基于相关滤波的视频目标跟踪算法综述
《2024年目标跟踪算法综述》范文

《目标跟踪算法综述》篇一一、引言目标跟踪是计算机视觉领域的重要研究方向之一,其应用广泛,包括视频监控、人机交互、自动驾驶等领域。
目标跟踪算法的主要任务是在视频序列中,对特定目标进行定位和跟踪。
本文旨在全面综述目标跟踪算法的研究现状、基本原理、技术方法以及发展趋势。
二、目标跟踪算法的基本原理目标跟踪算法的基本原理是通过提取目标特征,在视频序列中寻找与该特征相似的区域,从而实现目标的定位和跟踪。
根据特征提取的方式,目标跟踪算法可以分为基于特征的方法、基于模型的方法和基于深度学习的方法。
1. 基于特征的方法:该方法主要通过提取目标的颜色、形状、纹理等特征,利用这些特征在视频序列中进行匹配和跟踪。
其优点是计算复杂度低,实时性好,但容易受到光照、遮挡等因素的影响。
2. 基于模型的方法:该方法通过建立目标的模型,如形状模型、外观模型等,在视频序列中进行模型的匹配和更新。
其优点是能够处理部分遮挡和姿态变化等问题,但模型的建立和更新较为复杂。
3. 基于深度学习的方法:近年来,深度学习在目标跟踪领域取得了显著的成果。
该方法主要通过训练深度神经网络来提取目标的特征,并利用这些特征进行跟踪。
其优点是能够处理复杂的背景和目标变化,但需要大量的训练数据和计算资源。
三、目标跟踪算法的技术方法根据不同的应用场景和需求,目标跟踪算法可以采用不同的技术方法。
常见的技术方法包括基于滤波的方法、基于相关性的方法和基于孪生网络的方法等。
1. 基于滤波的方法:该方法主要通过设计滤波器来对目标的运动进行预测和跟踪。
常见的滤波方法包括卡尔曼滤波、光流法等。
2. 基于相关性的方法:该方法通过计算目标与周围区域的相关性来实现跟踪。
常见的相关性方法包括基于均值漂移的算法、基于最大熵的算法等。
3. 基于孪生网络的方法:近年来,基于孪生网络的跟踪算法在准确性和实时性方面取得了显著的进步。
该方法通过训练孪生网络来提取目标和背景的特征,并利用这些特征进行跟踪。
视频目标跟踪算法综述

视频目标跟踪算法综述目标跟踪算法可以分为两类:基于模型的跟踪和基于特征的跟踪。
基于模型的跟踪算法通常通过建立目标的动态模型来预测目标的位置,而基于特征的跟踪算法则通过提取目标的特征信息来跟踪目标。
基于模型的跟踪算法中,最常见且经典的算法是卡尔曼滤波器算法。
该算法通过对目标位置进行状态预测,并融合传感器测量数据来更新目标的状态估计。
卡尔曼滤波器算法在目标运动较稳定且传感器测量误差较小的情况下表现良好,但在目标运动不规律或传感器测量误差较大的情况下容易出现跟踪丢失的问题。
基于特征的跟踪算法则通过提取目标的外观特征信息来跟踪目标。
常见的特征包括颜色、纹理、形状等。
其中,颜色特征是最常用的特征之一,因为它对光照变化具有一定的鲁棒性。
常见的颜色特征提取算法有颜色直方图、颜色模型等。
此外,还有一些基于纹理的特征提取算法,如Gabor滤波器、局部二值模式(LBP)等。
除了上述传统的目标跟踪算法,近年来深度学习技术的发展为目标跟踪带来了新的突破。
通过使用深度神经网络进行特征提取和目标分类,深度学习方法在目标跟踪任务上取得了很好的效果。
其中,基于卷积神经网络(CNN)的跟踪算法在目标检测和特征提取方面表现出色。
基于深度学习的目标跟踪算法通常采用两种方式进行训练:有监督学习和无监督学习。
有监督学习通过标注好的训练数据进行模型训练,而无监督学习则通过对未标注的视频序列进行训练。
近年来,基于深度学习的目标跟踪算法取得了显著的进展,并在各种跟踪性能评估指标上取得了优秀的结果。
然而,由于深度学习方法通常需要大量的数据和计算资源进行训练,因此在一些实际应用中仍然存在一定的局限性。
综上所述,视频目标跟踪是计算机视觉中的一个重要研究方向。
传统的基于模型和基于特征的跟踪算法以及近年来兴起的基于深度学习的跟踪算法为视频目标跟踪提供了不同的解决方案。
