0.01-0.00500.0050.010.0150.02-1-0.50.51tsin(2 50 t)stem(n,y);title('冲击序列f(n)=δ(n)')画出冲击序列的图形如下:冲击序列f(n)=δ(n)n(2)阶跃序列f(n)=ε(n)的matlab实现:程序清单如下:》n0=0;ns=-10;nf=10;n=[ns:nf];y=[zeros(1,n0-ns),ones(1,nf-n0+1)];stem(n,y);title('阶跃序列f(n)=ε(n)')阶跃序列的图形如下:(3) 指数序列f(t)=e an (分别取a>0与a<0)的matlab 实现: 程序清单如下: 》n=-10:10; y1=exp(0.1*n); y2=exp(-0.1*n); plot(n,y1,'ro',n,y2,'bo') 指数序列的图形如下:(4) 门序列f(n)=R N (n )的matlab 实现:程序清单如下: 》n1=-3;n2=3;ns=-15;nf=15;阶跃序列f(n)=ε(n)nnf (t )=e a nn=[ns:nf];y=[zeros(1,n1-ns),ones(1,n2-n1+1),zeros(1,nf-n2)]; stem(n,y);title('窗序列f(n)=R N (n )') 窗序列的图形如下:(5) 抽样序列f(t)=Sa(nw)的matlab 实现: 》n=-20:0.5:20; y=sin(n)./n; plot(n,y,'o'); title('f(t)=Sa(nw)')窗函数f(n)=R N (n)n抽样序列的图形如下:(6) 正弦序列f(t)=sin(nw )(分别取不同的w 值)的matlab 实现: 》n=-0.1:0.002:0.1 w=100 y=sin(w*n) plot(n,y,'o') grid on正弦序列的图形如下:f (t)=Sa(nw)nny =s i n (w *n )实验三:系统的时域求解1、设h(n)=(0.9)n u(n),x(n)=u(n)-u(n-10),求:y(n)=x(n)*h(n),并画出x(n),h(n),y(n)波形。

信号与系统实验报告总结

信号与系统实验报告总结

信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。

实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。

方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。

方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。

方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。

幅值较一二次谐波大为减少。

方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。

幅值较三次谐波再次减小。

方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。

幅值减少到0.3以内,几乎可以忽略。

综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。

分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。

二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。

可知,方波信号可分解为多个谐波。

方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。

方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。

综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。

数字信号处理EXPIV型教学实验系统实验四常规实验exp4_常规

数字信号处理EXPIV型教学实验系统实验四常规实验exp4_常规

第四章常规实验指导实验一常用指令实验一、实验目的1、了解DSP开发系统的组成和结构;2、熟悉DSP开发系统的连接;3、熟悉CCS的开发界面;4、熟悉C54X系列的寻址系统;5、熟悉常用C54X系列指令的用法。

二、实验设备计算机,CCS 2.0版软件,DSP仿真器,实验箱。

三、实验步骤与内容1、系统连接进行DSP实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示:2、上电复位在硬件安装完成后,确认安装正确、各实验部件及电源连接正常后,接通仿真器电源,启动计算机,此时,仿真器上的“红色小灯”应点亮,否则DSP开发系统有问题。

3、运行CCS程序待计算机启动成功后,实验箱后面220V输入电源开关置“ON”,实验箱上电,启动CCS,此时仿真器上的“绿色小灯”应点亮,并且CCS正常启动,表明系统连接正常;否则仿真器的连接、JTAG接口或CCS相关设置存在问题,掉电,检查仿真器的连接、JTAG 接口连接,或检查CCS相关设置是否正确。

注:如在此出现问题,可能是系统没有正常复位或连接错误,应重新检查系统硬件并复位;也可能是软件安装或设置有问题,应尝试调整软件系统设置,具体仿真器和仿真软件CCS的应用方法参见第三章。

