《气动控制基本回路》PPT课件
合集下载
气动控制元件与基本回路72页PPT

21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
气动控制元件与基本回路
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
气动基本回路(课堂PPT)

第十四章 气动基本回路
主讲 陈本德
谢谢你的配合,同学! 希望学习过程能给你带来快乐
1
F 1YA 2YA A
B
C
150 - - 3
1
0
150 +
-
1.5
1.5
0
150 - + 3
1
3
150 +
+ 1.5
1.5
0
300 + + 3
2
3
2
八轴仿形铣加工机床
3
气动控制回路的工作原理
图11.40
4
第一节 方向控制回路
图14-2双作用气缸换向回路
10
(三)往复动作回路
1.单往复动作回路
双气控阀的双稳态记忆功能
11
2.连续往复动作回路
12
(四)多工位控制回路
工位一:阀1控制, 右气缸杆缩回,左气缸杆缩回
工位二:阀2控制, 右气缸杆伸出,左气缸杆缩回
工位三:阀3控制, 右气缸杆伸出,左气缸杆伸出
13
三位控制回路
进气节流
16
❖ 节流供气的不足之处主要表现为:
❖ 1)当负载方向与活塞运动方向相反时,活塞运动 易出现不平稳现象,即“爬行”现象。
2)当负载方向与活塞运动方向一 致时,由于排气经换向阀快排, 几乎没有阻尼,负载易产生“跑 空”现象,使气缸失去控制。
所以进气节流,多用于垂直安装的气缸的供气回路中
17
五、缓冲回路
❖ 要获得气缸行程末端的缓冲,除采用带缓冲的气缸外,特 别在行程长、速度快、惯性大的情况下,往往需要采用缓冲 回路来满足气缸运动速度的要求。
b)所示回路的特点是, 当活塞返回到行程末端时, 其左腔压力已降至打不开 顺序阀2的程度,余气只 能经节流阀1排出,因此 活塞得到缓冲。
主讲 陈本德
谢谢你的配合,同学! 希望学习过程能给你带来快乐
1
F 1YA 2YA A
B
C
150 - - 3
1
0
150 +
-
1.5
1.5
0
150 - + 3
1
3
150 +
+ 1.5
1.5
0
300 + + 3
2
3
2
八轴仿形铣加工机床
3
气动控制回路的工作原理
图11.40
4
第一节 方向控制回路
图14-2双作用气缸换向回路
10
(三)往复动作回路
1.单往复动作回路
双气控阀的双稳态记忆功能
11
2.连续往复动作回路
12
(四)多工位控制回路
工位一:阀1控制, 右气缸杆缩回,左气缸杆缩回
工位二:阀2控制, 右气缸杆伸出,左气缸杆缩回
工位三:阀3控制, 右气缸杆伸出,左气缸杆伸出
13
三位控制回路
进气节流
16
❖ 节流供气的不足之处主要表现为:
❖ 1)当负载方向与活塞运动方向相反时,活塞运动 易出现不平稳现象,即“爬行”现象。
2)当负载方向与活塞运动方向一 致时,由于排气经换向阀快排, 几乎没有阻尼,负载易产生“跑 空”现象,使气缸失去控制。
所以进气节流,多用于垂直安装的气缸的供气回路中
17
五、缓冲回路
❖ 要获得气缸行程末端的缓冲,除采用带缓冲的气缸外,特 别在行程长、速度快、惯性大的情况下,往往需要采用缓冲 回路来满足气缸运动速度的要求。
