运算放大器-介绍
运算放大器介绍

运算放大器基本原理及应用

运算放大器基本原理及应用一. 原理(一) 运算放大器1.原理运算放大器是目前应用最广泛的一种器件;当外部接入不同的线性或非线性元器件组成输入和负反馈电路时;可以灵活地实现各种特定的函数关系..在线性应用方面;可组成比例、加法、减法、积分、微分、对数等模拟运算电路..运算放大器一般由4个部分组成;偏置电路;输入级;中间级;输出级..图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线;一般用到的只是曲线中的线性部分..如图2所示..U -对应的端子为“-”;当输入U -单独加于该端子时;输出电压与输入电压U -反相;故称它为反相输入端..U +对应的端子为“+”;当输入U +单独由该端加入时;输出电压与U +同相;故称它为同相输入端..输出:U 0= AU +-U - ; A 称为运算放大器的开环增益开环电压放大倍数.. 在实际运用经常将运放理想化;这是由于一般说来;运放的输入电阻很大;开环增益也很大;输出电阻很小;可以将之视为理想化的;这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数..2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud U +-U -;由于A ud =∞;而U O 为有限值;因此;U +-U -≈0..即U +≈U -;称为“虚短”..由于r i =∞;故流进运放两个输入端的电流可视为零;即I IB =0;称为“虚断”;这说明运放对其前级吸取电流极小..上述两个特性是分析理想运放应用电路的基本原则;可简化运放电路的计算.. 3. 运算放大器的应用 1比例电路所谓的比例电路就是将输入信号按比例放大的电路;比例电路又分为反向比例电路、同相比例电路、差动比例电路.. a 反向比例电路反向比例电路如图3所示;输入信号加入反相输入端:图3反向比例电路电路图对于理想运放;该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差;在同相输入端应接入平衡电阻R ’=R 1 // R F ..输出电压U 0与输入电压U i 称比例关系;方向相反;改变比例系数;即改变两个电阻的阻值就可以改变输出电压的值..反向比例电路对于输入信号的负载能力有一定的要求.. b 同向比例电路同向比例电路如图4所示;跟反向比例电路本质上差不多;除了同向接地的一段是反向输入端:图4 同相比例电路电路图它的输出电压与输入电压之间的关系为:; R’=R 1 // R F只要改变比例系数就能改变输出电压;且U i 与U 0的方向相同;同向比例电路对集成运放的共模抑制比要求高.. c 差动比例电路差动比例电路如图5所示;输入信号分别加在反相输入端和同相输入端:图5 差动比例电路电路图其输入和输出的关系为:i1f O U R R U -=i1fO )U R R (1U +=可以看出它实际完成的是:对输入两信号的差运算.. 2和/差电路 a 反相求和电路其电路图如图6所示输入端的个数可根据需要进行调整:图6 反相求和电路图其中电阻R'满足:它的输出电压与输入电压的关系为:它的特点与反相比例电路相同;可以十分方便的通过改变某一电路的输入电阻;来改变电路的比例关系;而不影响其它支路的比例关系.. b 同相求和电路其电路如图7所示输入端的个数可根据需要进行调整:图7 同向求和电路图它的输出电压与输入电压的关系为:它的调节不如反相求和电路;而且它的共模输入信号大;因此它的应用不很广泛.. c 和差电路其电路图如图8所示;此电路的功能是对U i1、U i2进行反相求和;对U i3、U i4进行同相求和;然后进行的叠加即得和差结果..图8 和差电路图它的输入输出电压的关系是:由于该电路用一只集成运放;它的电阻计算和电路调整均不方便;因此我们常用二级集成运放组成和差电路..它的电路图如图9所示:图9 二级集成和差电路图它的输入输出电压的关系是:⎪⎪⎭⎫⎝⎛--+=22114433f 0R U R U R U R U R U i i i i它的后级对前级没有影响采用理想的集成运放;它的计算十分方便.. 3 积分电路和微分电路 a 积分电路其电路图如图10所示:它是利用电容的充放电来实现积分运算;可实现积分运算及产生三角波形等..图10 积分电路图它的输入、输出电压的关系为:其中: 表示电容两端的初始电压值.如果电路输入的电压波形是方形;则产生三角波形输出.. b 微分电路微分是积分的逆运算;它的输出电压与输入电压呈微分关系..