分式的乘方1
g16.2.1分式的乘方

.
1.
a a 表示什么? n表示什么? n n m n n mn (ab) a b (a ) a
n 是什么意思?
n中的 可以是数,也可以是整式,那
2.计算
a a a 可不可以是一个分式呢?即两个整式的商
的
(3) 9 (a 2b) a 4ab 4b
2
1.判断正误:
1 2 (1) a b a × b 3y y ( 2) (4 x ) x 4x 3y 3 √ y x x
2
2.计算
4x 1 x 1 1 ( 1) 2 x x 1 2x x
2
2
-2X-1
1 x x2 ( x 1) ( 2) 2 x 4x 4 x 1
3
a b
n
a . b
n n
P14
a a n. b b
n
n
注意:其中 a 表示分式的分子, b 表示分式的分母, 且b≠0, n是正整数。
分式乘方,把分子分母分别乘方.
P14
例5:计算:
2 2
2a b 2a b (1) 2 3c 3c
2
2 3
2
4a b 2 9c
2
4 2
a b 2a c (2) 3 3 cd d 2a
注意运算顺序:
先乘方,再乘除。
d3 c2 a 6 b3 d 3 c 2 a 3 b3 2 2 3 9 6 3 3 8cd cd 2a 2a c d 2a 4a
P13
2.2.2分式的乘方课件1

(2)
=
4 2
(5x
3y 3 = = y 4 4
2 2
4
y − x y + 3x y ÷ − 4 x y
2 2 4 2
5x y − x y +3x y
2 4 2
2 2
(−4x y)
2
x y 5x − y +3 5x − y + 3 = = 2 4 2 16x 16x y
2 2 2 2
(
) (
)
)
2
2
4y 10x2 10 4 = −2 + − = − x2 + y − 2 3 3 3 3
2.计算: 计算: 计算
2x (1) 3x y ÷ −y
2 2
3
8x6 y3 3y4 = 3x2 y ÷ − 3 = 3x2 y × − 6 = − 4 8x y 8x
2
(
)
3
计算: 计算:
(1) (− 6 x y ) ÷ (− 2 xy ) 2 4 2 2 4 2 2 2 ( 2 ) ( 5 x y − x y + 3 x y ) ÷ ( −4 x y ) 解 (1) (− 6 x 3 y 4 ) ÷ (− 2 xy )3
3 4 3
− 6x3 y4 − 6x3 y4 = = 3 −8x3 y3 (− 2xy)
第一步,把线段 三等分 三等分, 第一步,把线段AB三等分,以中间的 一段为边作等边三角形, 一段为边作等边三角形,然后去掉这一 就得到由4条长度相等的线段 段,就得到由 条长度相等的线段
1 4 组成的折线, 组成的折线,总长度为 ×4 = 3 3
第二步,把上述折线中每一条线段重复 第二步, 第一步的做法, 第一步的做法,便得到由 4 × 4 = 4 2 条 长度相等的线段组成的折线, 长度相等的线段组成的折线,总长度为
分式的乘方

解 : 原式
a b (a b) 2 2 a 2ab b (a b) 2
2 2
2
(a b)(a b)(a b) 2 2 (a b) (a b)
(a b)() b) (ab) a 22 (a b 2 (a b)
2
ab a b
1、根据乘方的意义计算 n 4 a a a (1) 3 = _____ =____ (2) a =________ 2 2 2 3 (3) (- ) =____ = __ (4) ( -) n ____=__ n = 3 m m 3 2 n a a a(5) a =_____ = __ (6) a =_____=__ (ab) a n b n ( ) n ) n a n ( ( ab) a 2、同底数幂的有关运算法则: m n mn m n mn (1) a a a a a a n (3)(a m) a mn n n n (ab) a b 3分式的乘方法则
2a b (1). 3c
2
2
a b 2a c 3 (2). 3 2a cd d
2
3
2
4 2 2
d3 c 2 a 6b 3 d 3 c (2)解:原式 3 2 3 9 3 2a 2a c d 2a 4 cd
2
a x x a 2. ; y ay xy 3 2 2 2 ay y a x x 2 a 4 x a 6 x3 . y 3 3 y x 2 ; xy 4 y 3 x y yx
2 2 3 2
分式的乘除(基础)知识讲解

