信号与系统实验
信号与系统实验

实验一信号与系统认知一、实验目的1、了解实验室的规章制度、强化安全教育、说明考核方法。
2、学习示波器、实验箱的使用、操作知识;3、学习常用连续周期信号的波形以及常用系统的作用。
二、实验仪器1、信号与系统实验箱(本次实验使用其自带的简易信号源,以及实验箱上的“信号通过系统”部分。
)2、示波器三、实验原理1、滤波器滤波器是一种常用的系统,它的作用为阻止某些频率信号通过,或只允许某些频率的信号通过。
滤波器主要有四种:这是四种滤波器的理想状态,实际上的滤波器只能接近这些效果,因此通常的滤波器有一些常用的参数:如带宽、矩形系数等。
通带范围:与滤波器最低衰减处比,衰减在3dB以下的频率范围。
2、线性系统线性系统是现实中广泛应用的一种系统,线性也是之后课程中默认为系统都具有的一种系统性质。
系统的线性表现在可加性与齐次性上。
齐次性:输入信号增加为原来的a倍时,输出信号也增加到原来的a倍。
四、预习要求1、复习安全操作的知识。
2、学习或复习示波器的使用方法。
3、复习典型周期信号的波形及其性质。
4、复习线性系统、滤波器的性质。
5、撰写预习报告。
五、实验内容及步骤1、讲授实验室的规章制度、强化安全教育、说明考核方法2、通过示波器,读出实验箱自带信号源各种信号的频率范围(1)测试信号源1的各种信号参数,并填入表1-1。
(2)测试信号源2的各种信号参数,并填入表1-2。
3、测量滤波器根据相应测量方法,用双踪示波器测出实验箱自带的滤波器在各频率点的输入输出幅度(先把双踪示波器两个接口都接到所测系统的输入端,调节到都可以读出输入幅度值,并把两侧幅度档位调为一致,记录下这个幅度值;之后,将示波器的一侧改接入所测系统的输出端,再调节用于输入的信号源,将信号频率其调至表1-3中标示的值,并使输入信号幅度保持原幅度值不变。
观察输出波形幅度的变化,并与原来的幅度作比较,记录变化后的幅度值。
),并将相应数据计入表1-3中。
4、测量线性系统(1)齐次性的验证自选一个输入信号,观察输出信号的波形并记录输入输出信号的参数,将输入信号的幅度增强为原信号的一定倍数后,再对输入输出输出参数进行记录,对比变化前后的输出。
《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
《信号与系统实验》信号的采样与恢复(抽样定理)实验

《信号与系统实验》信号的采样与恢复(抽样定理)实验一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。
2、验证抽样定理。
二、实验设备1、信号与系统实验箱2、双踪示波器三、原理说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。
抽样信号f s(t)可以看成连续f(t)和一组开关函数s (t)的乘积。
s (t)是一组周期性窄脉冲,见实验图5-1,T s(t)称为抽样周期,其倒数f s(t)= 1/T s称为抽样频率。
图5-1 矩形抽样脉冲对抽样信号进行傅立叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的信号频率。
平移的频率等于抽样频率f s(t)及其谐波频率2f s、3f s》》》》》》。
当抽样信号是周期性窄脉冲时,平移后的频率幅度(sinx)/x规律衰减。
抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。
3、但原信号得以恢复的条件是f s 2,其中f s为抽样频率,为原信号占有的频带宽度。
而f min=2 为最低抽样频率又称“柰奎斯特抽样率”。
当f s<2 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是及少的,因此即使f s=2 ,恢复后的信号失真还是难免的。
图5-2画出了当抽样频率f s>2 (不混叠时)f s<2 (混叠时)两种情况下冲激抽样信号的频谱。
t f(t)0F()t 0m ωm ω-(a)连续信号的频谱Ts t 0f s (t)F()t0m ωm ω-s ω-s ω()(b)高抽样频率时的抽样信号及频谱 不混叠图5-2 冲激抽样信号的频谱实验中f s >2 、f s =2 、f s <2 三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f s 必须大于信号频率中最高频率的两倍。
信号与系统实验教程只有答案

信号与系统实验教程(只有答案))(实验报告目录实验一信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三连续时间LTI系统的频域分析 (35)三、实验内容及步骤 (35)实验四通信系统仿真 (42)三、实验内容及步骤 (42)实验五连续时间LTI系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。
实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。
并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。
