变量之间的相关关系

合集下载

描述两列变量之间的相关关系,可以采用的统计量

描述两列变量之间的相关关系,可以采用的统计量

描述两列变量之间的相关关系,可以采用的统计量在统计学中,用来描述两列变量之间相关关系的常见统计量有以下几种:
1. 相关系数:反映两个变量之间线性相关程度的大小。

常见的相关系数包括皮尔逊相关系数、斯皮尔曼等级相关系数、切比雪夫相关系数等。

2. 回归分析:通过对自变量和因变量之间的线性关系进行建模,来预测因变量的值。

其中,最简单的回归模型是一元线性回归,也可以使用多元线性回归等。

3. 方差分析:用于比较不同组别或条件下的平均值是否存在显著差异,从而推断两个变量之间是否存在关联。

常见的方差分析方法包括单因素方差分析、双因素方差分析等。

4. 卡方检验:用于检验两个分类变量是否独立。

它适用于定类数据的分析,可以确定一个分布是否与期望分布有显著的偏离。

5. t检验:用于比较两个样本的平均值是否存在显著差异,可根据样本特征选择不同的t检验方法,如独立样本t检验、配对样本t检验等。

变量间的相关关系

变量间的相关关系
这些点散布在从左下角到右上角的区域
2.正相关:在散点图中,点散布在从左下角到右上 角的区域,对于两个变量的这种相关关系,我们将 它称为正相关。
思考6:如图是高原含氧量与海拔高度的相关关系 的散点图,高原含氧量与海拔高度有何相关关系? 点的分布有何特点?
海平面以上,海拔高度 越高,含氧量越少。
点散布在从左上角到右 下角的区域内。
脂肪含量
40 35 30 25 20 15 10 5 0
20 25 30 35 40 45 50 55 60 65 年龄
思考3:上图叫做散点图,你能描述一下散点图的含 义吗?
1.散点图:在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
脂肪含量
思考4:观察散点图的大致趋势,人的年龄的与人体 脂肪含量具有什么相关关系?
大体上看,随着年龄的增加,人体中脂肪百分比也 在增加。
年龄 23 脂肪 9.5
27 39 17.8 21.2
41 25.9
45
49 50
27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思考2:为了确定年龄和人体脂肪含量之间的更明 确的关系,我们需要对数据进行分析,通过作图可 以对两个变量之间的关系有一个直观的印象.以x轴 表示年龄,y轴表示脂肪含量,你能在直角坐标系 中描出样本数据对应的图形吗?
销售价格 12.2 15.3 24.8 21.6 18.4 29.2 22
(万元)
画出数据对应的散点图,并指出销售价格与房屋面积 这两个变量是正相关还是负相关.
解: 35
30 25 20 15 10 5 0

变量间的相关关系及独立性检验

变量间的相关关系及独立性检验
非线性相关关系可以是单调递增、单调递减、先增后减、先减后增等多种 类型。
判断两个变量之间是否存在非线性相关关系可以通过绘制散点图或计算非 线性相关系数等方法来进行。
相关系数及其计算
相关系数是衡量两个变量之间相关关系的统计量,其计算方法有多种,其中最常用的是皮尔逊相关系 数和斯皮尔曼秩相关系数。
皮尔逊相关系数使用积差法计算,其值介于-1和1之间,用于衡量线性相关关系的强度和方向。斯皮尔 曼秩相关系数则用于衡量等级数据之间的相关性。
变量间的相关关系及独立性检验
目录
• 变量间的相关关系 • 变量间的独立性检验 • 变量间的因果关系推断 • 相关性与独立性的区别与联系
01
变量间的相关关系
线性相关关系
线性相关关系是指两个或多个变量之间存在一种可以用直 线表示的依赖关系。当一个变量发生变化时,另一个变量 也会随之发生相应的变化。
独立性检验
常用于验证两个变量之间是否存在直 接的因果关系,例如在经济学中检验 货币政策是否对经济增长有影响,或 者在心理学中检验某种疗法是否对心 理健康有影响。
THANKS。
因果关系推断的方法
基于理论的推断
01
根据相关学科的理论和知识,推断变量之间的因果关
系。
基于相关关系的推断
02 通过分析变量之间的相关系数、相关图等,推断变量之间的因果关系。基于实验的推断03
通过实验的方式,控制其他变量的影响,观察单一变
量的变化对结果变量的影响,从而推断因果关系。
因果关系推断的局限性
相关性与独立性的联系
相关性和独立性是描述变量间关系的 两种不同角度,有时一个变量可能既 与另一个变量相关,又与第三个变量 独立。
在某些情况下,相关性和独立性可能 相互转化,例如当引入第三个变量时 ,两个原本独立的变量可能变得相关 。