b)所示回路的特点是, 当活塞返回到行程末端时, 其左腔压力已降至打不开 顺序阀2的程度,余气只 能经节流阀1排出,因此 活塞得到缓冲。
《气动控制基本回路》PPT课件

双向调速回路
双作用气缸的速度控制回路 图17-28
缓冲回路
• 功能: 可降低或避免气缸行程末端活塞与缸体的撞击。 • 场合: 在行程长、速度快、惯性大的场合,除采用缓冲气缸外,一般
还采用缓冲回路
缓冲回路 图17-29
速度换接回路
速度换接回路 图17-30
气液联动回路
• 实现:
以气压为动力,利用 气液转换器把气压传 动转变为液压传动; 或者采用气液阻尼缸 来作为执行元件。
去系统
去逻辑单元
二次压力控制回路 图17-20
• 回路由空气过滤器、减压阀、油雾器(气动三大件)组成 • 逻辑单元的供气应接在油雾器之前
高低压转换回路:
用于低压气源或高压气源的转换输出
高低压转换回路 图17-21
节流阀:通过改变阀的通流面积来调节流量
• 节流阀的工作原理
图节17流-22阀节的流阀工作原理 图17-22
缸、冲击气缸等)
• 气动控制元件:压力控制阀、流量控制阀、方向控制阀
的工作原理及结构
• 气制回路、其它
液压传动
• 液压与气压传动概述:
工作原理,两个重要概念及压力、流量这二个重要参数 ; 系统组成及液压油的主要物理性质:粘度、粘温特性
• 液压与气压传动的基础知识 • 液压泵和液压马达:
图17-15
顺序阀:
依靠回路中压力的高低变化实现执行元件的顺序动作
• 顺序阀的工作原理
关闭状态
b)开启状态
c)
顺序阀工作原理 图17-16为顺序阀的工作原理 图17-16
顺序阀:
依靠回路中压力的高低变化实现执行元件的顺序动作
• 顺序阀的应用
图17—顺17 顺序序阀阀的的应应用 用 图17-17
气动基本和常用回路PPT课件

F1
F2
12
往复动作回路
单往复动作回路
按下手动阀,二位五通换向 阀处于左位,气缸外伸;当 活塞杆挡块压下机动阀后, 二位五通换至右位,气缸缩 回,完成一次往复运动。
第19页/共22页
连续往复动作回路
手动阀1 换向,
高压气体经阀3 使阀2换向,气缸活
2
塞杆外伸,阀3 复位,活塞杆挡块
压下行程阀4 时,阀2 换至左位, 活塞杆缩回,阀4 复位,当活塞杆
塞以极高的速度运动,该活塞所具有的
动能转换成很大的冲击力输出,减压阀5
调节冲击力的大小。
快速排气阀主要用于气缸的排气,以加快气缸动作速度。 使用时,快速排气阀应安装在气缸排气口附近,以保证气 缸快速排气。
第6页/共22页
换向回路
单作用气缸换向回路
用 三 位 五 通 换 向 阀 可利控用制弹单 作 用 气 缸 伸 、 缩 、 任 意 位 置 停 止 。
b a
第14页/共22页
安全保护回路
双手操作回路
只有同时按下两个启动用手动换 向阀,气缸才动作,对操作人员的 手起到安全保护作用。应用在冲床、 锻压机床上。
第15页/共22页
互锁回路
A
该回路利用梭阀1、2、3 和换向阀4、 5、6 实现互锁,防止各缸活塞同时
动作,保证只有一个活塞动作。 4
B 1 5
3
4
缩回压下行程阀3 时,阀2 再次换
向,如此循环往复。
1
第20页/共22页
谢谢
第21页/共22页
感谢观看!
