(高分宝典)五年级上册数学期末总复习知识点
五年级上册数学期末知识点复习资料

第一单元小数乘法1.小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1.5×3表示求1.5的3倍是多少或求3个1.5的和是多少的简便运算。
计算方法:小数乘整数,先按照整数乘法的计算方法计算,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
若积的末尾有0可以去掉。
2.小数乘小数(P4、5)的意义——就是求这个数的十分之几、百分之几,、千分之几…是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:计算小数乘法,把小数乘法转化成整数乘法进行计算;看因数中共有几位小数,就从积的右边起数出几位点上小数点。
积的小数位数不够时,需要添0补位;末尾有0的要把0去掉。
注意:(1)计算结果发现小数末尾有0的,要先点小数点,再把0去掉。
顺序不可调换。
(2)积的小数位数等于两个因数的小数位数之和。
3.小数乘法中积的大小规律(1)(P8):一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小;一个数(0除外)乘1,积等于原来的数。
4.求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法。
注意:(1)保留a 位小数,就看第a+1位,再用四舍五入的方法取值。
保留整数:表示精确到个位,看十分位上的数;保留一位小数:表示精确到十分位,看百分位上的数;保留两位小数:表示精确到百分位,看千分位上的数;……(2)按实际需要用“四舍五入法”保留一定的小数位数,求积的近似值。
(3)计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
5.积的扩大缩小规律:1)在乘法里,一个因数不变,另外一个因数扩大(或缩小)a倍,积也扩大(或缩小)a倍。
2)在乘法里,一个因数扩大a倍,另外一个因数扩大(或缩小)b倍,积就扩大(或缩小)a×b 倍。
3)在乘法里,一个因数缩小a倍,另外一个因数缩小b倍,积就缩小a×b倍。
五年级上册数学知识点期末复习归纳总结-1500字

五年级上册数学知识点期末复习归纳总结-1500字五年级上册数学知识点期末复习归纳总结数学是一门非常重要的学科,它不仅仅是一门学科,更是我们日常生活中必不可少的工具。
五年级上册数学课程内容较为丰富,包括了整数、分数、小数、图形的认识、面积和周长的计算等内容。
下面,我将对五年级上册数学的知识点进行归纳总结。
一、整数整数是由自然数、0和负数组成的数集。
我们要掌握整数的概念、整数的比较、整数的运算和整数在实际问题中的应用。
1. 整数的比较:整数的比较需要掌握大小关系和绝对值的概念。
2. 两个整数的加减法:两个整数的加法是将两个整数的绝对值相加,符号遵循同号相加异号相减的原则。
两个整数的减法是将减数的相反数加到被减数上。
3. 积和商的意义:两个整数的乘法是将两个整数的绝对值相乘,符号遵循异号相乘得负数,同号相乘得正数的原则。
两个整数的除法是将除数绝对值和被除数绝对值相除,符号遵循异号相除得负数,同号相除得正数的原则。
4. 整数的应用:整数在实际问题中的应用主要涉及温度、海拔、债务等方面的计算。
二、分数分数是数的一种表示形式,由分子和分母两部分组成。
我们要掌握分数的概念、分数的读法、分数的比较、带分数和假分数、分数的约分和增分、分数的加减法和乘除法。
1. 分数的读法:分子大于分母时,读为整数部分加分数部分;分子小于分母时,读为分子部分除以分母。
2. 分数的比较:分数的比较需要将分数的分母统一,然后比较分子的大小。
3. 带分数和假分数:带分数是整数和真分数的和,假分数是分子大于分母的分数。
4. 分数的约分和增分:分数的约分是将分子和分母同时除以相同的数使其最简,分数的增分是在分子和分母同时乘以相同的数使其扩大或缩小。
5. 分数的加减法:分数的加法需要将分数的分母统一,然后将分子相加;分数的减法需要将分数的分母统一,然后将分子相减。
6. 分数的乘除法:分数的乘法是将分子的乘积作为新的分子,分母的乘积作为新的分母;分数的除法是将被除数的分子乘以除数的倒数作为新的分子,被除数的分母乘以除数的分子作为新的分母。
小学五年级上册数学期末解析及核心知识点总结与复习

小学五年级上册数学期末解析及核心知识点总结与复习一、数的认识与运算1. 整数在小学五年级上册数学中,学生将学习到整数的概念及其表示方法。