●成功运行程序后,首先应熟悉CCS的用户界面●学会CCS环境下程序编写、调试、编译、装载,学习如何使用观察窗口等。

4、修改样例程序,尝试DSP其他的指令。

注:实验系统连接及CCS相关设置是以后所有实验的基础,在以下实验中这部分内容将不再复述。

5、填写实验报告。

6、样例程序实验操作说明仿真口选择开关K9拨到右侧,即仿真器选择连接右边的CPU:CPU2;启动CCS 2.0,在Project Open菜单打开exp01_cpu2目录下面的工程文件“exp01.pjt”注意:实验程序所在的目录不能包含中文,目录不能过深,如果想重新编译程序,去掉所有文件的只读属性。

用下拉菜单中Project/Open,打开“exp01.pjt”,双击“Source”,可查看源程序在File Load Program菜单下加载exp01_cpu2\debug目录下的exp01.out文件:加载完毕,单击“Run”运行程序;实验结果:可见指示灯D1定频率闪烁;单击“Halt”暂停程序运行,则指示灯停止闪烁,如再单击“Run”,则指示灯D1又开始闪烁;注:指示灯D1在CPLD单元的右上方关闭所有窗口,本实验完毕。

信号与系统实验总结

信号与系统实验总结

信号与系统实验总结转眼间,信号与系统实验课已接近尾声。

和蔼的老师,亲切的同组同学,每一个新奇的信号实验,都给刚入大二的我留下了许多深刻印象。

这一学期,共做了“信号的分类与观察”、“非正弦信号的频谱分析”、“信号的抽样与恢复(PAM)”、和“模拟滤波器实验”共四个信号与系统实验。

此学期的实验课程加深了我对信号与系统这门课的感性认知与体会,也增强了我的实际动手能力,有效地处理了实验过程中遇到的问题,收获颇丰。

众所周知,信号与系统这门课程对于电子信息科学与技术专业的我们是何等的重要。

而每周一次的实验,培养了我分析问题和处理问题的能力,使抽象的概念和理论形象化、具体化、对增强学习的兴趣有了极大的好处,针对各个实验及实验中的具体问题,现总结如下:一.信号的分类与观察对于一个系统的特性进行研究,重要的一个方面是研究它的输入—输出关系,即在特定输入信号下,系统输出的响应信号。

因而对信号进行研究是研究系统的出发点,是对系统特性观察的基本方法和手段。

在这个实验中,对常用信号及其特性进行了分析、研究。

由实验箱中元件产生正弦波、指数信号、指数衰减正弦信号三种波形,示波器观察,并根据数据求出函数表达式。

此次实验我最大的收获,就是了解了示波器的使用方法和各个按钮的作用。

初步了解了信号与系统实验箱的各个模块作用。

比如示波器上无法显示波形,先调节辉度按钮,如还未出现,调节垂直POSITION按钮,看波形是不是在屏幕之外,波形不稳,调节触发电平或TIME/DIV,等等。

示波器在各种实验中都起到很重要的作用,所以了解它的原理和使用方法是必备的基础知识,为以后的实验打下了坚实的基础。

作图在实验数据处理中也是很重要的一步。

准确的记录,描点,坐标分度,看似很小的事情真的做起来就会觉得不是那么容易。

把每一个平凡的小事做好,就是一种不平凡。

在数据处理中,我学会了耐心的处理事情。

最后的正弦,指数,和指数衰减正弦信号都在坐标纸上有了很好的体现。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验指导书

信号与系统实验指导书

信号与系统实验指导书赵欣、王鹏信息与电气工程学院2006.6.26前言“信号与系统”是无线电技术、自动控制、生物医学电子工程、信号图象处理、空间技术等专业的一门重要的专业基础课,也是国内各院校相应专业的主干课程。

当前,科学技术的发展趋势既高度综合又高度分化,这要求高等院校培养的大学生,既要有坚实的理论基础,又要有严格的工程技术训练,不断提高实验研究能力、分析计算能力、总结归纳能力和解决各种实际问题的能力。

21世纪要求培养“创造型、开发型、应用型”人才,即要求培养智力高、能力强、素质好的人才。

由于该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,为此在学习本课程时,开设必要的实验,对学生加深理解、深入掌握基本理论和分析方法,培养学生分析问题和解决问题的能力,以及使抽象的概念和理论形象化、具体化,对增强学习的兴趣有极大的好处,做好本课程的实验,是学好本课程的重要教学辅助环节。

