两个变量间的相关关系

合集下载

两个连续变量之间的相关关系

两个连续变量之间的相关关系

两个连续变量之间的相关关系两个连续变量之间的相关关系,即指两个随机变量之间的相关性。

它是衡量两个连续变量之间相互依赖程度的重要指标。

在数据分析、统计学以及机器学习等领域,相关性分析是一项基础而重要的任务。

一、计算相关性系数在统计学中,通常通过相关系数来衡量两个连续变量之间的相关关系。

相关系数通常是在-1到1之间取值,其中-1表示完全的负相关关系,即两个变量之间有完全相反的关系;1则表示完全的正相关关系,即两个变量之间具有完全相同的变化趋势;而0则表示两个变量之间没有线性关系。

计算相关系数的方法有多种,其中比较常用的是皮尔逊相关系数和斯皮尔曼等级相关系数。

皮尔逊相关系数适用于连续型变量,并且假设变量服从正态分布。

斯皮尔曼等级相关系数则适用于序数型数据以及不满足正态分布的变量。

在这里以皮尔逊相关系数为例进行说明。

二、使用Python计算相关性系数在Python中,统计分析库numpy和pandas都提供了计算相关性系数的函数。

numpy提供的pearsonr函数可以计算两个变量之间的皮尔逊相关系数以及相关性显著性;而pandas提供的corr函数可以计算两个DataFrame对象中所有列的相关系数矩阵。