未来随着技术的不断进步,视频目标跟踪算法将不断发展,并在各种实际场景中得到更广泛的应用。
视频监控系统中的目标跟踪算法综述

视频监控系统中的目标跟踪算法综述视频监控系统在现代社会中扮演着至关重要的角色,用于维护公共安全和保护财产。
其中,目标跟踪算法作为视频监控系统中的关键技术,承担着实时、准确、自动跟踪目标的任务。
本文将对视频监控系统中的目标跟踪算法进行综述,并探讨其应用和未来发展趋势。
目标跟踪算法是指通过分析连续帧图像中目标的位置和运动信息,准确定位、识别并跟踪目标在时间序列中的位置。
根据跟踪方法的不同,目标跟踪算法可以分为基于模型的方法、基于特征的方法和混合方法。
首先,基于模型的目标跟踪算法通过构建和更新目标模型来实现跟踪。
其中,粒子滤波算法是一种经典的基于模型的目标跟踪方法,通过采用概率分布来估计目标位置和速度。
该算法可以通过对粒子进行加权更新来实现准确的目标跟踪,但对目标外观模型的选择和更新策略的设计要求高。
其次,基于特征的目标跟踪算法利用目标的边缘、颜色、纹理等特征信息来进行跟踪。
其中,卡尔曼滤波算法是一种常用的基于特征的目标跟踪方法,通过结合运动模型和观测模型来估计目标的位置和速度。
然而,该算法在目标存在非线性运动或者观测误差较大时容易产生跟踪漂移。
最后,混合方法是将基于模型和基于特征的目标跟踪算法相结合,以融合两者的优势。
例如,以卡尔曼滤波算法为基础的条件随机场目标跟踪方法,通过引入马尔可夫链来建模目标的状态转移,同时考虑目标的空间邻接关系,从而实现更准确的目标跟踪。
然而,在实际应用中,视频监控系统面临着许多挑战。
其中包括复杂的场景背景、光照变化、目标遮挡等问题。
为了克服这些挑战,研究者们提出了许多改进的目标跟踪算法。
一种常用的改进方法是引入深度学习技术。
深度学习可以自动学习目标的特征表示,通过卷积神经网络等深度学习模型来实现目标跟踪。
例如,基于深度学习的Siamese网络目标跟踪方法通过将目标和背景分别表示为两个共享网络,来实现更加准确的目标跟踪。
另一种改进方法是引入多目标跟踪技术。
多目标跟踪算法可以同时跟踪多个目标,并考虑目标之间的相互关系和交互作用。
视频目标跟踪综述

视频目标跟踪综述作者:张丰,冯平来源:《计算机时代》2022年第01期摘要:研究近年来主流的目标跟踪算法。
通过文献阅读和归纳对比,分析了使用生成式模型和判别式模型的目标跟踪算法。
结果显示,对于存在复杂干扰因素的场景,采用第二类模型的目标跟踪算法的跟踪效果更好。
文章为视频跟踪领域的研究者们提供了一个关于目标跟踪算法的客观分析。
关键词:目标跟踪; 深度学习; 相关滤波; 计算机视觉中图分类号:TP399 文献标识码:A 文章编号:1006-8228(2022)01-32-04Overview on video target trackingZhang Feng, Feng Ping(Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, China)Abstract: This paper focuses on the mainstream target tracking algorithms in recent years, and analyzes the target tracking algorithms using generative and discriminative models through literature reading and inductive comparison. The results show that for the scenes with complex interference factors, the target tracking algorithms using the second kind of model have better tracking effect. This paper