在做完每个实验后,请务必写出详细的实验报告,包括实验方法、实验过程与结果、心得和体会等。

目录实验一无源和有源滤波器 (1)实验二方波信号的分解 (6)实验三用同时分析法观测方波信号的频谱 (8)实验四二阶网络状态轨迹的显示 (10)实验五二阶网络函数的模拟 (14)实验六抽样定理 (18)附录 (22)实验一无源和有源滤波器一、实验目的1、了解RC无源和有源滤波器的种类、基本结构及其特性。

2、对比研究无源和有源滤波器的滤波特性。

3、学会列写无源和有源滤波器网络函数的方法。

二、基本原理1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以是由RLC元件或RC元件构成的无源滤波器,也可以是由RC元件和有源器件构成的有源滤波器。

2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统实验实验四:周期信号的傅里叶级数小组成员:黄涛13084220胡焰焰13084219洪燕东13084217一、实验目的1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。

2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。

3、掌握用傅里叶级数进行谐波分析的方法。

4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。

二、预习内容1、周期信号的傅里叶级数分解及其物理意义。

2、典型信号傅里叶级数计算方法。

三、实验原理1. 信号的时间特性与频率特性信号可以表示为随时间变化的物理量,比如电压)(t u 和电流)(t i 等,其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。

信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。

主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。

无论是信号的时间特性还是频率特性都包含了信号的全部信息量。

2. 信号的频谱信号的时间特性和频率特性是对信号的两种不同的描述方式。

根据傅里叶级数原理,任意一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。

例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间),(11T t t +内表示为()∑∞=Ω+Ω+=10sin cos )(n n n t n b t n a a t f即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。

A 0t A n0A0t(a)(b)Ω(c)ωΩ5Ω3ΩΩ3Ω53. 信号的时间特性与频率特性关系信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1来形象地表示。

其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。

反映各频率分量幅度的频谱称为振幅频谱。

图4-1(c)是信号在幅度--频率坐标系统中的图形即振幅频谱图。

反映各分量相位的频谱称为相位频谱。

4. 信号频谱的测量在本实验中只研究信号振幅频谱。

周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。

测量时利用了这些性质。

从振幅频谱图上,可以直观地看出各频率分量所占的比重。

测量方法有同时分析法和顺序分析法。

同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。

当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。

在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。

5. 周期方波信号的傅里叶级数5.1 一个周期为0T 的正方波⎪⎩⎪⎨⎧<<<=2|| ,0|| ,1)(0T t t t x ττ, 如图下图4-2所示,一个周期内从ττ~-幅值为1,其余为0。

图4-2 周期性的正方波信号由傅里叶级数展开式可知,方波信号傅里叶级数系数为:)(2)sin(000τωτπτωk sa T k k a k ==; 则该周期信号可以表示为傅里叶级数的形式:...)(000044332210+++++=t j t j t j t j e a e a e a e a a t x ωωωω因为,当k 为偶数时0=k a ,所以...)(000553310++++=t j t j t j e a e a e a a t x ωωω进一步带入k a 得...)]3sin()3[cos(3)3sin()]sin()[cos()sin(T 2)(0000000+++++=t j t t j t t x ωωπτωωωπτωτ 当占空比为0.5时候的方波,即τ40=T 时 ...)7cos(71)5cos(51)3cos(31)cos(121)(+++++=t t t t t x ππππππππ 可以看出方波各频率分量中,直流分量为0.5;偶次谐波分量为零;各奇次谐波分量比值为..:71:51:31:1。

5.2方波⎪⎪⎩⎪⎪⎨⎧<<<=000||2T ,02T || ,1)(T t t t x ,如图4-3所示,可以分解为 ...)7sin 715sin 513sin 31(sin 4)(0000++++=t t t t t x ωωωωπ τ-τ图4-3 周期性的方波信号可以看出方波各频率分量中,直流分量为零;偶次谐波分量为零;各奇次谐波分量比值为..:71:51:31:1。