下面通过一个例子来说明如何使用Python计算相关系数。

```pythonimport numpy as npimport pandas as pd# 构造样本数据x = np.array([1, 2, 3, 4, 5])y = np.array([2, 4, 6, 8, 10])# 计算皮尔逊相关系数correlation, p_value = np.corrcoef(x, y)[0][1],scipy.stats.pearsonr(x, y)[0]print(f"皮尔逊相关系数: {correlation:.4f} (p-value:{p_value:.4f})")# 构造DataFrame对象df = pd.DataFrame({'x': [1, 2, 3, 4, 5], 'y': [2, 4, 6, 8, 10]})# 计算相关系数矩阵corr_matrix = df.corr()print(f"相关系数矩阵: \n{corr_matrix}")```以上代码首先构造了两个变量x和y,分别表示1到5的整数和2到10的偶数。

2.3 变量间的相关关系

2.3 变量间的相关关系

则������ =

^
66.5-4×4.5×3.5
^
������ = ������ − ������ ������ =3.5-0.7×4.5=0.35, 故线性回归方程为������ =0.7x+0.35. (3)根据线性回归方程的预测,现在生产 100 吨产品消耗的标准 煤的数量为 0.7×100+0.35=70.35, 故消耗能源减少了 90-70.35=19.65(吨).
2.3
变量间的相关关系
知识能力目标引航 1.了解相关关系、线性相关、回归直线、最小二乘法的定义. 2.会作散点图,能判断两个变量之间是否具有相关关系. 3.会求回归直线方程,并能用回归直线方程解决有关问题.
1.相关关系 (1)定义:如果两个变量中一个变量的取值一定时,另一个变量的 取值带有一定的随机性,那么这两个变量之间的关系,叫做相关关系. (2)两类特殊的相关关系:如果散点图中点的分布是从左下角到 右上角的区域,那么这两个变量的相关关系称为正相关,如果散点图 中点的分布是从左上角到右下角的区域,那么这两个变量的相关关 系称为负相关.
③代入公式计算������ , ������ 的值. ④写出回归直线方程. (2)求回归直线方程时应注意的问题:
^^
①用公式计算������ , ������ 的值时,要先算出������ ,然后才能算出������ . ②使用计算器能大大简化手工的计算,迅速得出正确的结果,但输入数 据时要细心,不能出任何差错;不同计算器的按键方式可能不同,可参考 计算器的使用说明书进行相关的计算.
^
86-4×4.5
2
=
66.5-63 =0.7, 86-81
^
利用回归方程,可以对总体进行估计,如回归方程为������ = ������ x+������ . 当 x=x0 时估计值为������0 = ������ x0+������ .

两个变量的相关关系知识点和典例

两个变量的相关关系知识点和典例

两个变量的相关关系知识点和典例1.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(回归直线y ^=b ^x +a ^必过样本点的中心(x ,y ),其它点不一定过直线只是在直线附近,这个结论既是检验所求回归直线方程是否准确的依据,也是求参数的一个依据.)(2)回归方程为y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x2=∑i =1n)(x i -x )(y i -y )∑i =1n)(x i -x )2,a ^=y -b ^x .(3)相关系数:相关系数r =∑i =1n)(t i -t )(y i -y )∑i =1n)(t i -t )2∑i =1n )(y i -y )2当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(r 的符号表明两个变量是正相关还是负相关;|r |的大小表示线性相关性的强弱.)例一.某公司借助手机微信平台推广自己的产品,对今年前5个月的微信推广费用x 与月利润y (单位:百万元)进行了初步统计,得到下列表格中的数据:经计算,微信推广费用x 与月利润y 满足线性回归方程 6.517.5y x ∧=+.求p 的值.[解] ()()11245685,3040607040555p x y p =++++==++++=+, 因为样本中心(),x y 在回归直线 6.517.5y x ∧=+上, 所以40 6.5517.55p+=⨯+,解得50p = [变式练习]已知变量x ,y 之间的线性回归方程y ^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误的是( )x 6 8 10 12 y6m32A.变量x ,y 之间呈负相关关系))))B.可以预测,当x =20时,b ^=-3.7 C.m =4))))))))))))))))))))))))D.该回归直线必过点(9,4)[解]由-0.7<0,得变量x ,y 之间呈负相关关系,故A 正确;当x =20时,y ^=-0.7×20+10.3=-3.7,故B 正确;由表格数据可知x -=14×(6+8+10+12)=9,y -=14(6+m +3+2)=11+m 4,则11+m 4=-0.7×9+10.3,解得m =5,故C 错;由m =5,得y -=6+5+3+24=4,所以该回归直线必过点(9,4),故D 正确.故选C.例二.下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量.参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,)∑i =17)(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n)(t i -t )(y i -y )∑i =1n )(t i -t )2∑i =1n )(y i -y )2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n)(t i -t )(y i -y )∑i =1n)(t i -t )2,a ^=y -b ^)t .