provides an objective analysis of target tracking algorithms for researchers in the field of video tracking.Key words: target tracking; deep learning; correlation filtering; computer vision0 引言根据人们对感知觉的研究发现,人们通过视觉、听觉、味觉、嗅觉和肤觉来接受外部的刺激,其中视觉是人们获取外部刺激的最主要途径,约占80%。
《2024年目标跟踪算法综述》范文

《目标跟踪算法综述》篇一一、引言目标跟踪作为计算机视觉领域中的一项关键技术,近年来在安防、无人驾驶、医疗影像处理等领域得到了广泛的应用。
其目的是通过一系列的图像处理和计算方法,实时准确地检测并跟踪特定目标。
本文将对当前主流的目标跟踪算法进行全面而详细的综述。
二、目标跟踪算法的发展历程早期的目标跟踪算法主要是基于滤波的跟踪算法,如均值漂移法等。
这些算法简单易行,但难以应对复杂多变的场景。
随着计算机技术的进步,基于特征匹配的跟踪算法逐渐兴起,如光流法、特征点匹配法等。
这些算法通过提取目标的特征信息,进行特征匹配以实现跟踪。
近年来,随着深度学习技术的发展,基于深度学习的目标跟踪算法成为了研究热点。
三、目标跟踪算法的主要分类与原理1. 基于滤波的跟踪算法:该类算法主要利用目标在连续帧之间的运动信息进行跟踪。
常见的算法如均值漂移法,通过计算当前帧与模板之间的差异来寻找目标位置。
2. 基于特征匹配的跟踪算法:该类算法通过提取目标的特征信息,在连续帧之间进行特征匹配以实现跟踪。
如光流法,根据相邻帧之间像素运动的光流信息来计算目标的运动轨迹。
3. 基于深度学习的跟踪算法:该类算法利用深度学习技术,通过大量的训练数据学习目标的特征信息,以实现准确的跟踪。
常见的算法如基于孪生网络的跟踪算法,通过学习目标与背景的差异来区分目标。
四、主流目标跟踪算法的优缺点分析1. 优点:基于深度学习的目标跟踪算法能够学习到目标的复杂特征信息,具有较高的准确性和鲁棒性。
同时,随着深度学习技术的发展,该类算法的跟踪性能不断提升。
2. 缺点:深度学习算法需要大量的训练数据和计算资源,且在实时性方面存在一定的挑战。
此外,当目标与背景相似度较高时,容易出现误跟或丢失的情况。
五、目标跟踪算法的应用领域及前景目标跟踪技术在安防、无人驾驶、医疗影像处理等领域具有广泛的应用前景。
例如,在安防领域,可以通过目标跟踪技术实现对可疑目标的实时监控;在无人驾驶领域,可以通过目标跟踪技术实现车辆的自主导航和避障;在医疗影像处理领域,可以通过目标跟踪技术实现对病灶的实时监测和诊断。
(完整版)视频目标检测与跟踪算法综述

视频目标检测与跟踪算法综述1、引言运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在 视频编码、智能交通、监控、图像检测等众多领域中。
本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。
2、视频监控图像的运动目标检测方法运动目标检测的目的是把运动目标从背景图像中分割出来。
运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。
目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。
背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。
所有这些特点使得运动目标的检测成为一项相当困难的事情。
目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。