分式的乘除(基础)责编:杜少波【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】【高清课堂402545 分式的乘除运算 知识要点】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】类型一、分式的乘法1、计算:(1)422449158a b x x a b g ;(2)222441214a a a a a a -+--+-g . 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算.【答案与解析】解:(1)422449158a b x x a b g 422449315810a b x b x a b x==g g . (2)222441214a a a a a a -+--+-g 22(2)1(1)(2)(2)a a a a a --=-+-g 22(2)(1)(1)(2)(2)a a a a a --=-+-g g 222(1)(2)2a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算.举一反三:【变式】计算.(1)26283m x x m g ;(2)22122x x x x+-+g 【答案】解:(1)原式22621283242m x mx x x m mx ===g g ; (2)原式22112(2)2x x x x x x+==-+-g ; 类型二、分式的除法【高清课堂402545 分式的乘除运算 例1(4)】2、 计算:(1)222324a b a b c cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简.【答案与解析】解:(1)222324a b a b c cd -÷22222244236a b cd a b cd c a b c a b ==--g g 23d c=-.(2) 2222242222x y x y x xy y x xy-+÷+++ 2(2)(2)2()()2x y x y x x y x y x y+-+=++g 22(2)24x x y x xy x y x y --==++. 【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的.举一反三:【变式】(2015•宝鸡校级模拟)化简:.【答案】解:原式=• =.类型三、分式的乘方3、(2014秋•华龙区校级月考)下列计算正确的是( )A. B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C .【解析】解:A 、,本选项错误; B 、,本选项错误;C 、,本选项正确;D 、,本选项错误.所以计算结果正确的是C .【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算4、 计算:(1)(2016春•淅川县期中)(﹣2ab ﹣2c ﹣1)2÷×()3;(2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g . 【思路点拨】先算乘方,再算乘、除.【答案与解析】解:(1)(﹣2ab ﹣2c ﹣1)2÷×()3=﹣•• =﹣. (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g 2222232()1()[()]()a b ab b a a b b a -=+-g g 22222332()()1()()a b a b a b b a a b a b +-=+-g g211()a a b a ab==++. 【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算.举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)2222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭g .【答案】解: (1)332212b ba a ab⎛⎫⎛⎫⎛⎫-÷-÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a ba a ab a b⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭g g.(2)2222()m n n m m nm n mn m--+⎛⎫÷⎪-⎝⎭g22222()()()()m n m n m n m m nm n m n m n mn+---==-+g g.。