[解] (1)由折线图中的数据和附注中的参考数据得 t =4,∑i =17)(t i -t)2=28,)∑i =17)(y i -y )2=0.55,∑i =17)(t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,∴r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17)(t i -t )(y i -y )∑i =17)(t i -t )2=2.8928≈0.103. a ^=y -b ^)t ≈1.331-0.103×4≈0.92. 所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以,预测2019年我国生活垃圾无害化处理量约为1.82亿吨.[变式练习]1.(2019·广州调研)某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y (千克)与使用某种液体肥料的质量x (千克)之间的对应数据为如图所示的折线图.(1)依据折线图计算相关系数r (精确到0.01),并据此判断是否可用线性回归模型拟合y 与x 的关系.(若|r |>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较高,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X 限制,并有如下关系:对商家来说,若某台光照控制仪运行,则该台光照控制仪产生的周利润为3)000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1)000元.若商家安装了3台光照控制仪,求商家在过去50周的周总利润的平均值.参考数据:0.3≈0.55,0.9≈0.95. 解:(1)由已知数据可得x =2+4+5+6+85=5,y =3+4+4+4+55=4.因为∑i =15)(x i -x )(y i -y )=(-3)×(-1)+0+0+0+3×1=6,∑i =15)(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15)(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15)(x i -x )(y i -y )∑i =15)(x i -x)2)∑i =15)(y i -y )2=625×2=)910≈0.95. 因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系. (2)由条件可得在过去50周里,当X >70时,共有10周,此时只有1台光照控制仪运行, 每周的周总利润为1×3)000-2×1)000=1)000(元).当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 每周的周总利润为2×3)000-1×1)000=5)000(元).当30<X <50时,共有5周,此时3台光照控制仪都运行, 每周的周总利润为3×3)000=9)000(元).所以过去50周的周总利润的平均值为1)000×10+5)000×35+9)000×550=4)600(元),所以商家在过去50周的周总利润的平均值为4)600元.例三.某机构为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.x y u∑i=18)(x i-x)2∑i=18)(x i-x)(y i-y)∑i=18)(u i-u)2∑i=18)(u i-u)(y i-y) 15.25 3.630.2692)085.5-230.30.7877.049表中u i=1x i,u=18∑i=18u i.(1)根据散点图判断:y=a+bx与y=c+dx哪一个模型更适合作为该图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的回归方程?(只要求给出判断,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程(回归系数的结果精确到0.01).(3)若该图书每册的定价为10元,则至少应该印刷多少册才能使销售利润不低于78)840元?(假设能够全部售出.结果精确到1)附:对于一组数据(ω1,υ1),(ω2,υ2),…,(ωn,υn),其回归直线υ^=α^+β^ω的斜率和截距的最小二乘估计分别为β^=∑i=1n)(ωi-ω)(υi-υ)∑i=1n)(ωi-ω)2,α^=υ-β^ω.解:(1)由散点图判断,y=c+dx更适合作为该图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的回归方程.(2)令u=1x,先建立y关于u的线性回归方程,由于d ^=∑i =18)(u i -u )(y i -y )∑i =18)(u i -u )2=7.0490.787≈8.957≈8.96, ∴c ^=y -d ^·u =3.63-8.957×0.269≈1.22, ∴y 关于u 的线性回归方程为y ^=1.22+8.96u , ∴y 关于x 的回归方程为y ^=1.22+8.96x .(3)假设印刷x 千册,依题意得10x -⎝⎛⎭⎫1.22+8.96x x ≥78.840, 解得x ≥10,∴至少印刷10)000册才能使销售利润不低于78)840元.[变式练习](2015课标Ⅰ,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费x i )和年销售量y i ))(i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw∑i=18(x i -x )2∑i=18(w i -w )2 ∑i=18(x i -x )(y i -y ) ∑i=18(w i -w )(y i -y )46.6 563 6.8 289.81.61 469108.8表中w i =√x ,w =18∑i=18w i.