要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。
然后执行该程序,保存所的图形。
修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。
信号与系统实验

实验一 抽样定理与信号恢复一、实验目的1. 观察离散信号频谱,了解其频谱特点;2. 验证抽样定理并恢复原信号。
二、实验原理1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。
抽样信号 Fs (t )=F (t )·S (t )。
其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。
Ts 又称抽样间隔,Fs=1Ts 称抽样频率,Fs (t )为抽样信号波形。
F (t )、S (t )、Fs (t )波形如图1-1。
t-4T S -T S 0T S 4T S8T S 12T S tt02/1τ1τ2/31τ2/1τ1τ2/31τ2/1τ-(a)(b)(c)图1-1 连续信号抽样过程将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图1-2所示。
2. 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱()∑∞∞--∙=m s s m m SaTsA j )(22s F ωωπδτωτω 它包含了原信号频谱以及重复周期为fs (f s =πω2s 、幅度按ST A τSa (2τωs m )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。
因此,抽样信号占有的频带比原信号频带宽得多。
以三角波被矩形脉冲抽样为例。
三角波的频谱 F (j ω)=∑∞-∞=-K k k sa E )2()2(12τπωδππ抽样信号的频谱Fs (j ω)=式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图1-3所示。
图1-2 信号抽样实验原理图)(2(212s m k s m k k Sa m Sa TS EA ωωωδπτωτπ--∙∙∑∞-∞=-∞=111112ττπω==f 或(b) 抽样信号频谙图1-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。
信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统实验_信号的基本运算单元

信号与系统实验_信号的基本运算单元学号:2 姓名:实验⼀信号的基本运算单元⼀、实验⽬的1.掌握信号与系统中基本运算单元的构成;2.掌握基本运算单元的特点;3.掌握对基本运算单元的测试⽅法;⼆、预备知识1.学习“信号的运算”⼀节;2.复习matlab软件的使⽤⽅法。
三、实验原理在“信号与系统”中,最常⽤的信号运算单元有:减法器、加法器、倍乘器、反相器、积分器、微分器等,通过这些基本运算单元可以构建⼗分复杂的信号处理系统。
因⽽,基本运算单元是“信号与系统”的基础。
四、实验内容1、⽤matlab编写两个正弦信号(⼀个⾼频,⼀个低频)相加,相减,相乘。
绘出频谱图,并说明意义clc,clearsyms t w;N = 6724;t =0:0.01:(N-1)/100;W =t*100/N;%产⽣⾼频以及低频信号并进⾏运算f1 = 4/8*sin(10^4*t);f2 = 4/10*sin(t+pi/5);f3 = f1+f2;f4 = f1-f2;f5 = f1.*f2;%进⾏傅⾥叶变换F1w = abs(fft(f1,N))*2/N;F2w = abs(fft(f2,N))*2/N;F3w = abs(fft(f3,N))*2/N;F4w = abs(fft(f4,N))*2/N;F5w = abs(fft(f5,N))*2/N;%%绘图%f1学号:2 姓名:subplot(5,2,1),plot(t,f1);title('f1');subplot(5,2,2),plot(W,F1w); title('F1w');%f2subplot(5,2,3),plot(t,f2);title('f2');subplot(5,2,4),plot(W,F2w); title('F2ww');%f3subplot(5,2,5),plot(t,f3);title('f3=f1+f2');subplot(5,2,6),plot(W,F3w); title('F3w');%f4subplot(5,2,7),plot(t,f4);title('f4=f1-f2');subplot(5,2,8),plot(W,F4w); title('F4w');%f5subplot(5,2,9),plot(t,f5);title('f5=f1*f2');subplot(5,2,10),plot(W,F5w); title('F5ww');学号:2 