第22页/共22页
3
气液缸串联调速回路
通过两个单向节流阀,利用液压油不 可压缩的特点,实现两个方向的无级 调速,油杯为补充漏油而设。
《气动基本回路》课件

气动基本回路
本课件介绍气动控制系统的基本原理和应用,包括压缩空气的生成、输送、 净化和干燥,气动元件的种类和工作原理,以及气动控制系统的组成和优缺 点。
什么是气动基本回路
气动控制的概念
气动系统是利用压缩空气做 介质,控制机械运动的一种 自动控制系统。
气动基本回路的定义
气动基本回路是实现气动控 制的基础,它是由多种气动 元件按照一定规律连接而成 的气动控制系统。
气动元件的种类和结构
1
气源处理元件
主要包括气源处理三件套、节流调速阀、增压阀等。
2
执行元件
主要包括气缸、气动电磁阀、气动角座阀等。
3
辅助元件
主要包括压力表、流量计、接头、管路等。
气缸的类型及其工作原理
单作用气缸
只有一端有有效气压,在气缸另一端设有弹簧,气压释放时,气缸可以恢复到初始位置。
双作用气缸
如电动机、气源处理等,是气动控制系统的整体支撑部分。
气动控制系统的优缺点
• 优点:气动控制器件简单、操作可靠、安全性高、适应性强、维护成 本低。
• 缺点:气动控制器件的控制精度低、响应速度慢、易受环境影响、噪 声大。
气动基本回路的维护常识
气动控制系统的维护需要注意以下几点: • 定期清洁、检查、润滑气动元件,已确保其正常运转。 • 正常情况下,关闭系统前必须排放系统中的压缩空气。 • 气源处理三件套要定期更换,保证气源清洁度。 • 定期检查气缸和阀门密封,保证系统的密封性。
3
与非电磁阀
实现与、或、非等逻辑控制功能,为气 动系统提供逻辑控制。
定时器
实现将气路信号由气控开关控制,从而 来控制输出物的运动程序,广泛使用于 气动控制系统。
气动控制系统的组成和原理
本课件介绍气动控制系统的基本原理和应用,包括压缩空气的生成、输送、 净化和干燥,气动元件的种类和工作原理,以及气动控制系统的组成和优缺 点。
什么是气动基本回路
气动控制的概念
气动系统是利用压缩空气做 介质,控制机械运动的一种 自动控制系统。
气动基本回路的定义
气动基本回路是实现气动控 制的基础,它是由多种气动 元件按照一定规律连接而成 的气动控制系统。
气动元件的种类和结构
1
气源处理元件
主要包括气源处理三件套、节流调速阀、增压阀等。
2
执行元件
主要包括气缸、气动电磁阀、气动角座阀等。
3
辅助元件
主要包括压力表、流量计、接头、管路等。
气缸的类型及其工作原理
单作用气缸
只有一端有有效气压,在气缸另一端设有弹簧,气压释放时,气缸可以恢复到初始位置。
双作用气缸
如电动机、气源处理等,是气动控制系统的整体支撑部分。
气动控制系统的优缺点
• 优点:气动控制器件简单、操作可靠、安全性高、适应性强、维护成 本低。
• 缺点:气动控制器件的控制精度低、响应速度慢、易受环境影响、噪 声大。
气动基本回路的维护常识
气动控制系统的维护需要注意以下几点: • 定期清洁、检查、润滑气动元件,已确保其正常运转。 • 正常情况下,关闭系统前必须排放系统中的压缩空气。 • 气源处理三件套要定期更换,保证气源清洁度。 • 定期检查气缸和阀门密封,保证系统的密封性。
3
与非电磁阀
实现与、或、非等逻辑控制功能,为气 动系统提供逻辑控制。
定时器
实现将气路信号由气控开关控制,从而 来控制输出物的运动程序,广泛使用于 气动控制系统。
气动控制系统的组成和原理
气动基本回路介绍课件

02
气动执行:用于驱动气动执行器,实现各种动作
03
气动传输:用于传输气体,实现气体的输送和分配
04
气动测量:用于测量气体的压力、流量和温度等参数
05
气动辅助:用于提供气动系统的辅助功能,如润滑、冷却等
2
气动基本回路的 组成
气源装置
气源装置是气动基本回路的重要组成部分,负责 提供压缩空气。