(1)根据散点图判断,y =a +bx 与y =c +d √x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x,y 的关系为z =0.2y −x .根据(2)的结果回答下列问题: (i)年宣传费x =49时,年销售量及年利润的预报值是多少? (ii)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ))),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑i=1n (u i -u )(v i -v )∑i=1n(u i -u )2,α^=v -β^)u .解析 (1)由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2分)(2)令w =√x ,先建立y 关于w 的线性回归方程.由于 d ^=∑i=18(w i -w )(y i -y )∑i=18(w i -w )2=108.81.6=68,c ^=y -d ^)w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w,因此y 关于x 的回归方程为y ^=100.6+68√x .(6分) (3)(i)由(2)知,当x =49时,年销售量y 的预报值 y ^=100.6+68√49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.(9分) (ii)根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68√x )-x =-x +13.6√x +20.12. 所以当√x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。

第三节 变量间的相关关系-高考状元之路

第三节 变量间的相关关系-高考状元之路

第三节 变量间的相关关系预习设计 基础备考知识梳理1.两个变量的线性相关(1)正相关:在散点图中,点散布在从到的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关:在散点图中,点散布在从 到 的区域,对于两个变量的这种相关关系,我们将它称为负相关.(3)线性相关关系、回归直线: 如果散点图中点的分布从整体上看大致在 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程(1)最小二乘法: 求回归直线使得样本数据的点到它的 的方法叫做最小二乘法.(2)回归方程:方程a x by ˆˆ+=是两个具有线性相关关系的变量的一组数据),(,),,(),,(2211n n y x y x y x 的回归方程,其中:ˆ,ˆb a是待定参数. ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-=⋅-====-∑∑-∑--∑==x b y a i y x n y x i n i i i n i b x n x x x y y x x n i i i n i n ˆˆ22211ˆ111)())((典题热身1.下列选项中,两个变量具有相关关系的是 ( )A .参加60年国庆阅兵的人数与观看第十一届全运会开幕布式的人数B .正方体的体积与棱长C .人体内的脂肪含量与年龄D .汶川大地震的经济损失与全球性金融危机的经济损失答案:C2.(2011.陕西高考)设),(,),,(),,(2211n n y x y x y x ⋅⋅⋅是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是 ( )A .直线l 过点),(y xB .x 和y 的相关系数为直线l 的斜率C .x 和y 的相关系数在O 到1之间D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同答案:A3.设有一个回归直线方程为,5.12ˆx y-=则变量x 增加一个单位 ( ) A .y 平均增加1.5个单位B .y 平均增加两个单位C .y 平均减少1.5个单位D .y 平均减少两个单位答案:C4.在一次实验中,测得(x ,y)的四组值为(1,2),(2,3),<蝴_(4,5),则y 与x 之间的回归直线方程为 ( )1ˆ.+=x yA 2ˆ.+=x yB 12ˆ.+=x yC 1ˆ.-=x yD 答案:A5.(2011.辽宁高考)调查了某地若干户家庭的年收入x (单位;万元)和年饮食支出y(单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:,321.0254.0ˆ+=x y 由回归直线方程可知,家庭年收入每增加l 万元,年饮食支出平均增加 万元.答案:0,254课堂设计 方法备考题型一 利用散点图判断两个变量的相关关系画出散点图,判断它们是否有相关关系.题型二 求回归直线方程【例2】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据;(1)请画出表中数据的散点图;(2)请根据表中提供的数据,用最小二乘法求出y 关于x 的回归方程.ˆˆˆa x b y+= 题型三 利用回归直线方程对总体进行估计【例3】某企业上半年产品产量与单位成本资料如下:(1)求出线性回归方程;(2)指出产量每增加1000件时,单位成本平均变动多少?(3)假定产量为6000件时,单位成本为多少元?技法巧点(1)线性相关关系的理解:相关关系与函数关系不同,函数关系中的两个变量间是一种确定性关系,例如正方形面积S 与边长x 之间的关系2x s =就是函数关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系,例如商品的销售额与广告费是相关关系,两个变量具有相关关系是回归分析的前提. (2)求回归方程,关键在于正确求出系数b a b aˆ,ˆ,ˆ,ˆ由于的计算量大,计算时应仔细谨慎,分层进行,避免因计算产生错误.