姓名:解释:两个正弦信号的相加、相减、相乘,周期为两正弦信号周期的最⼩公倍数,包络线是低频正弦信号的分量,⾼频信号主要影响包络线内信号的频率,相加、相乘和相减幅值、相位都会发⽣改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序列号:__信号与系统实验报告课程名称信号与系统学院信息工程学院年级班别电子信息工程1班学号 3116002166学生姓名陈俊杰指导教师黄国宏2018年6月15日目录实验二LTI系统的响应 (1)一、实验目的 (1)二、实验原理 (1)三、实验内容 (3)四、程序清单及实验结果 (4)五、实验总结 (13)实验三连续时间信号的频域分析一、实验目的 (14)二、实验原理 (14)三、实验内容 (17)四、程序清单及实验结果 (17)五、实验总结 (25)实验五连续信号与系统的S域分析一、实验目的 (26)二、实验原理 (26)三、实验内容 (27)四、程序清单及实验结果 (28)五、实验总结 (36)实验二 LTI 系统的响应一、实验目的1. 熟悉连续时间系统的单位冲激响应、阶跃响应的意义及求解方法2. 熟悉连续(离散)时间系统在任意信号激励下响应的求解方法3. 熟悉应用MATLAB 实现求解系统响应的方法二、实验原理1.连续时间系统对于连续的LTI 系统,当系统输入为f (t ),输出为y (t ),则输入与输出之间满足如下的线性常系数微分方程:()()00()()n mi j i j i j a y t b f t ===∑∑,当系统输入为单位冲激信号δ(t )时产生的零状态响应称为系统的单位冲激响应,用h(t)表示。
若输入为单位阶跃信号ε(t )时,系统产生的零状态响应则称为系统的单位阶跃响应,记为g(t),如下图所示。
系统的单位冲激响应h (t )包含了系统的固有特性,它是由系统本身的结构及参数所决定的,与系统的输入无关。
我们只要知道了系统的冲激响应,即可求得系统在不同激励下产生的响应。
因此,求解系统的冲激响应h(t )对我们进行连续系统的分析具有非常重要的意义。
在MATLAB 中有专门用于求解连续系统冲激响应和阶跃响应, 并绘制其时域波形的函数impulse( ) 和step( )。
如果系统输入为f (t ),冲激响应为h(t),系统的零状态响应为y (t ),则有:()()()y t h t f t =*。
若已知系统的输入信号及初始状态,我们便可以用微分方程的经典时域求解方法,求出系统的响应。
但是对于高阶系统,手工计算这一问题的过程非常困难和繁琐。
在MATLAB 中,应用lsim( )函数很容易就能对上述微分方程所描述的系统的响应进行仿真,求出系统在任意激励信号作用下的响应。
lsim( )函数不仅能够求出连续系统在指定的任意时间范围内系统响应的数值解,而且还能同时绘制出系统响应的时域波形图。
2.离散时间系统LTI 离散系统中,其输入和输出的关系由差分方程描述:0()()n m ij i j a y k i b f k j ==+=+∑∑ (前向差分方程) 00()()n m ij i j a y k i b f k n j ==-=-+∑∑ (后向差分方程)当系统的输入为单位序列δ(k )时产生的零状态响应称为系统的单位函数响应,用h (k )表示。
当输入为 ε(k )时产生的零状态响应称为系统的单位阶跃应,记为:g (k ),如下图所示。
如果系统输入为e (k ),冲激响应为h (k ),系统的零状态响应为y(k ),则有:()()()y k h k f k =*。
与连续系统的单位冲激响应h (t )相类似,离散系统的单位函数响应h (k )也包含了系统的固有特性,与输入序列无关。
我们只要知道了系统的单位函数响应,即可求得系统在不同激励信号作用下产生的响应。
因此,求解系统的单位函数响应h (k )对我们进行离散系统的分析也同样具有非常重要的意义。
MATLAB 中为用户提供了专门用于求解离散系统单位函数响应, 并绘制其时域波形的函数impz( )。
同样也提供了求离散系统响应的专用函数filter( ),该函数能求出由差分方程所描述的离散系统在指定时间范围内的输入序列作用时,产生的响应序列的数值解。
当系统初值不为零时,可以使用dlsim( )函数求出离散系统的全响应,其调用方法与前面连续系统的lsim( )函数相似。
另外,求解离散系统阶跃响应可以通过如下两种方法实现:一种是直接调用专用函数dstep( ),其调用方法与求解连续系统阶跃响应的专用函数step( )的调用方法相似;另一种方法是利用求解离散系统零状态响应的专用函数filter( ),只要将其中的激励信号看成是单位阶跃信号ε(k )即可。
三、实验内容1.已知描述系统的微分方程和激励信号e (t ) 分别如下,试用解析方法求系统的单位冲激响应h(t)和零状态响应r (t ),并用MATLAB 绘出系统单位冲激响应和系统零状态响应的波形,验证结果是否相同。
①''()4'()4()'()3()y t y t y t f t f t ++=+;()()t f t e t ε-=②''()2'()26()'()y t y t y t f t ++=;()()f t t ε= ③''()4'()3()()y t y t y t f t ++=;2()()t f t e t ε-=④如下图所示的电路中,已知1234()R R R ===Ω,121()L L H ==,且两电感上初始电流分别为12(0)2(),(0)0()i A i A ==,如果以电阻3R 上电压()y t 作为系统输出,请求出系统在激励()12()f t t ε=(v )作用下的全响应。