电路如图11所示:图11 微分电路图R u -=0它的输入、输出电压的关系为: 4 对数和指数运算电路 a 对数运算电路对数运算电路就是是输出电压与输入电压呈对数函数..我们把反相比例电路中Rf 用二极管或三级管代替级组成了对数运算电路..电路图如图12所示:图12 对数运算电路它的输入、输出电压的关系为也可以用三级管代替二极管: b 指数运算电路指数运算电路是对数运算的逆运算;将指数运算电路的二极管三级管与电阻R 对换即可..电路图如13所示:图13 指数运算电路它的输入、输出电压的关系为: 利用对数和指数运算以及比例;和差运算电路;可组成乘法或除法运算电路和其它非线性运算电路..二无源滤波电路0101=+-=⎰t c t t i u dt u RC u r iu u S I u Re 0-=滤波电路的作用:允许规定范围内的信号通过;而使规定范围之外的信号不能通过..滤波电路的分类:低通滤波器:允许低频率的信号通过;将高频信号衰减; 高通滤波器:允许高频信号通过;将低频信号衰减;带通滤波器:允许一定频带范围内的信号通过;将此频带外的信号衰减; 带阻滤波器:阻止某一频带范围内的信号通过;允许此频带以外的信号衰减;仅由无源元件电阻、电容、电感组成的滤波电路;为无源滤波电路..它有很大的缺陷如:电路小;能力差等..为此我们要学习有源滤波电路.. 三有源滤波电路有源滤波器是指利用放大器、电阻和电容组成的滤波电路;可用在信息处理、数据传输、抑制干扰等方面..但因受运算放大器频带限制;这种滤波器主要用于低频范围..1一阶有源低通滤波器其电路如图14-a 所示;它是由一级RC 低通电路的输出再接上一个同相输入比例放大器构成; 幅频特性如图14-b 所示; 通带以外以dB 20-/十倍频衰减:图14-a 一阶有源低通滤波电路 图14-b 一阶有源低通幅频特性该电路的传递函数为: 式中RC 10=ω称为截止角频率;传递函数的模为2)(1)(o vo v A j A ωωω+=幅角为00arctg ωωϕ-=)(.. 2二阶有源滤波电路为了使输出电压以更快的速率下降;以改善滤波效果;再加一节RC 低通滤波环节;称为二阶有源滤波电路..它比一阶低通滤波器的滤波效果更好..二阶有源滤波器的典型结构如图15所示:图15 二阶有源滤波器典型结构 图中;Y 1~Y 5为导纳;考虑到U P =U N ;可列出相应的节点方程式为: 在节点A 有: 在节点B 有: 联立以上二等式得:考虑到: 则:AS 即是二阶压控电压源滤波器传递函数的一般表达式..只要适当选择Y i i =1~5;就可以构成低通、高通、带通等有源滤波器..)(ba aO N P R R R U U U +=≈。
运算放大器介绍54页PPT

vI
R1
vN -
vP
A +
vO
AV= -(Rf / R1)= -20/10= -2
R2
Vo= AV Vi=(-2)(-1)=2V
2.3 基本线性运放电路
2.同相比例运算电路
Rf
虚断 v P = v I
0vN = vN vO
R1
Rf
R1
vN
-
vI
vP
A +
vO
虚短
vN = vP
vO
=
(1
Rf R1
= 2R6m'LVIEvX
IE
=
IC3 2
1 2
vy Re
vO =KvXvY
2.5 模拟乘法器电路
2、模拟乘法器符号 vO =KvXvY
K为比例因子,一般为正。
3、乘法运算
2.5 模拟乘法器电路
4、乘方和立方运算
2.5 模拟乘法器电路
5、除法运算
根据虚端虚断有:
-
v2 =Kvx2vO
+
Vo与vx1、vx2之商成比例,实现了除法运算 只有当vx2为正极性时,才能保证运放处于负反馈状态 vx1则可正可负
iCiEIESe VT
vO=VTlnvR S VTlnIES
其中,IES 是发射结反向饱和电流,vO是vS的对数运算。
2.4 基本运算电路
4. 反对数运算电路
利用虚短和虚断,电路有
iF
R
vS =vBE
vB E
iFiEIESe VT
vS
iE T
–
+
vO
vO =iFR
vS
vO =IESe VT
运算放大器原理图

运算放大器原理图运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,它在电子电路中起着非常重要的作用。
本文将介绍运算放大器的原理图及其工作原理。
首先,让我们来了解一下运算放大器的基本结构。
运算放大器通常由一个差分输入级、一个级联放大器和一个输出级组成。
差分输入级通常由两个输入端和一个差分放大器组成,级联放大器由多个级联的放大器组成,输出级则是一个输出放大器。
运算放大器的电路图如下所示:(插入运算放大器原理图)。