气源装置通常包括空气压缩机、储气罐、过滤器 和干燥器等设备。
中的应用
2
气动控制阀 在汽车制造
中的应用
4
气动控制阀 在航空航天
中的应用
气动执行器的应用
01 气动执行器在工业自动化 中的应用,如机器人、自 动化生产线等。
02 气动执行器在汽车工业中 的应用,如汽车刹车系统、 转向系统等。
03 气动执行器在航空航天工 业中的应用,如飞机起落 架、航天器姿态控制等。
03
02
气动基本回路可以实现 对气动系统的控制和调 节,以满足不同生产工 艺的要求。
04
气动基本回路的设计和 选择需要根据生产工艺 的要求和特点进行。
气动基本回路的分类
压力控制回路:用于调节气压,保
0 1 持压力稳定
方向控制回路:用于控制气体的流
0 3 动方向
安全保护回路:用于保护设备和人
0 5 员安全
优点:安全性高, 无火花、无电击危 险,适用于易燃易 爆环境。
缺点:气动元件易磨 损、寿命较短、需要 定期维护、气源压力 波动会影响控制精度。
缺点:气动元件价 格相对较高,需要 定期更换。
01
02
03
04
4
气动基本回路的 应用实例
气动控制阀的应用
第十二章气动基本回路ppt课件

一、节流调速回路 2、 双作用气缸的速度控制
12.2 速度控制回路
一、节流调速回路 3、单作用气缸及双作用气缸的增速回路 图12-15为增加单作用缸活塞后退的速度回路,当活塞后退时,气缸中的压缩空气经快速排气阀1V1的3口直接排放,不需经换向阀,减少排气阻力,故活塞可快速后退。 图12-16为增加双作用气缸活塞前进的速度回路,双作用气缸前进时在气缸排气口加一个快速排气阀1V1减小排气阻力。
12.1 方向控制回路
12.1 方向控制回路
一、单作用气缸换向与控制 2、利用梭阀的控制 如图12-10所示,回路中的梭阀相当于实现“或”门逻辑功能的阀。在气动控制系统中,有时需要在不同地点操作单作用缸或实施手动/自动并用操作回路。
一、单作用气缸换向与控制 3、 利用双压阀的控制 如图12-11所示回路是一个利用双压阀的双手操作回路,在该回路中,需要两个二位三通阀同时动作,才能使单作用气缸前进,实现“与”门逻辑控制。最常用的双手操作回路还有如图12-12所示的回路,常用于安全保护回路。
12.5 常见回路控制案例
5、带行程检测的压力控制回路 如图12-21所示回路,按下按钮阀1S1,主控阀1V1换向,活塞前进,当活塞杆碰到行程阀1S2时,如活塞腔气压达到顺序阀的调定压力时,则打开顺序阀1V2,压缩空气经过顺序阀1V2、行程阀1S2使主阀1V1复位,活塞后退。这种控制回路可以保证活塞到达行程终点且活塞腔压力达到预定压力值时,活塞才后退
12.2 速度控制回路
二、缓冲回路 三、气/液调速回路
12.2 速度控制回路
一、调压回路 二、增压回路(利用气液增力缸构成回路)
12.3 压力控制回路
一、调压回路 二、安全保护回路 1.互锁回路 2.过载保护回路 三、往复动作回路
12.2 速度控制回路
一、节流调速回路 3、单作用气缸及双作用气缸的增速回路 图12-15为增加单作用缸活塞后退的速度回路,当活塞后退时,气缸中的压缩空气经快速排气阀1V1的3口直接排放,不需经换向阀,减少排气阻力,故活塞可快速后退。 图12-16为增加双作用气缸活塞前进的速度回路,双作用气缸前进时在气缸排气口加一个快速排气阀1V1减小排气阻力。
12.1 方向控制回路
12.1 方向控制回路
一、单作用气缸换向与控制 2、利用梭阀的控制 如图12-10所示,回路中的梭阀相当于实现“或”门逻辑功能的阀。在气动控制系统中,有时需要在不同地点操作单作用缸或实施手动/自动并用操作回路。
一、单作用气缸换向与控制 3、 利用双压阀的控制 如图12-11所示回路是一个利用双压阀的双手操作回路,在该回路中,需要两个二位三通阀同时动作,才能使单作用气缸前进,实现“与”门逻辑控制。最常用的双手操作回路还有如图12-12所示的回路,常用于安全保护回路。