(注意回归直线方程中一次项系数为,ˆb 常数项为,ˆa 这与一次函数的习惯表示不同.)(3)回归分析是处理变量相关关系的一种数学方法,主要解决:①确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;②根据一组观察值,预测变量的取值及削断变量取值的变化趋势;③求出回归直线方程.失误防范1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.2.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.随堂反馈 1.(20】】.江西高考)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为 ( )1-=⋅x y A 1+=⋅x y B x y c 2188+=⋅ 176=⋅y D 答案:C2.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x 具有真相关关系,回归方程为.562.166.0ˆ+=x y若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为 ( )%83.A 0072.B 0076. c %66.D 答案:A3.(2011.广东高考)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系;小李这5天的平均投篮命中率为 ;用线性 回归分析的方程,预测小李该月6号打6小时篮球的投篮命中率为答案:53.0;5.0高效作业 技能备考一、选择题1.(201-1.福州模拟)已知变量x ,y 呈线性相关关系,回归方程为,25.0ˆx y+=则变量x ,y 是( ) A .线性正相关关系B .由回归方程无法判断其正负相关C .线性负相关关系D .不存在线性相关关系答案;A2.(2011.绍兴月考)对有线性相关关系的两个变量建立的回归直线方程x b a yˆˆˆ+=中,回归系数b ˆ( ) A .可以小于0 B .大于O C .能等于O D .只能小于0答案:A3.已知x 与y 之间的一组数据:则y 与x 的线性回归方程a x b yˆˆˆ+=必过 ( ) A .点(2,2) B .点(1.5,O) C .点(1,2) D .点(1.5,4)答案:D4.(2011.泰安模拟)下表是某厂l ~4月份用水量(单位:百吨)的一组数据:散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是,ˆ7.0ˆa x y+-=则 aˆ等于( ) 5.10.A 15.5.B 2.5.c 25.5.D答案:D5.对变量x ,y 有观测数据),10,,2,1)(,( =i y x i i 得散点图(1);对变量u ,v 有观测数据),10,,2,1)(,( =i v u i i 得散点图(2),由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关 B.变量_x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关答案:C6.(2011.青岛模拟)为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为⋅21l l 、已知两人所得的试验数据中,变量x 和y 的数据的平均值都相等,且分别是s 、t ,那么下列说法正确的是 ( )A .直线1l 和2l 一定有公共点(s ,t)B .直线1l 和2l 相交,但交点不一定是(s ,t)C .必有21//l l 21.l lD 与必定重合答案:A二、填空题7.(2011.舟山适应性考试)人的身高与手的扎长存在相关关系,且满足264.31303.0ˆ-=x y(x 为身高,y 为扎长,单位:cm),则当扎长为24.8 cm 时,身高为 cm.答案:03.1858.(2011.芜湖模拟)已知三点(3,10),(7,20),(11,24)的横坐标x 与纵坐标y 具有线性关系,则其线性回归方程是 答案:42347+=x y9.(2011.丽水调研)某单位为了了解用电量y 度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程,2ˆˆˆˆ-=+=b a x b y中预测当气温为-4℃时,用电量的度数约为 答案:68三、解答题10.(2011.台州模拟)在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:由资料看y 与x 呈线性相关,试求回归方程.11.(2011.枣 庄模拟)在某地区的12~30岁居民中随机抽取了10个人的身高和体重的统计资料如下表:根据上述数据,画出散点图并判断居民的身高和体重之间是否有相关关系.12.(2011.北京高考)以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树为19的概率. (注:方差],)()()[(1222212x x x x x x n s n -++-+-=其中x 为n x x x ,,,21 的平均数)。

(完整word)两个变量的相关关系

(完整word)两个变量的相关关系

(完整word)两个变量的相关关系两个变量间的相关关系变量间的相互关系有两种:一类是确定性的函数关系,如正方形的边长和面积的关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的。

例如,学生的总成绩和他的单科成绩,一般说来“总成绩高者,单科成绩也高”,我们说总成绩和单科成绩具有相关关系。

相关关系又分为两种:(1)正相关:两个变量具有相同的变化趋势。

(2)负相关:两个变量具有相反的变化趋势。