2.1 帧差法帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设(,)k f x y 和(1)(,)k f x y +分别为图像序列中的第k 帧和第k+1帧中象素点(x ,y)的象素值,则这两帧图像的差值图像就如公式2-1 所示:1(1)(,)(,)k k k Diff f x y f x y ++=- (2-1)2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。
利用此原理便可以提取出目标。
下图给出了帧差法的基本流程:1、首先利用2-1 式得到第k 帧和第k+1帧的差值图像1k Diff +;2、对所得到的差值图像1k Diff +二值化(如式子2-2 示)得到Qk+1;3、为消除微小噪声的干扰,使得到的运动目标更准确,对1k Q +进行必要的滤波和去噪处理,后处理结果为1k M +。
111255,,(,)0,,(,)k k k if Diff x y T Q if Diff x y T+++>⎧=⎨≤⎩ (T 为阈值) (2-2)帧差流程图从结果看在简单背景下帧差法基本可检测到运动目标所在的位置,而且计算简单,复杂度低。
目标跟踪算法综述
目标跟踪算法综述目标跟踪算法综述目标跟踪是计算机视觉领域的一项重要任务,它的目标是在视频中准确地跟踪一个或多个特定的目标。
目标跟踪技术在各个领域都有广泛的应用,比如视频监控、自动驾驶、智能交通系统等。
随着计算机性能的提高和人工智能的发展,目标跟踪算法也在不断地得到改进和创新。
本文将对目标跟踪算法的发展进行综述。
目标跟踪算法主要分为传统的基于模型的方法和基于深度学习的方法。
传统的基于模型的方法主要包括卡尔曼滤波器、粒子滤波器、相关滤波器等。
这些方法首先通过对目标进行建模,然后通过观察视频序列中的目标状态来更新模型,从而实现跟踪。
由于这些方法对目标的形状、运动等进行了建模,因此在目标快速运动、形变、遮挡等情况下表现较好。
但是,这些方法对于复杂的场景以及目标外观的变化较为敏感。
近年来,随着深度学习的兴起,基于深度学习的目标跟踪算法也取得了显著的进展。
深度学习通过神经网络模型对目标进行建模,并使用大量标注数据进行训练。
这种方法通过深度学习网络从图像中提取特征,并根据提取的特征进行目标检测和跟踪。
深度学习方法具有良好的泛化能力和鲁棒性,在复杂的场景下表现优秀。
然而,由于深度学习方法需要大量的训练数据和计算资源,其运行速度较慢。
基于深度学习的目标跟踪算法主要包括基于卷积神经网络(CNN)的方法和基于循环神经网络(RNN)的方法。
基于CNN 的方法通过在网络中使用卷积层和池化层,对目标进行特征提取和表示。
这些方法一般将目标跟踪问题视为图像分类或目标检测问题,通过对目标进行分类或定位来实现目标跟踪。
基于RNN的方法则通过对时间序列数据进行建模,利用循环神经网络对目标进行跟踪。
这些方法一般采用LSTM或GRU等循环神经网络结构来对目标状态进行建模,并通过时间序列数据来更新模型。
除了基于模型和深度学习的方法,还有一些其他的目标跟踪算法,例如基于边界框的方法、基于稀疏表示的方法、基于流场的方法等。
这些方法各有特点,在不同的场景和需求下有着不同的应用。
基于相关滤波器的目标跟踪方法综述
基于相关滤波器的⽬标跟踪⽅法综述0引⾔视觉跟踪是计算机视觉中引⼈瞩⽬且快速发展的领域,主要⽤于获取运动⽬标的位置、姿态、轨迹等基本运动信息,是理解服务对象或对⽬标实施控制的前提和基础。
其涉及许多具有挑战性的研究热点并常和其他计算机视觉问题结合出现,如导航制导、事件检测、⾏为识别、视频监控、⾃动驾驶、移动机器⼈等[1-4]。
虽然跟踪⽅法取得了长⾜进展,但由于遮挡、⽬标的平⾯内/外旋转、快速运动、模糊、光照及变形等因素的存在使其仍然是⾮常具有挑战性的⼯作。
近年来,基于相关滤波器CF(Correlation Filter)的跟踪⽅法得到了极⼤关注[5-9]。
CF 最⼤的优点是计算效率⾼,这归结于其假设训练数据的循环结构,因为⽬标和候选区域能在频域进⾏表⽰并通过快速傅⾥叶变换(FFT)操作。