12.5 常见回路控制案例
5、带行程检测的压力控制回路 如图12-21所示回路,按下按钮阀1S1,主控阀1V1换向,活塞前进,当活塞杆碰到行程阀1S2时,如活塞腔气压达到顺序阀的调定压力时,则打开顺序阀1V2,压缩空气经过顺序阀1V2、行程阀1S2使主阀1V1复位,活塞后退。这种控制回路可以保证活塞到达行程终点且活塞腔压力达到预定压力值时,活塞才后退
12.2 速度控制回路
二、缓冲回路 三、气/液调速回路
12.2 速度控制回路
一、调压回路 二、增压回路(利用气液增力缸构成回路)
12.3 压力控制回路
一、调压回路 二、安全保护回路 1.互锁回路 2.过载保护回路 三、往复动作回路
气动基本回路与常用回路课件

气动三位置控制回路
总结词
通过使用单作用气缸和三位四通阀,实现对执行机构三 个位置的控制。
详细描述
三位置控制回路通常用于对执行机构进行精确的位置控 制。通过使用单作用气缸和三位四通阀,可以实现对执 行机构的三个位置的控制。其中,单作用气缸只有一个 工作腔,通过充气和排气来驱动执行机构进行运动。三 位四通阀具有三个工作位置,通过切换工作位置来实现 执行机构的三个不同位置的控制。
04
气动回路设计方法与技巧
明确设计要求与参数
了解客户需求
在开始设计之前,要与客户进行充分沟通, 明确了解设计要求和参数,包括工作压力、 工作流量、工作速度、负载类型等。
制定设计方案
根据客户需求,制定详细的设计方案,包括 气动系统的组成、元件的选择、回路的设计 等。
选择合适的元件与组合方式
选择合适的元件
压力控制阀的种类包括减压阀、安全 阀、顺序阀等,其工作原理是根据系 统压力的变化自动调节阀门开口大小 ,以保持系统压力稳定。
速度控制回路
速度控制回路是指利用流量控制阀对压缩空气的流量进行 控制的回路,常用于控制气缸的运动速度。
流量控制阀的种类包括节流阀、调速阀等,其工作原理是 通过改变阀门开口大小来控制压缩空气的流量,以实现气 缸运动速度的控制。
换向阀的种类包括手动换向阀、电磁换向阀、液动换向阀等,其工作原理是当压 缩空气从进气口进入时,推动阀芯移动,使气流从进气口通过阀芯上的通道流向 排气口,同时关闭原排气口,使原进气口成为排气口,从而实现气缸的往复运动 。
压力控制回路
压力控制回路是指利用压力控制阀对 压缩空气的压力进行控制的回路,常 用于保证气动执行机构在规定压力下 正常工作。
详细描述
顺序动作回路可以实现自动化控制, 例如在机械手或自动化生产线中,根 据预设的程序,使多个气动元件协同 工作,实现复杂的机械运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第17章 气动控制元件与基本回路
气动控制元件:控制和调节压缩空气的压力、流量、流动方向和发送
信号的重要元件
方向控制阀,压力控制阀和流量控制阀 气动基本回路:方向控制回路,压力控制回路和速度(流量)控制回
路
• 方向控制阀与方向控制回路 • 压力控制阀与压力控制回路 • 流量控制阀与流量控制回路 • 气动逻辑元件简介 • 其它气动基本回路
c)
图17-6 快速排气阀
快速排气阀 图17-6
快速往复运动回路
换向型控制阀
• 气压控制换向阀:利用气体压力推动阀芯运动实现换向的
单气控截止式换向阀 图17-8
单电磁铁换向阀工作原理 图17-9
换向型控制阀
• 电磁控制换向阀:
电磁铁的衔铁直接推动阀 芯进行换向
AB
1
2
O1 P O2 a)
单电磁铁换向阀工作原理 图17-9
双向调速回路
双作用气缸的速度控制回路 图17-28
缓冲回路
• 功能: 可降低或避免气缸行程末端活塞与缸体的撞击。 • 场合: 在行程长、速度快、惯性大的场合,除采用缓冲气缸外,一般