分式的乘方教案1

2.2.2分式的乘方教学目标1 探索分式乘方的运算法则.2 熟练运用乘方法则进行计算. 重点、难点重点:分式乘方的法则和运算.难点:分式乘方法则的推导过程的理解及利用分式乘方法则进行运算. 教学过程一创设情境,导入新课1 复习:分式乘除法则是什么? 2什么叫最简分式?3 取一条长度为1个单位的线段AB ,如图:第一步:把线段AB 三等分,以中间一段为边作等边三角形,然后去掉这一段,就得到了由_____条长度相等的线段组成的折线,每一段等于____,总长度等于____.第二步:把上述折线中的每一条重复第一步的做法,得到___,继续下去.情况怎么样呢? 这节课我们来学习------分式的乘方.二 合作交流,探究新知. 分式乘方的法则(1)把结果填入下表:(2)进行到第n 步时得到的线段总长度是多少呢?44444444...33333333nn n n ⨯⨯⋅⋅⋅⎛⎫=⨯⨯== ⎪⨯⨯⋅⋅⋅⎝⎭个N=2N=1N=0ABBA(3)把43改为f g ,...n nn n f f f f f f f f g g g g f f g g ⎛⎫⨯⨯⋅⋅⋅⨯=⨯⨯== ⎪⨯⨯⋅⋅⋅⨯⎝⎭个即:nf g ⎛⎫= ⎪⎝⎭____.用语言怎么表达呢分式乘方等于分子、分母分别乘方. 三 应用迁移,巩固提高 1 分式乘方公式的应用例1 计算:()()342241;23x x y y w ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭强调每一步运用了哪些公式.2 除法形式改为分式形式进行计算. 例2 计算:()()()()()()23344224222162;2534x yxy x yx y x y x y -÷--+÷-.强调:除法形式改为分式,利用分式的运算性质进行计算给计算带来了方便. 3 分式乘方与分式乘法、除法的综合运用.例3 计算:24322x y z y x xy ⎛⎫⎛⎫--⎛⎫⋅÷ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭4 整体思想例4 已知:45b a =,求20092008a b a a b a -⎛⎫⎛⎫⋅ ⎪ ⎪-⎝⎭⎝⎭的值.四 课题练习,巩固提高 补充:先化简,再求值.()2222121442x x x x x x ++⎛⎫÷⋅+ ⎪+++⎝⎭,其中x=1.五 反思小结,拓展提高 这几课你有什么收获? (1) 分式乘法法则,(2)分式乘方法则与分式乘除运算法则综合运用时的顺序. 作业:P 35 A 组: 4 B 组: 4,5,6。
分式的乘除法

x y x y y x y
x y
②
x2 z
y 3
x6 z3
y3 ;
③
x3 y2 z
2
x6 y4 ; z2
④
b2 a
2n
b4n a2n
(n为正整数);
⑤
2b3 3a 2
3
8b9 27a6
.
2、计算:
b d b c bc a c a d ad
分式的乘方法则:把分子、分母分别乘方.
n m
k
nk (k是正整数) mk
二、边学边导,基础过关:
计算:①
ay2 b2 x
a2x by2
ay2 a2 x b2 x by2
a3 b3
②
2b a
4a 2 4bc 2
三是运算顺序;
四是结果的符号.
五、拓展延伸,智力闯关:
3 2
(a b)2 8ab (a b)2 4ab
原式= x 2 1 y4 2
x2 x2
9 4
=
x x
2 3
(x (x
3)( x 2)( x
3) 2)
=
x x
3 2
②( xy x2 )
x y =x( y x) xy
xy x y
=
x2 y
③
m2 4m m2 4
4
【教学课件】《分式的乘除》(人教)
2b 2 C. 3x
2a 2b 2 x D. 2 2 8c d
巩固新知
4.如果从一大捆粗细均匀的电线上截取1 m长的电线称得它的
再称得剩余电线的质量为b kg,那么这捆电线原来的总长度
b 1 A. m a
答案:B
B.
(
b 1) a
m
C.
(
ab 1) a
m
D. ( 1 ) m
第十五章●第二节
分式的乘除
问题引入
问题1 (1)一个水平放置的长方体容器,其容积为V,底面的 m 为b,当容器内的水占容积的 时,水面的高度为多少? n
长方体容器的高为
V V m ,水面的高度就为 。 ab ab n
问题引入
问题1 (2)大拖拉机m 天耕地a hm2,小拖拉机n天耕地b hm 拉机的工作效率是小拖拉机的工作效率的多少倍?