Bolme [6]等⾸次将CF 应⽤于跟踪提出MOSSE 算法,其利⽤FFT 的快速性使跟踪速度达到了600-700fps 。
瑞典林雪平⼤学的Martin Danelljan 在2016年ECCV 上提出的相关滤波器跟踪算法C -COT [7]取得了VOT2016竞赛冠军,2017年其提出的改进算法ECO [8]在取得⾮常好的精度和鲁棒性的同时,显著提⾼运算速度⾄C-COT 的6倍之多。
基于CF 的跟踪算法如此优秀,已然成为研究热点。
近年和相关滤波有关的论⽂层出不穷,很有必要对这些论⽂及相关滤波的发展等进⾏⼀个归纳和总结,以推动该⽅向的发展。
⽂献[9]虽已做过综述并取得了⼀定效果,但有两点不⾜:(1)过多介绍现有⼏种⽅法的具体细节,没有对更多⽂献进⾏对⽐分析;(2)缺乏对基于相关滤波器跟踪⽅法的分类对⽐分析。
基于此,本⽂的不同基⾦项⽬:陕西理⼯⼤学科研项⽬资助(SLGKY16-03)基于相关滤波器的⽬标跟踪⽅法综述?马晓虹1,尹向雷2(1.陕西理⼯⼤学电⼯电⼦实验中⼼,陕西汉中723000;2.陕西理⼯⼤学电⽓⼯程学院,陕西汉中723000)摘要:⽬标跟踪是计算机视觉中的重要组成部分,⼴泛应⽤于军事、医学、安防、⾃动驾驶等领域。
《2024年目标跟踪算法综述》范文
《目标跟踪算法综述》篇一一、引言目标跟踪是计算机视觉领域中的一个重要研究方向,其核心在于通过图像序列分析,实现对特定目标的定位与追踪。
随着深度学习、人工智能等技术的飞速发展,目标跟踪算法在军事、安防、自动驾驶、医疗等多个领域均展现出其巨大应用潜力。
本文将对目标跟踪算法进行全面综述,包括其基本原理、研究现状以及未来发展等方面。
二、目标跟踪算法的基本原理目标跟踪算法的基本原理主要依赖于图像序列中的特征提取与匹配。
其基本步骤包括:初始化目标位置、特征提取、特征匹配与更新、目标位置预测等。
首先,在视频序列的初始帧中确定目标的位置;然后,通过提取目标的特征信息,如颜色、形状、纹理等;接着,利用这些特征信息在后续帧中进行匹配,以实现目标的跟踪;最后,根据匹配结果进行目标位置的预测与更新。
三、目标跟踪算法的研究现状(一)传统目标跟踪算法传统目标跟踪算法主要包括基于特征的方法、基于模型的方法和基于滤波的方法等。
其中,基于特征的方法主要通过提取目标的局部特征进行匹配;基于模型的方法则是通过建立目标的模型进行跟踪;基于滤波的方法则利用滤波器对目标进行预测与跟踪。
这些方法在特定场景下具有一定的有效性,但在复杂场景下往往难以取得理想的跟踪效果。
(二)深度学习在目标跟踪中的应用随着深度学习技术的发展,其在目标跟踪领域的应用也日益广泛。
深度学习能够自动提取目标的深层特征,提高跟踪的准确性与鲁棒性。
基于深度学习的目标跟踪算法主要包括基于孪生网络的方法、基于相关滤波与深度学习的结合方法等。
这些方法在复杂场景下取得了较好的跟踪效果。
四、常见的目标跟踪算法及其优缺点(一)基于相关滤波的跟踪算法该类算法利用相关滤波技术对目标进行跟踪,具有较高的计算效率。
但其缺点是对于复杂场景的适应性较差,容易受到光照变化、形变等因素的影响。
(二)基于深度学习的跟踪算法该类算法通过深度学习技术自动提取目标的特征信息,具有较高的准确性。
但其计算复杂度较高,对硬件设备要求较高。
opencv trackercsrt的原理
opencv trackercsrt的原理
OpenCV TrackerCSRT是一种基于相关滤波器的目标跟踪算法,它可以在视频中实时跟踪目标的位置和大小。
TrackerCSRT是OpenCV 3.4版本中新增的跟踪器之一,它的性能比传统的跟踪算法更加优秀。
TrackerCSRT的原理是基于相关滤波器的跟踪算法。
相关滤波器是一种基于模板匹配的滤波器,它可以在图像中寻找与给定模板最相似的区域。
在TrackerCSRT中,首先需要选择一个目标区域作为跟踪目标的初始位置,然后使用相关滤波器来跟踪目标在后续帧中的位置。