还采用缓冲回路
缓冲回路 图17-29
速度换接回路
速度换接回路 图17-30
气液联动回路
• 实现:
以气压为动力,利用 气液转换器把气压传 动转变为液压传动; 或者采用气液阻尼缸 来作为执行元件。
方向控制阀与方向控制回路
• 方向控制阀
单向型控制阀 换向型控制阀:通过改变气体通路使气流方向发生改变
换向型控制阀按驱动方式可分为气压控制阀、电磁控制阀、 机械控制阀、手动控制阀和时间控制阀
• 方向控制回路
单作用气缸换向回路 双作用气缸换向回路
单向型控制阀
• 单向阀:气流只能向一个方向流动而不能反向流动通过的 阀
弹簧膜片
脉冲阀 图17—12脉冲阀 图17-12
• 单作用气缸换向回路
方向控制回路
a)
b)
单作用气缸换向回路 图17-13
• 双作用气缸换向回路
方向控制回路
a)
b)
c)
d)
e)
f)
图17-14 双双作用作气用缸换气向缸回路换向回路 图17-14
压力控制阀
• 压力控制阀的功能:控制系统中压缩空气的压力,以满足系统对 不同压力的需要
节流阀的结构图 图17-23
节流阀:通过改变阀Байду номын сангаас通流面积来调节流量
• 节流阀的应用
节流阀的应用 图17-24 图17-24 节流阀的应用
排气节流阀: 不仅具有节流调速的作用,而且还能
起到降低排放气流噪声的作用
A
排气节流阀只能安装在排气口, 调节排出气体的流量以控制执行元件的速度
排气节流阀 图17-25
去系统
去逻辑单元
二次压力控制回路 图17-20
• 回路由空气过滤器、减压阀、油雾器(气动三大件)组成 • 逻辑单元的供气应接在油雾器之前
高低压转换回路:
用于低压气源或高压气源的转换输出
高低压转换回路 图17-21
节流阀:通过改变阀的通流面积来调节流量
• 节流阀的工作原理
图节17流-22阀节的流阀工作原理 图17-22
• 单向阀多与节流阀组合起来控制执行元件的运动速度
A
PA
P
a)关闭状态
b 开启状态
图17-1单向单阀工向作阀原工理作图 原理图 图17-1
AP
A
P
单向阀 图17-2 单向阀 图17-2
单向型控制阀
• 梭阀(或门)相当于两个单向阀的组合
或门 图17-3
梭阀在手动—自动换向回路中的应用
图17-4 或门在手动—自动或换向门 回路中在 的应手 用 动----自动换向 回路中的应用 图17-4
• 压力控制阀的工作原理:均是利用空气压力和弹簧力相平衡的原 理来工作的
• 压力控制阀的分类:
减压阀、定值器:降压稳压作用 安全阀、限压切断阀:限压安全保护作用 顺序阀、平衡阀:根据气路压力不同进行某种控制
减压阀(调压阀):减压和稳压
调整手柄
调压弹簧 下弹簧座 膜片
阀芯
阀套 阻尼孔
阀口 复位弹簧
减压阀是气动系统中必不可少调的压一阀种调压元件
单向型控制阀
• 双压阀(与门) :两个单向阀的组合
与门 图17-5 与门 图17-5
双压阀在钻床控制回路中的应用
单向型控制阀
• 快速排气阀:加快气缸排气腔排气,以提高气缸运动速度 • 快速排气阀通常装在换向阀与气缸之间,使气缸的排气不需要通过换
向阀而快速完成,从而加快了气缸往复运动的速度 • 快速往复运动回路
气动逻辑元件的分类
• 按工作压力分:
• 功能:当储气罐或气动回路中的压力超过一定值时,安全阀能立即打
开放气,以阻止压力继续升高产生危险,系统中起过压保护作用
• 工作原理
关闭状态
开启状态
安全阀的工作原理 图17-18
一次压力控制回路:
使储气罐送出的气体压力不超过规定压力
一次压力控制回路 图17-19
二次压力控制回路:
用于气动控制系统气源压力控制,以保证系统使用的气体压 力为一稳定值
图17-15
顺序阀:
依靠回路中压力的高低变化实现执行元件的顺序动作
• 顺序阀的工作原理
关闭状态