2.请用MATLAB 分别求出下列差分方程所描述的离散系统,在0~20时间范围内的单位函数响应、阶跃响应和系统零状态响应的数值解,并绘出其波形。
另外,请将理论值与MATLAB 仿真结果在对应点上的值作比较,并说出两者的区别和产生误差的原因。
① ()2(1)(2)()y k y k y k f k +-+-=;14()()f k k ε= ② (2)0.7(1)0.1()7(2)2(1)y k y k y k f k f k +-++=+-+;()()f k k ε= ③ 5166()(1)(2)()(2)y k y k y k f k f k --+-=--;()()f k k ε=④一带通滤波器可由下列差分方程描述:()0.81(2)()(2)y k y k f k f k +-=--, 其中()f k 为系统输入, ()y k 为系统输出。
请求出当激励为[]()1010cos(/2)10cos()()f k kn kn k ε=++(选取适当的n 值)时滤波器的稳态输出。
四、程序清单及实验结果1.已知描述系统的微分方程和激励信号e (t ) 分别如下,试用解析方法求系统的单位冲激响应h(t)和零状态响应r (t ),并用MATLAB 绘出系统单位冲激响应和系统零状态响应的波形,验证结果是否相同。
①''()4'()4()'()3()y t y t y t f t f t ++=+;()()t f t e t ε-=MATLAB 程序如下:a=[1 4 4];b=[1 3];subplot(4,1,1), impulse(b,a,4)subplot(4,1,2), step(b,a,4)p1=0.01; %定义取样时间间隔为0.01t1=0:p1:5; %定义时间范围x1=exp(-t1); %定义输入信号subplot(4,1,3),lsim(b,a,x1,t1), %对取样间隔为0.01时系统响应进行仿真 hold on; %保持图形窗口以便能在同一窗口中绘制多条曲线 p2=0.5; %定义取样间隔为0.5t2=0:p2:5; %定义时间范围x2=exp(-t2); %定义输入信号subplot(4,1,4),lsim(b,a,x2,t2), hold off运行结果如图:题1①图②''()2'()26()'()y t y t y t f t ++=;()()f t t ε=MATLAB 程序如下:a=[1 2 26];b=[1 3];subplot(4,1,1), impulse(b,a,4)subplot(4,1,2), step(b,a,4)p1=0.01; %定义取样时间间隔为0.01t1=0:p1:5; %定义时间范围x1=exp(0*t1); %定义输入信号subplot(4,1,3),lsim(b,a,x1,t1), %对取样间隔为0.01时系统响应进行仿真 hold on; %保持图形窗口以便能在同一窗口中绘制多条曲线 p2=0.5; %定义取样间隔为0.5t2=0:p2:5; %定义时间范围x2=exp(0*t2); %定义输入信号subplot(4,1,4),lsim(b,a,x2,t2), hold off %对取样间隔为0.5时系统响应进行仿真并解除保持运行结果如图:题1②图③''()4'()3()()y t y t y t f t ++=;2()()t f t e t ε-=MATLAB 程序如下:a=[1 4 3];b=[0 1];subplot(4,1,1), impulse(b,a,4)subplot(4,1,2), step(b,a,4)p1=0.01; %定义取样时间间隔为0.01t1=0:p1:5; %定义时间范围x1=exp(-2*t1); %定义输入信号subplot(4,1,3),lsim(b,a,x1,t1), %对取样间隔为0.01时系统响应进行仿真 hold on; %保持图形窗口以便能在同一窗口中绘制多条曲线 p2=0.5; %定义取样间隔为0.5t2=0:p2:5; %定义时间范围x2=exp(-2*t2); %定义输入信号subplot(4,1,4),lsim(b,a,x2,t2), hold off %对取样间隔为0.5时系统响应进行仿真并解除保持运行结果如图:题1③图④如下图所示的电路中,已知1234()R R R ===Ω,121()L L H ==,且两电感上初始电流分别为12(0)2(),(0)0()i A i A ==,如果以电阻3R 上电压()y t 作为系统输出,请求出系统在激励()12()f t t ε=(v )作用下的全响应。
MATLAB 程序如下:a=[1,0.25];b=[1];[A B C D]=tf2ss(b,a);sys=ss(A,B,C,D);t=0:0.001:20;zi=[2];x=ones(1,length(t));lsim(sys,x,t,zi);运行结果如图:题1④图2.请用MATLAB 分别求出下列差分方程所描述的离散系统,在0~20时间范围内的单位函数响应、阶跃响应和系统零状态响应的数值解,并绘出其波形。