变量之间的相关关系

变量之间的相关关系

在直角坐标系中,任何一条直线都有相 应的方程,回归直线的方程称为回归方程.对 一组具有线性相关关系的样本数据,如果能 够求出它的回归方程,那么我们就可以比较 具体、清楚地了解两个相关变量的内在联系, 并根据回归方程对总体进行估计.
知识探究(四) :回归方程
思考 1: 回归直线与散点图中各点的位置应具 有怎样的关系?
相关关系是进行回归分析的基础,同时, 也是散点图的基础。
知识探究(二):散点图 【问题】在一次对人体脂肪含量和年龄 关系的研究中,研究人员获得了一组样 本数据:
年龄 23
脂肪 9.5 年龄 53
27
39
41
45
49
50
17.8 21.2 25.9 27.5 26.3 28.2 54 56 57 58 60 61
知识探究(一):变量之间的相关关系 思考1:考察下列问题中两个变量之间的关系: (1)商品销售收入与广告支出经费; (2)粮食产量与施肥量; (3)人体内的脂肪含量与年龄. 这些问题中两个变量之间的关系是函数关 系吗? 均不是!
上述两个变量之间的关系是一种非确定 性关系,称之为相关关系,那么相关关 系的含义如何?
3.在下列各变量之间的关系中: ①汽车的重量和百公里耗油量.②正n边形的边数与内角度数之 和.③一块农田的小麦产量与施肥量.④家庭的经济条件与学生 的学习成绩.
是相关关系的有(
(A)①②
)
(C)②③ (D)③④
(B)①③
二、填空题(每题5分,共10分)
4.(2010·广东高考)某市居民2005~2009年家庭平均收入
脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
其中各年龄对应的脂肪数据是这个年龄 人群脂肪含量的样本平均数.

两个变量之间的相关关系

两个变量之间的相关关系

i
12 3
4
5
xi
24 6
8
10
yi
64 134 205 285 360
xiyi
128 536 1 230 2 280 3 600
x =6, y =209.6,
5
5
x2i =220,xiyi=7 774
i=1
i=1
∴b^ =7 7742-205-×56××62209.6=1 44086=37.15. ∴a^=209.6-37.15×6=-13.3. 于是所求的回归直线的方程为y^ =37.15x-13.3.
3.假设关于某设备的使用年限 x 和所支出的维修费用 y(万 元)有如下的统计资料:
使用年限 x 2 3 4 5 6 维修费用 y 2.2 3.8 5.5 6.5 7.0 若由资料知 y 对 x 呈线性相关关系.试求: (1)线性回归方程y^ =bx+a 的回归系数 a,b; (2)估计使用年限为 10 年时,维修费用是多少?
≈1.27,
10
xi2-10 x 2
i=1
a^= y -b^ x ≈-30.95, 即所求的回归直线方程为y^ =1.27x-30.95. (3)当 x=160 时,y^ =1.27×160-30.95≈172,即大约冶炼
172 min.
方法点评:回归直线可以模拟两个变量之间的相关关系.我 们可以利用回归直线方程进行运算,如求函数值、研究增减性 等,通过这些运算结果进行合理的预测.这也正是回归分析的 意义所在.
典例剖析 题型一 相关关系 【例 1】 下列关系中,带有随机性相关关系的是_②__④_____. ①正方形的边长与面积之间的关系; ②水稻产量与施肥量之间的关系; ③人的身高与年龄之间的关系; ④降雪量与交通事故的发生率之间的关系. 思路点拨:根据线性相关的概念逐个判断.