b)开启状态
c)
顺序阀工作原理 图17-16为顺序阀的工作原理 图17-16
顺序阀:
依靠回路中压力的高低变化实现执行元件的顺序动作
• 顺序阀的应用
图17—顺17 顺序序阀阀的的应应用 用 图17-17
安全阀(溢流阀)
AB 1
2
AB
O1 P O2 b)
P c)
双电磁铁直动式换向阀工作原理图 图17-10
换向型控制阀
• 时间控制换向阀:使气流通过气阻(如小孔、缝隙等)节流后到气容 (储气空间)中,经过一定时间气容内建立起一定的压力后,再使阀 芯动作的换向阀
K
A
a
POK
延时换向阀 图17-11 延时换向阀 图17-11
• 特点:
回路不需要液压动力源, 具备传动平稳、定位精确, 可无级调速的特点
退
进
用气液阻尼缸的速度控制回路 图17-31
气液速度控制回路
液压缸 气液转换器
气液速度控制回路 图17-32
气动逻辑元件(又称逻辑阀)
• 工作原理:
均是用压缩空气为工作介质,通过元件内部可动部件的 动作,改变气流方向,从而实现逻辑控制功能
柔性节流阀:
通过调节阀杆夹紧柔韧的橡胶管而产生节流作用
柔性节流阀 图17-26 柔性节流阀 图17-26
单作用气缸速度控制回路
单作用气缸的速度控制回路 图17-27
单向调速回路
• 节流供气 • 节流排气
结论: 排气节流调速与进气节流调速相比具有进气阻力小,
气缸速度受外界负载变化影响小的特点,所以应用较普遍
气动控制元件:控制和调节压缩空气的压力、流量、流动方向和发送
信号的重要元件
方向控制阀,压力控制阀和流量控制阀 气动基本回路:方向控制回路,压力控制回路和速度(流量)控制回
路
• 方向控制阀与方向控制回路 • 压力控制阀与压力控制回路 • 流量控制阀与流量控制回路 • 气动逻辑元件简介 • 其它气动基本回路
c)
图17-6 快速排气阀
快速排气阀 图17-6
快速往复运动回路
换向型控制阀
• 气压控制换向阀:利用气体压力推动阀芯运动实现换向的
单气控截止式换向阀 图17-8
单电磁铁换向阀工作原理 图17-9
换向型控制阀
• 电磁控制换向阀:
电磁铁的衔铁直接推动阀 芯进行换向
AB
1
2
O1 P O2 a)
单电磁铁换向阀工作原理 图17-9
双向调速回路
双作用气缸的速度控制回路 图17-28
缓冲回路
• 功能: 可降低或避免气缸行程末端活塞与缸体的撞击。 • 场合: 在行程长、速度快、惯性大的场合,除采用缓冲气缸外,一般
还采用缓冲回路
缓冲回路 图17-29
速度换接回路
速度换接回路 图17-30
气液联动回路
• 实现:
以气压为动力,利用 气液转换器把气压传 动转变为液压传动; 或者采用气液阻尼缸 来作为执行元件。
方向控制阀与方向控制回路
• 方向控制阀
单向型控制阀 换向型控制阀:通过改变气体通路使气流方向发生改变
换向型控制阀按驱动方式可分为气压控制阀、电磁控制阀、 机械控制阀、手动控制阀和时间控制阀
• 方向控制回路
单作用气缸换向回路 双作用气缸换向回路
单向型控制阀
• 单向阀:气流只能向一个方向流动而不能反向流动通过的 阀
弹簧膜片
脉冲阀 图17—12脉冲阀 图17-12
• 单作用气缸换向回路
方向控制回路
a)
b)
单作用气缸换向回路 图17-13
• 双作用气缸换向回路
方向控制回路
a)
b)
c)
d)
e)
f)
图17-14 双双作用作气用缸换气向缸回路换向回路 图17-14
压力控制阀
• 压力控制阀的功能:控制系统中压缩空气的压力,以满足系统对 不同压力的需要
节流阀的结构图 图17-23
节流阀:通过改变阀Байду номын сангаас通流面积来调节流量
• 节流阀的应用
节流阀的应用 图17-24 图17-24 节流阀的应用
排气节流阀: 不仅具有节流调速的作用,而且还能
起到降低排放气流噪声的作用
A