对相关关系的理解可以从下面三个角度把握:相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系.对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系。

因此,不能把相关关系等同于函数关系.相关关系与函数关系的异同点为:相同点:均是指两个变量的关系.不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系。

函数关系是自变量与函数值之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系。

然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄。

当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断。

我们再来认识生活中的确定两个变量间的相关关系的两个例子:【例1】“名师出高徒”可以解释为教师的水平越高,学生的水平也越高。

变量间的相关关系

变量间的相关关系
这些点散布在从左下角到右上角的区域
2.正相关:在散点图中,点散布在从左下角到右上 角的区域,对于两个变量的这种相关关系,我们将 它称为正相关。
思考6:如图是高原含氧量与海拔高度的相关关系 的散点图,高原含氧量与海拔高度有何相关关系? 点的分布有何特点?
海平面以上,海拔高度 越高,含氧量越少。
点散布在从左上角到右 下角的区域内。
脂肪含量
40 35 30 25 20 15 10 5 0
20 25 30 35 40 45 50 55 60 65 年龄
思考3:上图叫做散点图,你能描述一下散点图的含 义吗?
1.散点图:在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
脂肪含量
思考4:观察散点图的大致趋势,人的年龄的与人体 脂肪含量具有什么相关关系?
大体上看,随着年龄的增加,人体中脂肪百分比也 在增加。
年龄 23 脂肪 9.5
27 39 17.8 21.2
41 25.9
45
49 50
27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思考2:为了确定年龄和人体脂肪含量之间的更明 确的关系,我们需要对数据进行分析,通过作图可 以对两个变量之间的关系有一个直观的印象.以x轴 表示年龄,y轴表示脂肪含量,你能在直角坐标系 中描出样本数据对应的图形吗?
销售价格 12.2 15.3 24.8 21.6 18.4 29.2 22
(万元)
画出数据对应的散点图,并指出销售价格与房屋面积 这两个变量是正相关还是负相关.
解: 35
30 25 20 15 10 5 0

两个变量间相关关系的举例

两个变量间相关关系的举例

两个变量间相关关系的举例1. 温度与冰淇淋销量的相关关系温度是一个影响冰淇淋销量的重要因素。

当温度升高时,人们更容易感到口渴,因此购买冰淇淋的欲望也会增加。

因此,温度与冰淇淋销量之间存在正相关关系。

2. 年龄与学习成绩的相关关系年龄与学习成绩之间存在一定的相关关系。

通常情况下,年龄越大,学生的学习经验和能力也会相应增加,因此学习成绩也有可能更好。

当然,这并不意味着年龄是唯一决定学习成绩的因素,还会受到其他因素的影响,如学习动力、学习方法等。

3. 饮食与身体健康的相关关系饮食习惯与身体健康之间存在密切的相关关系。

良好的饮食习惯可以提供身体所需的营养物质,维持身体的正常功能,降低患病的风险。

相反,不健康的饮食习惯,如高糖、高脂肪、高盐的饮食,会增加患糖尿病、高血压等慢性疾病的风险。

4. 运动与心脏健康的相关关系适度的运动与心脏健康之间存在正相关关系。

定期进行适度的身体活动可以增强心肌的收缩能力,促进血液循环,降低心脏病的风险。

相反,长期缺乏运动会导致心脏功能下降,易患心血管疾病。

5. 睡眠时间与注意力集中力的相关关系睡眠时间与注意力集中力之间存在一定的相关关系。

充足的睡眠可以提高人的注意力集中力,保持精力充沛,提高工作和学习效率。

相反,睡眠不足会导致注意力不集中,易疲劳、易犯错误。

6. 学历与收入水平的相关关系学历与收入水平之间存在一定的相关关系。

通常情况下,具有较高学历的人更容易获得高薪工作,因此收入水平相对较高。

当然,学历并不是唯一决定收入的因素,还会受到其他因素的影响,如工作经验、技能等。

7. 空气污染与呼吸道疾病的相关关系空气污染与呼吸道疾病之间存在密切的相关关系。

空气中的污染物,如PM2.5、臭氧等,会对人体的呼吸道造成刺激和损害,增加呼吸道感染和慢性呼吸道疾病的风险。

8. 金融市场与经济增长的相关关系金融市场与经济增长之间存在一定的相关关系。

金融市场的繁荣与活跃会为经济提供资金支持和融资渠道,促进企业的发展和创新,推动经济的增长。

两个变量之间的相关关系称为

两个变量之间的相关关系称为

两个变量之间的相关关系称为
统计学中,两个变量之间的相关关系被称为相关性。

它是一种检测和研究变量间关系的方法,它可以帮助研究人员探索实验结果的数据。

相关性测量两个变量的关联程度,帮助我们更多地了解被调查者中变量之间的因果关系,以及几种变量之间的结构关系。

相关性可以使企业在未来进行数据分析时,更好地推断某些事件发生的可能性。

它可以帮助研究者更深入地了解被调查者中变量之间的潜在相关性,因此可以有效地预测变量未来变化的趋势。

相关性分析也可以检查多个变量之间的关系,因此有助于确定定义变量和被调查者之间的关系,进而确定这些变量的分类组合。

另外,相关性分析还可以帮助企业识别出重要的变量,从而有效地预测业务结果。

总之,相关性可以说是统计学中一种重要的概念。

它能够有效地识别和解释变量之间的关系,并为企业在未来数据分析中应用提供重要的参考。

因此,我们可以看出,相关性对学习统计学和收集数据分析有着重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 正相关 :因变量随自变量的增大而增大,图中 的点分布在左下角到右上角的区域