在实际应用中,运算放大器通常用来放大电压信号、求和、差分运算、积分、微分等。
运算放大器具有高输入阻抗、低输出阻抗、大增益、宽带宽等特点,可以实现很多复杂的电路功能。
运算放大器的工作原理是基于反馈原理的。
在运算放大器的反馈电路中,通过外部连接的电阻、电容等元件,将部分输出信号反馈到输入端,从而实现对输出信号的控制。
通过控制反馈电路的参数,可以实现对运算放大器的增益、频率特性等进行调节。
另外,运算放大器还有一些常见的特性,比如输入偏置电流、输入偏置电压、共模抑制比、噪声等。
这些特性对于运算放大器的实际应用有着重要的影响,需要在设计电路时进行充分考虑。
在实际应用中,运算放大器广泛应用于模拟电路、数字电路、信号处理、自动控制等领域。
比如,运算放大器可以用来设计滤波器、比较器、振荡器、放大器等电路,也可以用来实现信号的调理、放大、滤波、整形等功能。
总的来说,运算放大器是一种非常重要的电子元件,它在电子电路中有着广泛的应用。
通过对运算放大器的原理图及其工作原理的了解,可以更好地应用运算放大器设计各种电路,实现各种功能。
希望本文对读者有所帮助,谢谢阅读!。
运算放大器

运算放大器(英语:Operational Amplifier,简称OP、OPA、OPAMP、运放)是一种直流耦合,差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,减法等模擬运算电路中,因而得名。
通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。
原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。
但是这并不代表运算放大器不能连接成正反馈(positive feedback)组态,相反地,在很多需要产生震荡信号的系统中,正反馈组态的运算放大器是很常见的组成元件。
运算放大器有许多的规格参数,例如:低频增益、单位增益频率(unity-gain frequency)、相位边限(phase margin)、功耗、输出摆幅、共模抑制比(common-mode rejection ratio)、电源抑制比(PSRR,power-supply rejection ratio)、共模输入范围(input common mode range)、电压摆动率(slew rate)、输入偏移电压(input offset voltage,又译:失调电压)、还有噪声等。
目前运算放大器广泛应用于家电,工业以及科学仪器领域。
一般用途的集成电路运算放大器售价不到一美元,而现在运算放大器的设计已经非常可靠,输出端可以直接短路到系统的接地端(ground)而不至于被短路电流(short-circuit current)破坏。
目录[隐藏]∙ 1 运算放大器的历史∙ 2 运算放大器的基础o 2.1 电路符号o 2.2 理想运算放大器的操作原理▪ 2.2.1 开回路组态▪ 2.2.2 负反馈组态▪ 2.2.2.1 反相闭回路放大器▪ 2.2.2.2 非反相闭回路放大器▪ 2.2.3 正反馈组态∙ 3 实际运算放大器的局限o 3.1 直流的非理想问题▪ 3.1.1 有限的开回路增益▪ 3.1.2 有限的输入阻抗▪ 3.1.3 大于零的输出阻抗▪ 3.1.4 大于零的输入偏压电流▪ 3.1.5 大于零的共模增益o 3.2 交流的非理想问题o 3.3 非线性的问题o 3.4 功率损耗的考量∙ 4 在电路设计中的应用∙ 5 直流特性∙ 6 交流特性∙7 运算放大器的应用∙8 741运算放大器的内部结构o8.1 电流镜与偏压电路o8.2 差分输入级o8.3 增益级o8.4 输出级∙9 CMOS运算放大器的内部结构∙10 其他应用∙11 参见∙12 参考资料与附注∙13 外部链接[编辑]运算放大器的历史第一个使用真空管设计的放大器大约在1930年前后完成,这个放大器可以执行加与减的工作。
运算放大器电路原理

运算放大器电路原理运算放大器(Operational Amplifier,简称Op-Amp)是一种极为重要的电子元器件,广泛应用于各种电路中。
它具有高增益、差分输入、单端输出等特点,能够放大电压、电流和功率等信号,并提供微弱信号的放大和处理功能。
本文将介绍运算放大器的基本原理及其电路结构。
一、运算放大器的基本原理运算放大器是一个多元件集成电路(IC),通常由几个晶体管、电阻和电容器等元件组成。
它的核心部分是一个差分放大器,具有高增益特性。
运算放大器的输出电压与输入电压之间的关系可以通过下面的公式表示:Vout = Av (V+ - V-)其中,Vout为输出电压,Av为放大器的开环增益,V+和V-分别为非反相输入和反相输入。