具体来说,TrackerCSRT将目标区域分成若干个小的子区域,每个子区域都对应一个相关滤波器。
在跟踪过程中,TrackerCSRT会计算每个子区域与当前帧中的图像区域的相似度,然后根据相似度来更新每个子区域的相关滤波器。
这样,TrackerCSRT可以在不断地更新相关滤波器的基础上,实现对目标的实时跟踪。
除了相关滤波器,TrackerCSRT还使用了一些其他的技术来提高跟踪的性能。
例如,它使用了多尺度空间搜索来处理目标的尺度变化,使用了背景建模来减少背景干扰,使用了自适应的学习率来平衡跟踪的速度和准确度等。
总的来说,TrackerCSRT是一种基于相关滤波器的目标跟踪算法,它可以在视频中实时跟踪目标的位置和大小。
它的原理是使用相关滤波器来匹配目标区域和图像区域,然后不断地更新相关滤波器来实现实时跟踪。
同时,它还使用了多种技术来提高跟踪的性能,使得它比传统的跟踪算法更加优秀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有 效 处 理 ,这 也 对 目 标 跟 踪 研 究 提 出 了 更 迫 切 需 求 。 经 过 3 0 多年研究与发展,大量视频目标跟踪算
法相继提出,主要分为生成学习和鉴别学习2 类跟 踪 方 法 。早期工作主要集中于生成学习跟踪方 法 研 究 ,如 Lucas-Kanade算法[1]、Kalm an滤波算法[2]和 Mean-sh ift跟踪算法[3]等 。但由于生成学习方法仅 考 虑 目 标 本 身 的 表 观 信 息 ,而 忽 略 了 周 围 背 景 噪 声 信 息 ,且目标本身的表观变化具有随机性和多样性 特 点 ,早期研究工作通过经典的数学模型难以准确 把 握 目 标 的 动 态 表 观 信 息 ,因 此 ,常导致若干帧后跟 踪失败。接 着 ,研究人员尝试在跟踪问题中引人包 含 考 量 背 景 信 息 在 内 的 鉴 别 学 习 方 法 ,以判别分类
〇 引言
视频图像序列的目标跟踪是计算机视觉相关应 用 的 重 点 研 究 方 向 ,要 求 在 连 续 的 图 像 序 列 中 建 立 和 更 新 目 标 的 动 态 表 观 模 型 ,并 以 此 为 依 据 找 到 目 标 的 状 态 信 息 (位 置 和 大 小 )。计算机实现视频 目 标 跟踪可以更好地帮助理解视觉目标的动态表观本 质 ,进一步满足民用和军用各种需求,如车辆的自动 驾 驶 、监控视频的自动分析、机器人的交互伺服以及 医学图像的跟踪分析等。此 外 ,随着日益增长的数 据 规 模 ,尤 其 是 大 量 的 视 频 数 据 (来 源 于 交 通 监 控 、 智 能 移 动 设 备 、社交媒体 和 公 共 安 全 )需 要 得 到 及 时 *
第8卷 第 3期 2017年 6 月
•专家视野•
Command In指for挥m信ati息on系S统yst与em技a术nd Technology
Vol.Ju8n
No. 3
. 2017
doi: 10. 15908/j .cnki.cist.2017. 03. 001
基于相关滤波的视频目标跟踪算法综述x
* 基 金 项 目 :国家自然科学基金(61373055,61672265)资助项目。
收 稿 日 期 :2017-05-16
引 用 格 式 :吴小俊,徐天阳,须文波.基于相关滤波的视频目标跟踪算法综述[ J ] . 指挥信息系统与技术,2 0 1 7 ,8 ( 3 ) :1 -5 . W U Xiaojun, XU T ianyang, XU W enbo. Review of target tracking algorithm s in video based on correlation filte r[J ]. C om m and Inform ation System and T echnology ,2 0 1 7 ,8 (3 ) :l-5 .