• 负相关 :因变量随自变量的增大而减小,散点 图中的点分布在左上角到右下角的区域.
• 无相关性:因变量与自变量不具备相关性
小结:借助散点图可以直观判断两 个变量间的相关关系
强调:
①如果所有的样本都落在某一条函数曲线上,就用该函数 来描述变量之间的关系,即变量之间具有函数关系.
现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这 个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低。于 是,他就得出一个结论:天鹅能够带来孩子。你认为这样得 到的结论可靠吗?如何证明这个结论的可靠性?
• 没有根据说明“天鹅能够带来孩子”,
完全(例如独特的环境
脂肪含量 40 35 30 25 20 15 10 5 0 05
图1
10 15 20 25 30 35 40 45 50 55 60 65 年龄
图1
1000 800 600 400 200 0 0
1.2
1
0.8
0.6
0.4
0.2
0
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
11
图3
0
50
100
150
图2
世界是一个普遍联系 的整 体,任何事物都与其 它事物相联系
学不好数学,物理也是学不好的 小明,你数学成绩不太好,物理怎么样?
也不太好啊. ?????...
你认为老师的说法对吗?
事实上,我们在考察数学成绩对物理成绩影响的
同时,还必须考虑到其他的因素:爱好,努力程度


物理成绩


学习 兴趣
花费 时间
4. 你能体会用最小二乘法得到回归直线是如 何体现“从总体上看,各点与此直线的距离 最小”的含义的吗?
1.样本点的中心
假设样本点为(x1,y1),(x2,y2),…,(xn,yn),
记 x =n1i=n1xi, y =n1i=n1yi,
则( x , y )为样本点的中心
2. 回归直线的定义及特征
因素),即天鹅与婴儿出生率之间没有
直接的关系,因此 “天鹅能够带来孩子”
的结论不可靠。
• 可以通过试验来进行。相同的环境下将居民随机地 分为两组,一组居民和天鹅一起生活(比如家中都 饲养天鹅),而另一组居民的附近不让天鹅活动, 对比两组居民的出生率是否相同。
即学即用
1.下列关系中,是带有随机性相关关系的是( ) ①正方形的边长与面积的关系;②水稻产量与施 肥量之间的关系;③人的身高与年龄之间的关系; ④降雪量与交通事故发生之间的关系.
吸烟会损害身体的健康。但人体健康 是由很多因素共同作用的结果,既有长 寿的吸烟者,又有发现由于吸烟而引发 的患病者,吸烟与健康是一种相关关系 ,所以吸烟不一定引起健康问题。
• 但吸烟引起健康问题的可能性大,因此“健康问 题不一定是由吸烟引起的,所以可以吸烟”的 说法是不对的。
P85-练习2:
2.某地区的环境条件适合天鹅栖息繁衍,有人统计发
2.通过作图可以对两个变量之间的关系有一个直观的 印象. 将表2-3提供的数据转变成什么样的形式更能 直观的反映这种关系?
3.两个变量的相关关系有正相关和负相关,它们在散 点图上各有什么特点?
4.你还能举出一些生活中的变量成正相关或负相关的 例子吗?
正、负相关、线性相关 概念探究
• 请同学们观察这3幅图,看有什么特点?
在寻找变量间的相关关系时,统计同样 发挥了非常重要的作用,我们是通过收集大量 的数据,对数据进行统计分析的基础上,发现 其中的规律,才能对它们之间的关系作出判断. 下面我们通过具体的例子来分析
探究二 阅读课本P85---P86思考,思考并讨论以 下问题: 1.根据表2-3提供的相信,你认为人体的脂肪含量与 年龄之间有怎样的关系?
其他 因素
如果单纯从数学对物理的影响来考虑,就是 考虑这两者之间的相关关系
探究一 阅读课本P84---P85内容及课堂练习, 思考并讨论以下问题:
1.当两个变量之间是一种确定性关系时,这两个 变量之间的关系是函数关系;当两个变量之间 带有随机性时,这两个变量之间的关系是什么关系? 2.相关关系与函数关系有什么异同?
变量间相关关系: 自变量取值一定时,因变量的取 值带有一定随机性的两个变量之间的关系.
2.相关关系与函数关系有什么异同?
相同点:两者均是指两个变量间的关系.
不同点:函数关系是一种确定的关系; 相关关系是一种非确定的关系.
3. 请举出一两个现实生活中具有相关关系的例子 或成语
商品销售收入
? 广告支出经费
②如果所有的样本都落在某一条函数曲线的附近, 变量之间 具有相关关系.
③如果所有的样本都落在某一直线的附近, 变量之间具有线 性相关关系.
探究三 阅读课本P87--P89思考,思考并讨论以下 问题:
1.什么是样本点的中心?
2.什么是回归直线? 回归直线一定经过样本点的中心吗?
3.你有哪些方案可以得到回归直线?
3. 请举出一两个现实生活中具有相关关系的例子 或成语
4.思考回答P85课堂练习1、2:
探究一 阅读课本P84---P85内容及课堂练习, 思考并讨论以下问题: 1.当两个变量之间是一种确定性关系时,这两 个变量之间的关系是函数关系;当两个变量之 间带有随机性时,这两个变量之间的关系是什 么关系?
粮食产量
? 施肥量
学习成绩
?
学习时间
生活中相关成语:
“名师出高徒” , “瑞雪兆丰年” “强将手下无弱兵” “虎父无犬子” “老子英雄儿好汉,老子反动儿混蛋 ” “上梁不正下梁歪”
4.思考回答P85课堂练习1、2:
1. 有关法律规定,香烟盒上必须印上“吸烟有
害健康”的警示语。吸烟是否一定会引起健康问题? 你认为“健康问题不一定是由吸烟引起的,所以可 以吸烟”的说法对吗?
2. 下列两个变量之间的关系哪个不是函数关 系( ) A.角度和它的余弦值 B. 正方形边长和面积 C.正n边形的边数和它的内角和 D.人体的脂肪含量与年龄
以上种种问题中的两个变量之间的相关 关系,我们都可以根据自己的生活,学习经验作 出相应的判断,“经验当中有规律”,但是不管 你多有经验,只凭经验办事,还是很容易出错的, 在寻找变量间的相关关系时,我们需要一些更 为科学的方法来说明问题.
相关文档
最新文档