11.3变量间的相关关系

11.3变量间的相关关系

4
题型三
利用回归直线方程对总体进行估计
【例3】某企业上半年产品产量与单位成本资料如下: 月份 1 2 产量(千件) 2 3 单位成本(元) 73 72
3
4 5 6
4
3 4 5
71
73 69 68
(1)求出线性回归方程;
(2)指出产量每增加1 000件时,单位成本平均变 动多少? (3)假定产量为6 000件时,单位成本为多少元? 解
ˆ =1.23x+5 B. y
D. y ˆ =0.08x+1.23
当x=4时,y=1.23×4+0.08=5.
题型分类 深度剖析
题型一 利用散点图判断两个变量的相关性
【例 1】山东鲁洁棉业公司的科研人员在 7 块并排、 形状大小相同的试验田上对某棉花新品种进行施 化肥量 x 对产量 y 影响的试验,得到如下表所示的 一组数据(单位:kg).
归分析的前提.
2.求回归方程,关键在于正确求出系数 a ˆ ,由于 ˆ, b ˆ 的计算量大,计算时应仔细谨慎,分层进 a ˆ ,b
行,避免因计算而产生错误.(注意回归直线方程 中一次项系数为 b ˆ ,常数项为 a ˆ ,这与一次函数的 习惯表示不同.)
3.回归分析是处理变量相关关系的一种数学方法.主
4
思想方法
感悟提高
方法与技巧
1.线性相关关系的理解:相关关系与函数关系不同.
函数关系中的两个变量间是一种确定性关系.例如 正方形面积S与边长x之间的关系S=x2就是函数关系. 相关关系是一种非确定性关系,即相关关系是非随 机变量与随机变量之间的关系.例如商品的销售额
与广告费是相关关系.两个变量具有相关关系是回
i 1 i 1

变量间的相关关系(全)

变量间的相关关系(全)
2、回归直线
上述直线称为回归直线。
三.回归直线
3、如何求回归直线的方程
实际上,求回归直线的关键是如何用数学的方 法来刻画”从整体上看,各点到此直线的距离最 小”.
这样的方法叫做最小二乘法.
问题归结为:a,b取什么值时Q最小,即总体和最 小.下面是计算回归方程的斜率和截距的一般 公式.
根据最小二乘法和上述公式可以求回归方程.
回归直线方程: yˆ bx a
小结
1.变量之间除了函数关系外,还有相关关系,相关 关系是一种非确定关系.
2.散点图:表示具有相关关系的两个变量的一组数据 的图形,叫做散点图.
3.正相关与负相关.
4.回归直线:如果散点图中点的分布从总体上看大致在 一条直线附近,我们就称这两个变量之间具有线性相 关关系,这条直线就叫回归直线。
(2)粮食产量与施肥量之间的关系 (3)人体内脂肪含量与年龄之间的关系
相关关系与函数关系的异同点: 相同点:均是指两个变量的关系. 不同点:函数关系是一种确定的关系;而 相关关系是一种非确定关系.
2、两个变量之间产生相关关系的原因是受许多不确 定的随机因素的影响。 3、需要通过样本来判断变量之间是否存在相关关系
__5_2____.
2.3.1变量之间的相关关系
在学校里,老师对学生经常这样说:”如果你的数 学成绩好,那么你的物理学习就不会有什么大问 题.”按照这种说法,似乎学生的物理成绩与数学 成绩之间存在着一种相关关系,这种说法有没有根 据呢?
1、变量之间除了函数关系外,还有相关关系。 例:(1)商品销售收入与广告支出经费之间的关系
根据上述数据,人体的脂肪含量与年龄之间 有怎样的关系?
1、散点图
表示具有相关关系的两个变量的一组数据的图 形,叫做散点图.