6. 周期信号的合成吉布斯现象(Gibbs )根据傅里叶级数可以将周期信号分解成直流分量、基波以及各次谐波分量,同样,由直流分量、基波和各次谐波分量可以叠加出来一个周期信号。

例如前述的方波信号,可以由其基波和各次谐波分量按照比例叠加出来,合成方波信号与原信号的误差取决于傅里叶级数的项数。

合成波形所包含的谐波分量越多,它越逼近原方波信号,但是间断点除外。

用有限项傅里叶级数表示有间断点的信号时,在间断点附近不可避免的会出现振荡和超量。

超量的幅度不会随所取项数的增加而减小。

只是随着项数的增多,振荡频率变高,并向间断点处压缩,从而使它所占有的能量减少。

这种现象称为吉布斯现象。

五、实验内容1.信号的分解与合成Matlab 仿真实验1.1方波信号的分解思考:参考下面程序,将频率为50Hz 幅值为3的方波进行分解,给出前5项谐波,并在不同坐标系和同一坐标系下绘制各次谐波波形。

t=0:0.0001:0.02;y=zeros(10,max(size(t)));x=zeros(10,max(size(t)));for k=1:2:9x1=3*sin(pi*100*k*t)/k;x(k,:)=x(k,:)+x1;y((k+1)/2,:)=x(k,:);end;subplot(4,2,1);plot(t,y(1,:));subplot(4,2,2);plot(t,y(2,:));subplot(4,2,3);plot(t,y(3,:));subplot(4,2,4);plot(t,y(4,:));subplot(4,2,5);plot(t,y(5,:));subplot(4,2,6);plot(t,y(1:5,:));halft=ceil(length(t)/2);subplot(4,1,4);mesh(t(1:halft),[1:10],y(:,1:halft));1.2方波信号的合成思考:(1)参考实验原理内容解释下面程序中“f1=f1+cos(pi*n*t)*sinc(n/2)”;观察N值改变时合成波形的变化。

t=-9 : 0.002 : 11;t1=-8.999 : 0.002 : 11;x=[ones(1,1000),zeros(1,1000)];x=[x,x,x,x,x];subplot(3,1,1);plot(t1,x,'linewidth',1.5);title('方波');axis([-4.5, 5.5, -0.5, 1.5]);N=10;c0=0.5;f1=c0*ones(1,length(t));for n=1:Nf1=f1+cos(0.5*pi*n*t)*sinc(n/2);endsubplot(3,1,2);plot(t,f1,'r','linewidth',1.5);title('N=10');axis([-4.5,5.5,-0.5,1.5]);N=20;c0=0.5;f1=c0*ones(1,length(t));for n=1:Nf1=f1+cos(0.5*pi*n*t)*sinc(n/2);endsubplot(3,1,3);plot(t,f1,'r','linewidth',1.5);title('N=20');axis([-4.5,5.5,-0.5,1.5]);(2)参考下面程序分别对⎩⎨⎧<<<=2||1 ,01|| ,1)(1t t t x 和⎪⎩⎪⎨⎧<<<=1||21 ,021|| ,1)(2t t t x 两个周期为2的方波进行合成,注意比较:①原方波与合成方波;②两个方波合成有何不同;③当傅里叶级数项数增加时合成方波的变化。

t=-4.5 : 0.001 : 5.5;t1=-4.499 : 0.001 : 5.5;x=[ones(1,1000),zeros(1,1000)];x=[x,x,x,x,x];subplot(3,1,1);plot(t1,x,'linewidth',1.5);title('方波');axis([-4.5, 5.5, -0.5, 1.5]);N=10;c0=0.5;f1=c0*ones(1,length(t));for n=1:Nf1=f1+cos(pi*n*t)*sinc(n/2); endsubplot(3,1,2);plot(t,f1,'r','linewidth',1.5);title('N=10');axis([-4.5,5.5,-0.5,1.5]);N=20;c0=0.5;f1=c0*ones(1,length(t));for n=1:Nf1=f1+cos(pi*n*t)*sinc(n/2); endsubplot(3,1,3);plot(t,f1,'r','linewidth',1.5);title('N=20');axis([-4.5,5.5,-0.5,1.5]);。

相关文档
最新文档