整数的引入将使学生能够更好地理解数轴,掌握数的相对大小关系,并能进行简单的加减法运算。
2. 分数分数是小学五年级上册数学的重要内容之一。
学生会学习到分数的定义、分数的大小比较、分数的化简和分数的加减法运算等。
分数的掌握将在后续的学习中发挥重要作用。
3. 小数在小学五年级上册数学中,小数是另一个重要的概念。
学生将学习到小数的引入、小数的大小比较、小数的加减法运算和小数的转化等内容。
小数的学习将帮助学生更好地理解数的连续性和数轴上的划分。
二、几何图形与测量1. 平面图形小学五年级上册数学中,学生将学习平面图形的分类、性质和特点。
包括正方形、长方形、三角形、圆等的认识与判定,以及了解它们的周长和面积的计算方法。
2. 空间图形空间图形是小学五年级上册数学中的重点内容。
学生将学习到不同形状的立体图形,并了解它们的名称、性质和特点,以及对它们的体积进行简单的计算。
3. 刻度尺与直尺学生将学会使用刻度尺和直尺进行尺寸的测量和绘制简单的图形。
通过实践操作,学生能够更好地理解长度单位和尺寸概念。
三、数据统计与概率1. 统计与图表小学五年级上册数学中,学生将学习到数据统计的方法和图表的制作。
学生将学会使用条形图、折线图和圆饼图等图表,对所给数据进行展示和比较。
2. 概率概率是小学五年级上册数学的一部分。
学生将学会使用简单的实践和观察,对事件的发生进行估计和预测。
通过概率的学习,学生将培养一定的数学推理能力和判断能力。
综上所述,小学五年级上册数学课程中的核心知识点主要包括数的认识与运算、几何图形与测量以及数据统计与概率。
通过系统的学习,学生将对数学的基础知识有更深入的理解和掌握。
而且这些知识点的学习也将为学生打下扎实的数学基础,为进一步学习提供有力支持。
在期末考试前的复习中,学生可以根据自己的实际情况,有针对性地进行重点知识的巩固和习题的练习,以提高数学应试能力。
小学数学五年级上册期末总复习要点

小学数学五年级上册期末总复习要点第一单元小数乘法1、小数乘法的计算方法:先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的右边起,数出几位,点上小数点。
当积的位数不够时,用 0 补位,再点上小数点。
2、两个小数相乘的积的一般规律:两个不为 0 的数相乘,当一个因数比 1 小,它们的积比另一个因数小;当一个因数比 1 大,它们的积比另一个因数大;当一个因数等于 1,它们的积等于另一个因数。
3、小数乘法的估算:通常是把不是整个、整十、整百的数看成与它接近的整个、整十、整百的数后再估算。
关键:是化繁为简,能方便计算。
4、求积的近似值:通常是根据题目要求或实际需要,确定应该保留几位小数,用“四舍五入”法保留一定的小数位数,求出积的近似值。
5、解决问题:分析题中的数量关系,根据数量关系列出算式,再算出结果。
如本单元典型数量关系(1)读天然气表、电表或水表,算本月的费用通常是:①本月读数-上月读数实际用量②单价×实际用量本月费用(2)出租车计费,通常有:①起步价规定路程以外按一定单价计价的出租车费一共要付的费用②演变:(一共要付的费用-起步价)÷ 起步价规定路程外的单价起步价包括的路程总路程注:上网费、停车费与出租车费道理相通。
(3)工程问题中,通常有:工作效率×工作时间工作总量演变一:工作效率×工作时间×工作队数工作总量演变二:工作总量÷工作时间÷工作队数工作效率演变三:工作总量÷工作效率÷工作队数工作时间注:每一个基本的数量关系都可以有很多不同的演变方式。
第二单元图形的平移、旋转与对称1、图形平移后形状、大小都不变,只是位置发生了变化。
描述图形的平移路线时要说清楚图形平移的方向和平移的距离。
画平移后的图形的方法:平移前,先确定一个点,看这个点会平移到哪儿,保证平移的格数正确;二是注意看原来的图中的每条线段各占几格,保证图形和原来一样。
五年级数学上册期末复习知识点归纳

五年级数学上册期末复习知识点归纳一、内容概述亲爱的小朋友们,五年级数学上册的期末复习就要开始了,让我们一起回顾一下本学期我们学过的知识点吧!这份复习知识点归纳就是为了帮助大家更好地回顾和巩固所学内容,让我们一起加油,迎接期末考试吧!首先我们回顾了基础数学知识,包括数的认识、数的运算、分数的知识等。
这些都是数学的基础,也是我们日常学习和生活中不可或缺的部分。
接下来我们学习了图形的知识,大家通过观察和操作,了解了各种各样的图形,学会了计算图形的面积和周长。
这些知识不仅帮助我们更好地理解周围的世界,还能在我们的生活中找到实际应用。
此外我们还学习了数据的整理和表示,通过收集、整理和分析数据,我们可以更好地了解周围的世界,做出更明智的决策。