利用散点图判断两个变量的相关关系

利用散点图判断两个变量的相关关系
如高原含氧量与海拔高度 的相关关系,海平面以上, 海拔高度越高,含氧量越
少。 作出散点图发现,它们散 布在从左上角到右下角的区 域内。又如汽车的载重和汽 车每消耗1升汽油所行使的 平均路程,称它们成负相关.
O
精选课件
9
1、散点图的特点形象地体现了各数据的密切程度,因此我们可以根据散点图来判断两个 变量有没有线性关系.
2、正相关、负相关 正相关:如果散点图的点散布在从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量 的值也近似的由小变大,对于两个变量的这种相关关系,我们称为正相关
负相关:如果散点图的点散布的位置是从在左上角到右下角的区域,即一个变量的值由小变大时,另 一个变量的值也近似的由大变小,对于两个变量的这种相关关系,我们称为负相关.
31.4 30.8 33.5
年龄 60
61
脂肪 35.2 34.6
如上的一组数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?
精选课件
7
从上表发现,对某个人不一定有此规律,但对很多个体放在一起,就体现出“人体脂肪随年龄增长而增加” 这一规律.而表中各年龄对应的脂肪数是这个年龄 人群的样本平均数.我们也可以对它们作统计图、 表,对这两个变量有一个直观上的印象和判断.
下面我们以年龄为横轴, 脂肪含量为纵轴建立直
角坐标系,作出各个点, 称该图为散点图。
脂肪含量 40 35
如图:
30 25
20
15
10 5
O
20
25
30 35 40
精选课件
年龄
45 50 55
60 65
8
从刚才的散点图发现:年龄越大,体内脂肪含量越高,点的位置散布在从左下角到右上角的区域。称它们成正相关。 但有的两个变量的相关,如下图所示:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§2.3.1变量之间的相关关系
一.教学任务分析:
(1)通过具体示例引导学生考察变量之间的关系,在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.
(2) 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断.
(3) 在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解统计的作用. 二.教学重点与难点:
教学重点:利用散点图直观认识变量间的相关关系.
教学难点:理解变量间的相关关系.



1.创设情景,揭示课题
客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说,事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度,所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.
生活中存在着许多相关关系的问题:
问题1:商品销售收入与广告支出之间的关系.
问题2:粮食产量和施肥量之间的关系.
问题3:人体内的脂肪含量与年龄之间的关系.
由上述问题我们知道,两个变量之间的关系,可能是确定关系或非确定关系.当自变量取
值一定时,因变量的取值带有一定的随机性时,两个变量之间的关系称为相关关系.相关关系是一种非确定性关系,函数关系是一种确定性的关系.
2.两个变量的线性相关
问题4: 在一次对人体的脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
问题5:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:
根据上述数据,气温与热茶销售量之间的有怎样的关系?
学生活动:为了了解热茶销量与气温的大致关系,我们以横坐标x表示气温,纵坐标y表示热茶销量,建立直角坐标系,将表中数据构成的6个数对所表示的点在坐标系内标出,得到下
图,
从散点图可以看出,各散点在从左上角到右下角的区域里,因此,随着气温的升高, 热茶销售量逐步减少,图中点的趋势表明两个变量之间存在一定的关系.这种相关关系称为负相关.
3. 两个变量的线性相关性的判断
例题1:下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通系.正相关.
4.练习:
(1)下列两个变量之间的关系哪个不是函数关系( )
A .角度和它的余弦值
B.正方形边长和面积
C .正n边形的边数和它的内角和 D.
(5. 课外作业:
<随堂导练>P 43-44.。

相关文档
最新文档