二、运算放大器的电路结构运算放大器的电路图可以简化为以下几个主要部分:1.差动放大器:差动放大器是运算放大器的核心部分,它由两个输入电源、两个输入电容和两个晶体管等电路组成。
它的作用是将输入信号进行差分放大,增益高达几千倍。
2.电流镜:电流镜是一个由晶体管组成的电流源,用于提供稳定的电流输出。
它的作用是保持差动放大器的工作点稳定,使得差动放大器的输出可以线性放大。
3.级联放大器:级联放大器由多个差分放大器组成,用于提高整个运算放大器的放大倍数。
每个差分放大器都会放大之前的放大器的输出信号。
4.反馈网络:反馈网络是运算放大器的重要部分,通过它可以实现对输出信号进行控制和调整。
反馈网络可以分为正反馈和负反馈两种形式,具体的选择取决于应用的要求。
三、运算放大器的应用运算放大器在电子电路中具有广泛的应用,主要包括以下几个方面:1.信号放大:运算放大器可将输入信号放大到所需的幅度,用于增强微弱信号。
2.滤波:运算放大器可以配合电容器和电阻等元件,构成滤波电路,用于滤除不需要的频率成分,提取特定频率的信号。
3.比较器:运算放大器可以作为比较器使用,用于判断输入信号的大小关系,并输出相应的逻辑电平。
运算放大器基本知识

运算放大器基本知识运算放大器基本知识一、引言在现代电子技术领域,运算放大器是一种广泛应用的重要电路元件。
它具有高输入阻抗、低输出阻抗、可变增益和线性放大等特点,在信号处理、自动控制、仪器仪表以及通信等领域都扮演着举足轻重的角色。
本文将从运算放大器的分类、基本原理和应用等方面进行介绍,希望读者可以对运算放大器有一个全面的了解。
二、运算放大器的类别根据运算放大器的基本结构和性质,可以将其分为两大类别:开环运算放大器和闭环运算放大器。
1. 开环运算放大器开环运算放大器是指将输入信号直接送入放大器的输入端口,而输出信号则从放大器的输出端口取出的一种极简化模型。
在此模型中,放大器没有任何反馈电路,因此其输入阻抗较高,输出阻抗较低,增益较大。
只是由于放大器的增益不稳定,无法满足一些实际应用的要求,因此常常需要通过反馈电路来稳定其增益。
2. 闭环运算放大器闭环运算放大器是在开环运算放大器基础上加入了反馈电路,并将输出信号的一部分反馈给输入端口的一种信号放大器。
闭环运算放大器利用反馈电路来精确控制其增益和频率响应,因此具有更好的稳定性和线性特性。
其应用范围较广泛,是我们日常生活中常见的放大器类型。
三、运算放大器的基本原理运算放大器的基本原理是通过差分输入信号对输入信号进行放大和处理。
它由两个输入端口(非反相端口和反相端口)、一个输出端口和一个电源端口组成。
1. 差分输入差分输入是指在运算放大器的非反相输入端口和反相输入端口之间所提供的输入信号。
当在非反相端口输入正电压信号,反相端口输入负电压信号时,差分输入就产生了。
差分输入是运算放大器放大和处理信号的关键所在,差分输入的大小和极性决定着输出信号的变化。
2. 开环增益开环增益是指运算放大器在没有反馈电路作用下的增益。
根据运算放大器的特性,其开环增益一般较大,通常可达几千至几百万倍。
3. 反馈反馈是指将部分输出信号送回至输入端口,以调节放大器的增益和稳定其性能的一种电路。
运算放大器

运算放大器(英语:Operational Amplifier,簡稱OP、OPA、OPAMP、运放)是一种直流耦合,差模(差動模式)輸入、通常為單端輸出(Differential-in, single-ended output)的高增益(gain)電壓放大器,因为刚开始主要用于加法,減法等類比运算电路中,因而得名。
通常使用運算放大器時,會將其輸出端與其反相輸入端(inverting input node)連接,形成一負反馈(negative feedback)組態。
原因是運算放大器的電壓增益非常大,範圍從數百至數萬倍不等,使用負回授方可保證電路的穩定運作。
但是這並不代表運算放大器不能連接成正反馈(positive feedback)組態,相反地,在很多需要產生震盪訊號的系統中,正回授組態的運算放大器是很常見的組成元件。
运算放大器有许多的規格参数,例如:低频增益、单位增益频率(unity-gain frequency)、相位邊限(phase margin)、功耗、输出摆幅、共模抑制比(common-mode rejection ratio)、电源抑制比(PSRR,power-supply rejection ratio)、共模输入范围(input common mode range)、電壓擺動率(slew rate)、输入偏移電壓(input offset voltage,又譯:失调电压)、还有雜訊等。