a b
巩固新知
5.计算:(1)
x 2 x 6x 9 (2) 2 x 3 x 4 2 x 2 x 3 x 3 解:(1)原式= x x 3 x 2 x 2 2
(2)原式=
2 ab 4 cd 2 d 2 2 3 ac 2 c2 3 a b
2
ab2 3a2b2 2 4cd 2c
6.计算:(1)
2a b 2 ( ) 3c
2
2 a b 3 2 a c 2 (2) ( ) 3 ( ) 3 a cd d 2
2 a2b 2 4 a4b2 解:(1)原式= ( ) 3 c 9 c2
2 6 3 3 2 3 3 a b 2 a c a b d c a b 3 2 ) ( ) 39 2 6 (2)原式= ( 3 3 a a cd d 2 c d2 4 a 8 cd
分式法则
分式定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
分式A/B中,A叫做分子,B叫做分母。
分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分尸的值不变。
用字母表示为A/B=(A*C)/(B*C), A/B=(A÷C)/(B÷C)(C≠0)。
分式法则一、乘法法则分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
用字母表示(a/b)*(c/d)=(a*c)/(b*d);二、除法法则分式除以分式,把除式的分子、分母颠倒位置后,与除式相乘。
用字母表示(a/b)÷(c/d)= (a/b)*(d/c)= (a*d)/(b*c);知识拓展:(1)分式乘、除法的运算按从左到右的顺序进行,结果如果不是最简分式,要进行约分。
(2)根据分式乘法法则有:①分式与分式相乘时,如果分子和分母是多项式,那么先分解因式,再看能否约分,然后相乘;②整式与分式相乘时,可以直接把整式看成分母是1的代数式,再与分式相乘;③分式的乘法实质就是约分,所以计算结果如能约分的,必须约分,或通过分解因式后能约分的也要约分,必须把结果化为最简分式或整式。
(3)根据法则我们知道,分式的除法需转化成乘法,转化过程实际上是“一变一倒”的过程,即除号变为乘号,除式的分子与分母颠倒位置。
当除式是整式时,可以将整式看成分母是1的代数式进行运算。
分式的乘方分式乘方要把分子、分母分别乘方。
用字母表示分式的乘方法则是:知识拓展:(1)分式的乘方法则是由乘方的意义和分式的乘法法则推导出来的。
(2)分式的乘方法则中“把分子、分母分别乘方”,是把分子、分母分别看做一个整体,如分式的加减法一、同分母分式加减法法则。
同分母分式相加减,分母不变,把分子相加减。
用字母表示为:(a/c)+(b/c)=(a+b)/c。
二、异分母分式加减法法则。
异分母分式相加减,先通分,变为同分母的分式,再加减。
分式基本概念与运算法则
乘方与开方的混合运算
乘方与开方的 混合运算是指 将分式的乘方 和开方进行混
合运算
混合运算的步 骤包括:先乘
方,后开方
混合运算的结 果是一个新的
分式
混合运算需要 注意的问题包 括:分式的符 号、分母的变
化等
分式与整式的运算
05
顺序
先乘除后加减的顺序
分式与整式的运算顺序: 先乘除后加减
乘除法运算:先计算乘除 法,再计算加减法
先进行分数与小数的运算
分数与小数的运算顺序:先分数后小数
分数与小数的运算方法:分数与小数可以相互转化,然后进行运算
分数与小数的运算技巧:利用分数与小数的性质和规律,简化运算过 程 分数与小数的运算应用:在实际问题中,分数与小数的运算可以解 决很多问题
先进行根式与分式的运算
根式与分式的运算顺序:先根式后分式 根式与分式的运算方法:根式运算法则、分式运算法则 根式与分式的运算技巧:简化、合并、化简 根式与分式的运算实例:具体例子,如根式与分式的加减乘除运算
乘除混合运算的 注意事项:注意 运算顺序,避免 错误
乘除混合运算的 应用:解决实际 问题,如计算面 积、体积等
04
分式的乘方与开方
分式的乘方法则
分式的乘方: 分式的分子 和分母分别 乘方
分式的开方: 分式的分子 和分母分别 开方
分式的乘除: 分式的分子 和分母分别 乘除
分式的加减: 分式的分子 和分母分别 加减
YOUR LOGO
20XX.XX.XX
分式基本概念与运算法则
,a click to unlimited possibilities
汇报人:
目 录
01 分 式 的 定 义 与 性 质 02 分 式 的 加 减 法 03 分 式 的 乘 除 法 04 分 式 的 乘 方 与 开 方 05 分 式 与 整 式 的 运 算 顺 序02分式的加减法
分式的乘方和乘方法则
分式的乘方和乘方法则一、分式的乘方和乘方法则1、分式的乘除(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
用式子表示为$\fracab·\fraccd=\fraca·cb·d。