吴小俊徐天阳须文波
(江 南 大 学 物 联 网 工 程 学 院 江 苏 无 锡 214122)
摘 要 :基于相关滤波的视频目标跟踪算法近年来在不同的标准数据集和目标跟踪竞赛上均取得 显 著 成 果 。较 全 面 总 结 了 相 关 滤 波 视 频 目 标 跟 踪 算 法 的 发 展 过 程 和 改 进 算 法 ,分 别 从 样 本 构 建 、优 化设计和更新方法等方面整理分析了上述算法。同时,桄理和分析了上述算法存在的难点问题,并 展望了其进一步的发展。 关 键 词 :计 算 机 视 觉 ;目标跟踪;相 关 滤 波 ;表观建模 中图分类号:TN 95 文献标识码: A 文章编号:1674-909X (2017)03-0001-05
2
指挥信息系统与技术
2017年 6 月
ห้องสมุดไป่ตู้
角度为出发点的鉴别学习跟踪算法得到了广泛研究 和发展。2009年 ,B.Babenko等[4]提出在线多例学 习跟踪算法(M IL) ,通 过 提 取 目 标 和 背 景 2 方面的 表观信息而建立分类器,并以此为依据完成跟踪,但 该 算 法 中 对 目 标 正 负 样 本 的 定 义 由 主 观 决 定 ,故对 样 本 标 签 信 息 的 定 义 问 题 并 未 得 到 解 决 ;为了更好 强 调 跟 踪 过 程 中 对 候 选 样 本 的 控 制 程 度 ,Z.Kalal 等[5]利 用检测学习跟踪(T LD )算法对跟踪问题建 立 了 结 构 化 约 束 ,利 用 检 测 算 法 完 成 对 目 标 再 跟 踪 的判定过程;为了解决对样本标签信息的定义问题, S . Hare[6]同 年 建 立 了 利 用 核 方 法 的 结 构 化 输 出 模 型 (Struck) ,通过对没有标签信息的样本进行学习, 再利用结构化支持向量机(SVM )分类器完成目标 跟 踪 。此 后 ,由于稀疏表示及低秩表示在计算机视 觉 方 面 的 突 出 表 现 ,大 量 利 用 该 类 方 法 的 跟 踪 算 法 也 得 到 广 泛 研 究 ,基 于 生 成 和 基 于 鉴 别 学 习 方 法 的 跟 踪 算 法 同 时 得 到 大 力 发 展 [7],如 2 0 1 2 年 X .Jia 等 [8]提 出 自 适 应 局 部 结 构 稀 疏 表 观 模 型 ,该模型利 用整合后的局部稀疏表示来体现目标的表观结构, 在一定程度上更加合理地对目标进行了表示;此 外 , W.Zhong等 ™利 用 稀 疏 协 同 表 示 将 鉴 别 信 息 引 人 稀 疏 表 观 模 型 ,强 化 了 对 背 景 信 息 的 考 量 。
Review of Target Tracking Algorithms in Video Based on Correlation Filter
WU Xiaojun XU Tianyang XU Wenbo (School of IoT E ngineering, Jiangnan U niversity, W uxi 214122,Jian g su ,C hina) Abstract:Target tracking algorithms in video based on correlation filter have achieved evident re sults in different standard benchmarks and competitions of target tracking recently. The compre hensive development process and the improvement of the target tracking algorithms based on cor relation filter are summarized. Above algorithms are analyzed respectively from the aspects of sample construction, optimization design and updating method. Meanwhile, the problems of a bove algorithms are analyzed and the development trend is prospected. Key words:computer vision;target tracking;correlation filter;appearance modeling