本学期我们还接触了一些有趣的数学广角内容,包括找次品、搭配问题等等。
这些内容不仅让我们感受到数学的趣味性,还锻炼了我们的逻辑思维能力。
二、整数和小数的复习转眼间我们又迎来了五年级数学上册的期末复习,这次我们重点来谈谈关于整数和小数的知识点。
同学们你们准备好了吗?我们知道整数就是我们常见的正数、负数和零。
比如我们在数轴上看到的那些点,都代表了一个整数。
另外我们要知道整数的运算规则,无论是加法还是减法,都需要按照规则来进行。
对于小数来说,它的本质其实是一种特殊的分数。
我们需要记住小数的基本性质,比如小数点的位置如何变化会影响到数值的大小等。
在复习整数和小数的过程中,我们要特别注意一些常见的错误点。
比如有些同学在整数除法中可能会忽视余数的问题,或者在处理小数时混淆了小数点位置的变化。
这些都是我们在复习时需要特别注意的地方,同时我们也要熟练掌握整数和小数的转换方法,这对于解决一些实际问题非常有帮助。
此外我们还需要通过大量的练习来巩固知识,练习不仅可以让我们更好地理解和掌握知识点,还能提高我们的计算速度和准确性。
所以同学们一定要认真完成老师布置的练习任务,做好笔记总结自己的错误并改正。
五年级上册数学期末知识点归纳

五年级上册数学期末知识点归纳1. 小数与分数的相互转换1.1 小数转分数方法一:直接观察。
将小数化为分数时,如果小数点后有1位数,则化为分数时分母为10;如果小数点后有2位数,则化为分数时分母为100,其他以此类推。
例如:$0.3=\\frac{3}{10}$,$0.25=\\frac{25}{100}=\\frac{1}{4}$方法二:数学运算。
将小数化为分数时,先将小数化为整数,然后将整数与分母构成一个分数。
例如:$0.8=8÷10=\\frac{8}{10}=\\frac{4}{5}$1.2 分数转小数分数转小数的方法很简单,就是将分子除以分母。
例如,$\\frac{3}{5}=0.6$,$\\frac{1}{4}=0.25$。
注意:对于循环小数,需要使用长除法或者其他特殊的方法进行转换。
2. 有理数的加减运算2.1 有理数的加法有理数加法的规律:异号相加取相反数,同号相加相加取符号不变的绝对值。
例如:$$ \\begin{aligned} 2+(-3)&=-1\\\\ 2+4&=6\\\\ -2+(-3)&=-5\\end{aligned} $$2.2 有理数的减法有理数减法的规律:先变减为加,再按加法规律进行计算。
例如:$$ \\begin{aligned} 2-(-3)&=2+3=5\\\\ -2-(-3)&=-2+3=1 \\end{aligned} $$3. 等式的性质及应用3.1 等式的性质等式的性质:•等式两边加减同一个数或同一个式子,等式仍成立;•等式两边乘除同一个数或同一个式子不等于零,等式仍成立。
例如:$$ \\begin{aligned} a=b\\Rightarrow a+c=b+c\\\\ a=b\\Rightarrowa÷c=b÷c\\\\ ab=ac\\Rightarrow b=c \\end{aligned} $$3.2 等式的应用等式的应用:•用已知等式解方程;•将一个式子化为已知的等式形式。
五年级上册数学期末全面复习重难点

五年级上册数学期末全面复习重难点在五年级上册的数学学习过程中,有许多知识点和概念可能会让学生感到困惑。
为了帮助大家全面复习并掌握这些重难点,本文将围绕数学的各个章节展开讲解,并给出相应的解题技巧和注意事项。
一、整数运算在整数运算中,加法、减法、乘法和除法是最基本的四则运算。
在计算整数运算时,我们需要注意以下几个重点:1. 整数的加法和减法:当两个整数同号时,直接将绝对值相加或相减,并保持符号不变;当两个整数异号时,先取绝对值相减,然后符号与较大绝对值的整数保持一致。
2. 整数的乘法:同号相乘得正,异号相乘得负。
3. 整数的除法:同号相除得正,异号相除得负。
二、小数的运算小数的运算包括小数加减法、乘法以及除法。
在进行小数运算时,我们需要注意以下几个重点:1. 小数的加法和减法:首先将小数点对齐,然后按照整数的运算方式进行计算,最后确定小数点的位置。
2. 小数的乘法:先按照整数的乘法规则进行计算,然后根据小数位数的和确定小数点的位置。
3. 小数的除法:首先将被除数和除数都乘以合适的倍数,使除数成为整数,然后按照整数的除法规则进行计算,最后确定小数点的位置。
三、分数的运算分数的运算包括分数的加减、乘法以及除法。
在进行分数运算时,我们需要注意以下几个重点:1. 分数的加法和减法:首先找到两个分数的公共分母,并将分数相应地化简为相同的分母,然后按照整数的加减法规则进行计算,最后根据需要化简结果。