(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
用式子表示为$\fracab÷\fraccd=\fracab·\fracdc=\fraca·db·c$。
(3)乘方法则:一般地,当$n$是正整数时,$\left\displaystyle\fracab\right^n=$$\beginmatrix\underbrace\displaystyle\fracab·\fracab·\cdots·\fracab \\n个\endmatrix=$$\beginmatrixn个\\ \overbrace\beginmatrix\underbrace\displaystyle\fraca·a·\cdots·ab·b·\cdots·b \\n个\\ \\ \endmatrix \endmatrix=$$\displaystyle\fraca^nb^n$,即$\left\fracab\right^n=\fraca^nb^n$。
即分式乘方要把分子、分母分别乘方。
2、分式的加减类似分数的加减,分式的加减法则是(1)同分母分式相加减,分母不变,把分子相加减。
即:$\fracac±\fracbc=\fr aca±bc$。
(2)异分母分式相加减,先通分,变为同分母的分式,再加减。
即:$\fracab±\fraccd=\fracadbd±\fracbcbd=\fracad±bcbd$。
二、分式的乘方的相关例题$\fracx^2-1x+1·\fracx^2__^2-2x+1=$___A.$x$ B.$2x$ C.$x^2$ D.$2x^2$答案:A解析:原式$=\fracx+1__1x+1·\frac__1__1^2=x$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
3x 2 9 x 2 ( ) = 2 2 (4) x b x b
注意: 做乘方运算要先确定符号
正确运用幂的运算法则
例2(课本P14) 计算: 3 2 2 2 a b 2a c 2a 2 b 3 () 2 3 () 1 cd d 2a 3c
3
a ? b
10
a n ( ) ? b
一般地,当n为正整数时,
n n a a a a a n a a a n b b b b b b b b
n
n
即:
a a n b b
·
·
( x y)
·
x y 2 x2 2 xy y 2 x y ( 2 )( ) 2 2 x y x y x
·
·
(四)课堂练习
3.化简求值
b b 2 a b ( ) ( ) 2 a b a ab a b
1 其中 a , b 3 2
2
2
(五)归纳小结
第6课时 16.2.1 分式的乘方
教学目标
理解分式乘方的运算法则,熟练 地进行分式乘方的运算.
教学重点、难点
重点:熟练地进行分式乘方的运算. 难点:熟练地进行分式乘、除、乘方的混合运算. 突破难点的方法: 类比有理数的乘方
(四)教学过程六环节
(一)复习回顾(复习+问题)
(二)探究归纳(类比+归纳) (三)例题设计(原1+补3) (四)配套练习(课本P15+补充)
n
n
分式的乘方法则:
分式乘方要把分子、分母分别乘方
(二)探究、归纳
分式的乘方法则: 分式乘方要把分子、分母分别乘方 即:
a a n b b
n
n
(三)例题设计 例1.判断下列各式是否成立,并改正. 5 2 3 b 3b 2 9b b 2 ) = 2 ( ) = 2 (2) ( (1) 2a 2a 2a 4a
2 3 2 ( 2a 2b) ()原式 (a 2b) d 3 c 解( :1 )原式 2 2 3 3 2 ( cd ) 2a (2a ) ( c) 3ຫໍສະໝຸດ 4a 4b 2 9c 2
d ab c2 2 3 9 c d 2a 4a
6 3
3
a 3b 3 8cd 6
混合运算顺序: 先算乘方,再算乘除
例3(补充)计算:
a b a b 2 ( ) 2 2 a 2ab b ab
2 2
(a b)a b) (a b) ( 解( :1 )原式 2 2 (a b) (a b)
2
ab a b
(四)课堂练习
1.课本P15第2题
2.(补充)计算 x y 2 1 (1) ( ) x y x y
(五)归纳小结(3点+1个) (六)课后作业(课本P23-3(3) (4))
(一)复习回顾 幂的运算法则都有什么?
(1) am·n =am+n ;(2) am÷an=am-n; a
(3) (am)n=amn; (4) (ab)n=anbn;
(二)探究、归纳
a 计算 ? b
2
a ? b
1、掌握乘方运算; 2、牢记幂的运算法则及运算顺序 (六)课后作业
1.课本P23习题16.2第3(3)(4)题 2.补充习题(后面)
2.补充习题
1.计算: a 1 2 (a 1) 9 a 2 ( ) ÷ · a 1 a3 2.化简求值
3
1 2ab ab3 2 ÷ 2 [ 2( a b ) ] 2 · a b ab
2
2
其中a=-2,b=3