排气节流阀只能安装在排气口, 调节排出气体的流量以控制执行元件的速度
排气节流阀 图17-25
去系统
去逻辑单元
二次压力控制回路 图17-20
• 回路由空气过滤器、减压阀、油雾器(气动三大件)组成 • 逻辑单元的供气应接在油雾器之前
高低压转换回路:
用于低压气源或高压气源的转换输出
高低压转换回路 图17-21
节流阀:通过改变阀的通流面积来调节流量
• 节流阀的工作原理
图节17流-22阀节的流阀工作原理 图17-22
• 单向阀多与节流阀组合起来控制执行元件的运动速度
A
PA
P
a)关闭状态
b 开启状态
图17-1单向单阀工向作阀原工理作图 原理图 图17-1
AP
A
P
单向阀 图17-2 单向阀 图17-2
单向型控制阀
• 梭阀(或门)相当于两个单向阀的组合
或门 图17-3
梭阀在手动—自动换向回路中的应用
图17-4 或门在手动—自动或换向门 回路中在 的应手 用 动----自动换向 回路中的应用 图17-4
• 压力控制阀的工作原理:均是利用空气压力和弹簧力相平衡的原 理来工作的
• 压力控制阀的分类:
减压阀、定值器:降压稳压作用 安全阀、限压切断阀:限压安全保护作用 顺序阀、平衡阀:根据气路压力不同进行某种控制
减压阀(调压阀):减压和稳压
调整手柄
调压弹簧 下弹簧座 膜片
阀芯
阀套 阻尼孔
阀口 复位弹簧
减压阀是气动系统中必不可少调的压一阀种调压元件
单向型控制阀
• 双压阀(与门) :两个单向阀的组合
与门 图17-5 与门 图17-5
双压阀在钻床控制回路中的应用
单向型控制阀
• 快速排气阀:加快气缸排气腔排气,以提高气缸运动速度 • 快速排气阀通常装在换向阀与气缸之间,使气缸的排气不需要通过换
向阀而快速完成,从而加快了气缸往复运动的速度 • 快速往复运动回路
气动逻辑元件的分类
• 按工作压力分:
• 功能:当储气罐或气动回路中的压力超过一定值时,安全阀能立即打
开放气,以阻止压力继续升高产生危险,系统中起过压保护作用
• 工作原理
关闭状态
开启状态
安全阀的工作原理 图17-18
一次压力控制回路:
使储气罐送出的气体压力不超过规定压力
一次压力控制回路 图17-19
二次压力控制回路:
用于气动控制系统气源压力控制,以保证系统使用的气体压 力为一稳定值
图17-15
顺序阀:
依靠回路中压力的高低变化实现执行元件的顺序动作
• 顺序阀的工作原理
关闭状态
b)开启状态
c)
顺序阀工作原理 图17-16为顺序阀的工作原理 图17-16
顺序阀:
依靠回路中压力的高低变化实现执行元件的顺序动作
• 顺序阀的应用
图17—顺17 顺序序阀阀的的应应用 用 图17-17
安全阀(溢流阀)
AB 1
2
AB
O1 P O2 b)
P c)
双电磁铁直动式换向阀工作原理图 图17-10
换向型控制阀
• 时间控制换向阀:使气流通过气阻(如小孔、缝隙等)节流后到气容 (储气空间)中,经过一定时间气容内建立起一定的压力后,再使阀 芯动作的换向阀
K
A
a
POK
延时换向阀 图17-11 延时换向阀 图17-11
• 特点:
回路不需要液压动力源, 具备传动平稳、定位精确, 可无级调速的特点
退
进
用气液阻尼缸的速度控制回路 图17-31
气液速度控制回路
液压缸 气液转换器
气液速度控制回路 图17-32
气动逻辑元件(又称逻辑阀)
• 工作原理:
均是用压缩空气为工作介质,通过元件内部可动部件的 动作,改变气流方向,从而实现逻辑控制功能
柔性节流阀:
通过调节阀杆夹紧柔韧的橡胶管而产生节流作用
柔性节流阀 图17-26 柔性节流阀 图17-26
单作用气缸速度控制回路
单作用气缸的速度控制回路 图17-27
单向调速回路
• 节流供气 • 节流排气
结论: 排气节流调速与进气节流调速相比具有进气阻力小,
气缸速度受外界负载变化影响小的特点,所以应用较普遍