目前運算放大器廣泛應用於家電,工業以及科學儀器領域。
一般用途的積體電路運算放大器售價不到一美元,而現在運算放大器的設計已經非常可靠,輸出端可以直接短路到系統的接地端(ground)而不至於被短路電流(short-circuit current)破壞。
目录[隐藏]∙ 1 運算放大器的歷史o 1.1 運算放大器的里程碑∙ 2 運算放大器的基礎o 2.1 電路符號o 2.2 理想運算放大器的操作原理▪ 2.2.1 Golden Rules▪ 2.2.2 開迴路組態▪ 2.2.3 負回授組態▪ 2.2.3.1 反相閉迴路放大器▪ 2.2.3.2 非反相閉迴路放大器▪ 2.2.4 正回授組態∙ 3 實際運算放大器的侷限o 3.1 直流的非理想問題▪ 3.1.1 有限的開迴路增益▪ 3.1.2 有限的輸入阻抗▪ 3.1.3 大於零的輸出阻抗▪ 3.1.4 大於零的輸入偏壓電流3.1.5 大於零的共模增益o 3.2 交流的非理想問題o 3.3 非線性的問題o 3.4 功率損耗的考量∙ 4 在電路設計中的應用∙ 5 直流特性∙ 6 交流特性∙7 運算放大器的應用∙8 741運算放大器的內部結構o8.1 電流鏡與偏壓電路o8.2 差分輸入級o8.3 增益級o8.4 輸出級∙9 CMOS運算放大器的內部結構∙10 其他應用∙11 參見∙12 參考資料與附註∙13 外部鏈接以DIP-8型式封裝的積體電路運算放大器1960年代晚期,仙童半導體(Fairchild Semiconductor)推出了第一個被廣泛使用的積體電路運算放大器,型號為μA709,設計者則是鮑伯·韋勒(Bob Widlar)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vN = vP
vS1 R1
– N
vO
vP = 0 v S1 - v N v S2 - v N = v N - v O
+ P
R1
R2
Rf
叠若加定R-1理v=OR =2RR=1fRvfS1则RR有f2 vS-2vO=vS1vS2
反相放大器派生 同相放大器派生?
2.3 基本线性运放电路
例:设计一加减运算电路 设计一加减运算电路,使 Vo=2Vi1+5Vi2-10Vi3 解:用双运放实现
2.3 基本线性运放电路
VN1
VN2
(VN1 – VN2 ) = (V3– V4) *(R1 /(2*R2 +R1)) VO= -V3*(R3 / R4)+V4*(R4 / (R3+R4 ))*(R4/R3 +1)
2.3 基本线性运放电路
运算电路
4. 加法电路
根据虚短、虚断得:
R2 vS2
Rf iI
R3
vo
特例
当
Rf = R3 , R1 R2
则
vO
=
Rf R1
(vi2
vi1)
若继续有 Rf =R1, 则 vO=vi2vi1
减法器
2.3 基本线性运放电路
例1:求电路的电压放大倍数Avf
R3
Rf
R1
K
R2
(VS – VK ) /R1 = (VK– 0) /R2 + (VK– VN) /R3
(VK – VN ) /R3 = (VN– VO) /Rf
R1
Rf
虚短
vN = vP
平衡电阻 R2
R2
vO
=
Rf R1
vI
输出与输入反相
特例
Rf=R1 Vo=-Vi 反号器
2.3 基本线性运放电路
三相端虚地,故共模输入可视为0,对运放共模抑制比要求低
• 输出电阻小,带负载能力强
• 要求放大倍数较大时,反馈电阻阻值高,稳定性差。
虚断 vP = vI
0vN = vN vO
R1
Rf
R1
vN
-
vI
vP
A +
vO
虚短
vN = vP
vO
=
(1
Rf R1
)vI
输出与输入同相
特例
vN
R1=∞ Vo=Vi 电压跟随器
-
vP
A +
vO
vI
2.3 基本线性运放电路
2.同相比例运算电路
特点: • 输入电阻高,输出电阻小,带负载能力强(P30 图2.3.3) • V-=V+=Vi,所以共模输入等于输入信号,对运放的共模 抑 制比要求高
如果要求放大倍数100,R1=100K,Rf=10M
Rf
例1. R1=10k , Rf=20k ,
Vi =-1V。求:Vo
vI
R1
vN -
vP
A +
vO
AV= -(Rf / R1)= -20/10= -2
R2
Vo= AV Vi=(-2)(-1)=2V
2.3 基本线性运放电路
2.同相比例运算电路
Rf
第二章 运算放大器
1. 理想运算放大器: 2. 线性区 3. 非线性区(正、负饱和输出状态) 运放工作在非线性区的条件: 电路开环工作或引入正反馈!