2. 分数的乘法:将两个分数的分子和分母分别相乘,然后根据需要进行化简。
3. 分数的除法:将除数倒置,然后按照分数乘法的规则进行计算。
四、几何图形几何图形是数学中的一个重要部分,包括平面图形和立体图形。
下面我们来复习一些常见的几何图形及其性质:1. 矩形:四边都相等且相互平行,对角线相等。
2. 正方形:四边都相等且相互平行,对角线相等,对角线垂直。
3. 三角形:根据边长和角度的不同,可以分为等边三角形、等腰三角形和普通三角形。
五年级上册数学复习重点_数学复习重点

五年级上册数学复习重点_数学复习重点五年级上册数学复习重点_数学复习重点漫长的学习生涯中,大家都没少背知识点吧?知识点也可以通俗的理解为重要的内容。
想要一份整理好的知识点吗?以下是小编精心整理的五年级上册数学复习重点,欢迎阅读与收藏。
五年级上册数学复习重点观察物体1、正确辨认从上面、前面、左面观察到物体的形状。
2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。
3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。
4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
5、从不同的位置观察,才能更全面地认识一个物体。
小数除法1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。
商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。
3、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
被除数不变,除数缩小,商扩大。
③被除数不变,除数缩小,商扩大。
6、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级数学上册期末复习知识点归纳第一单元小数乘法1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
一个数(0除外)乘1的数,积就得原来的数。
4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。
,商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。
10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
循环节:一个循环小数的小数部分,依次不断重复出现的数字。
如6.3232……的循环节是32.14、小数部分的位数是有限的小数,叫做有限小数。
小数部分的位数是无限的小数,叫做无限小数。
第三单元观察物体15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元简易方程16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
17、a×a可以写作a•a或a ,a 读作a的平方。
2a表示a+a18、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
19、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
20、10个数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商21、所有的方程都是等式,但等式不一定都是等式。
22、方程的检验过程:方程左边=……23、方程的解是一个数;=…… 解方程式一个计算过程。
=方程右边所以,X=…是方程的解。
第五单元多边形的面积23、公式:24、长方形:周长=(长+宽)×2 字母公式:C=(a+b)×2长=周长÷2-宽宽=周长÷2-长面积=长×宽 S=ab25、正方形:周长=边长×4 C=4a面积=边长×边长 S=a26、平行四边形:面积=底×高 S=ah底=面积÷高 a = S ÷ h高=面积÷底27、三角形:面积=底×高÷2 字母公式: S=ah÷2底=面积×2÷高;高=面积×2÷底28、梯形:面积=(上底+下底)×高÷2 S=(a+b)h÷2高=面积×2÷(上底+下底)h = 2 S ÷ a上底+下底=面积×2÷高 a + b= 2 S ÷h上底=面积×2÷高-下底, a = 2 S ÷ h - b下底=面积×2÷高-上底 b =2 S ÷ h - a1、长方形周长=(长+宽)×2 C = 2 ( a + b )2、长方形面积=长×宽 S = a b3、正方形周长=边长×4 C = 4 a4、正方形面积=边长×边长 S = a 25、平行四边形面积=底×高 S = a h6、平行四边形底=面积÷高7、平行四边形高=面积÷底h = S ÷ a8、三角形面积=底×高÷2 S = a h ÷ 29、三角形底=面积×2÷高 a =10、三角形高=面积×2÷底 11、梯形面积=(上底+下底)×高÷2 S = ( a + b ) h ÷ 212、梯形高=梯形面积×2÷(上底+下底)h = 2 S ÷( a + b )13、梯形上底=梯形面积×2÷高-下底 14、梯形下底=梯形面积×2÷高-上底29、平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
30、三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷226、梯形面积公式推导:旋转两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷228、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
29、长方形框架拉成平行四边形,周长不变,高和面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元统计与可能性31、平均数=总数量÷总份数32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角33、数不仅可以用来表示数量和顺序,还可以用来编码。
34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)0 5 4 0 0 1前3位表示邮区前4位表示县(市)最后2位表示投递局35、身份证号码:18位1 3 0 52 1 1 9 7 8 03 0 1 0 0 1 9河北省邢台市邢台县出生日期顺序码校验码倒数第二位的数字用来表示性别,单数表示男,双数表示女。
第六单元倍数与因数(我们只在自然数(0除外)范围内研究倍数和因数。
)1、像0、1、2、3、4、5、6……这样的数是自然数。
2、像-3、-2、-1、0、1、2、3……这样的数是整数。
3、整数与自然数的关系:整数包括自然数。
4、倍数和因数:举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。
5、找倍数:从1倍开始有序的找。
6、一个数倍数的特点:①一个数的倍数的个数是无限的;②最小的倍数是它本身;③没有最大的倍数。
7、找因数:找一个数的因数,一对一对有序的找较好。
8、一个数因数的特点:①一个数的因数的个数是有限的;②最小的因数是1;③最大的因数是它本身。
9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。
10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数11、5的倍数的特征:个位是0或5的数是5的倍数。
12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。
13、既是2的倍数又是5的倍数的特征:个位是0的数。
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;②各个数位上的数字的和是3的倍数既是3的倍数又是5的倍数的特征:①个位是0或5的数;②各个数位上的数字的和是3的倍数既是2的倍数又是3的倍数还是5的倍数的特征:①个位是0的数;②各个数位上的数字的和是3的倍数9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数14、质数:一个数只有1和它本身两个因数,这个数叫质数。
最小的质数是2,是唯一的质数中的偶数。
100以内的质数:15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。
1既不是质数也不是合数,最小的合数是4.16、按一个数的因数个数分,自然数可以分为三类。
第二单元图形的面积(一)15、 1平方千米=100公顷=1000000平方米16、 1公顷=10000平方米17、 1平方米=100平方分米=10000平方厘米第三单元分数1、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。