运放工作在非线性区的分析方法在第九章讨论
2.3 基本线性运放电路
三种基本组态
Rf
1.反相比例运算电路
vI
R1
vN -
虚断
vP = 0
vP
A +
vO
vI vN =vN vO
T型网络反相比例运算电路
0
i1
i1 =i2
i1
=
uI R1
= uM R2
uM =R R12 uI
i3
=uM R3
= R2 R1R3
uI
又 i4=i2 i3=i1 i3 uO=i2R2i4R4 =i1R2(i1i3)R4
uO=u RI1R2(u RI1R R 1R 23uI)R4 uo=R2R 1R4uI R R2 1R R3 4uI
例2. R1=10k , Rf=20k ,
Rf
Vi =-1V。求:
R1
vN
Av=1+
Rf =1+20/10=3 R1
-
vP
A +
vI
vO
Vo= Av Vi=(3)(-1)= -3V
2.3 基本线性运放电路
3.差分式放大电路
虚断
vi1vN =vNvO
R1
Rf
vi2 vP = vP 0
R2
R3
R1 vi1
_
vi2
+
R2
R3
虚短 vN = vP
vO=(R 1R 1R f)R (2R 3R 3)vi2R R 1 f vi1
Rf vo
2.3 基本线性运放电路
Rf
3.差分式放大电路
叠加定理 Vi1单独
R1 vi1
_
Vi2单独
vi2
+
R2
vO=(R 1R 1R f)R (2R 3R 3)vi2R R 1 f vi1
= v s t = t (V ) RC 5
R=10K
2.4 基本线性运放电路
应用举例:
VS
1
vO
= RC
vSdt
0
t
Vo
输入方波,输出是三角波。
0
t
2.4 基本运算电路
了解
2.4 基本线性运放电路
了解
P39 例2.4.3
例 已知: vc (0)=0 ,画输出电压波形。例2.4.3
解:(1) t: 0—t1
C=5nF
1t
v o = RC 0 v s dt
vN = vP vP = 0
VO =-2.5Vs
2.3 基本线性运放电路
例2:求电路的电压放大倍数Avf vi
v3
=
R4 R3 R4
vo
v+1 A1 R8
R7
R1
vo3
=
1
R6 R5
v3
vo3
A3
R6
R2 vo
A2
R3
v+3
R4
v1
=
R8 R8 R7
vo3
R5
A vf=v vo i = R 3R 4R 4 R 5R 5R 6 R 7R 8R 8
当R3=∞时
uO=R2R 1R4uI =R R1 f uI
2.4 基本线性运放电路
1. 积分电路
“虚短” vN = vP
“虚断”
vS - vN = C d (vN - vO )
R
dt
vP = 0
设电容器C的初始电压为零,则
1
vO
= RC
vSdt
(积分运算)
式中,负号表示vO与vS在相位上是相反的。
第二章 运算放大器
概述
1.理想运算放大器:
开环电压放大倍数 AV0=∞
差摸输入电阻
Rid=∞
输出电阻
R0=0
第二章 运算放大器
1.理想运算放大器: 2. 线性区
为了扩大运放的线性区,给运放电路引入负反馈:
理想运放工作在线性区条件 电路中有负反馈!
运放工作在线性区分析方法 虚短(UP=UN) 虚断(iP=iN=0)
Vi1 R1 Vi2 R2
R3
Rf1
-
A1
+
Vi3 R5 R4
Vo1
R6
Rf2
-
A2
+
Vo
如果选Rf1= Rf2 =100K,且R4= 100K 则:R1= 50K R2= 20K R5= 10K 平衡电阻 R3= R1// R2// Rf1= 12.5K
R6= R4// R5// Rf2= 8.3K