人教版八年级下数学《分式》培优训练(2)

合集下载

初二数学培优练习(分式)

初二数学培优练习(分式)

初二数学培优练习(分式)2初二数学培优练习(分式)班级 姓名 评价一、选择1.下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有 ( )个。

A.2 B.3 C.4 D.5 2.1110,()()()a b c b c c a a b a b c++=+++++已知求的值 ( ) A.-2 B.-3 C.-4 D.-53.若把分式xyy x 2+中的x 和y 都扩大3倍,那么分式的值 ( ) A.扩大3倍 B.不变 C.缩小3倍 D.缩小6倍4.若x 取整数,则使分式1236-+x x 的值为整数的x 值有 ( ) A .3个 B .4个 C .6个 D .8个5.a+b+c=0,abc=8,则cb a 111++的值是 ( ) A .正数 B .负数 C .零 D .正数或负数6.分式1322--+x x x 的值为0,则x 的值为 ( ) A.x=-3 B.x=3 C.x=-3或 x=3 D.x=3或 x=-17. 如果分式33--x x 的值为1,则x 的值为 ( ) A.x ≥0 B.x>3 C.x ≥0且x ≠3 D. x ≠38.若关于x 的方程222-=-+x m x x 有增根,则m 的值与增根x 的值分别是( ) A.m=-4,x=2 B. m=4,x=2 C.m=-4,x=-2 D.m=4,x=-29.若已知分式96122+---x x x 的值为0,则x -2的值为 ( ) A. 91或-1 B. 91或1 C.-1 D.1 10. 已知2342x x x +--=21A B x x --+其中A 、B 为常数.则4A -B 的值为( ) A.7 B.9 C.13 D.5二、填空11.已知432z y x ==,则=+--+z y x z y x 232 。

12.已知113x y -=,则代数式21422x xy y x xy y----的值为 。

八年级数学下册 第16章 分式复习练习题(二)(答案不全) 新人教版

八年级数学下册 第16章 分式复习练习题(二)(答案不全) 新人教版

第16章 分式复习练习题(二)一、填空题1.填空:()2a b ab a b +=, ()22x xyx y x ++=, )(222x x x x =-- 2.若果2ab =a -b ,则分式11a b -的值是 . 若3,111--+=-ba ab b a b a 则的值是 . 3.a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”). 4.化简:224442x x x x x ++-=-- .;化简211x x x ÷-的结果是 . 5.()221112211x x x +--把分式、、通分,最简公分母是 . 6.计算:(1)22255(2)3a b a b --g= ; (2)42321()()x y x y y --÷g = 7.当m=____时,关于x 的分式方程213x m x +=-- 无解;方程0211=+-x 的解是 8.化简:a b a b b a a -⎛⎫-÷= ⎪⎝⎭;化简:b a a a b a -⋅-)(2= . 9.计算22()ab a b-的结果是 ;分式方程3131=---x x x 的解是_____________. 10.在下列三个不为零的式子x 2-4,x 2-2x ,x 2-4x +4中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .11.某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含a 的代数式表示).12.若分式35511322x x m x m x+----无意义,当=0时,则m=_______. 13.观察下面一列分式:,...16,8,4,2,15432x x x x x --(1)计算一下这里任一个分式与前面的分式的商是 。

八年级分式培优习题

八年级分式培优习题

八年级分式培优习题一、填空题1、下列分式中,有意义的分式是()A、 B、 C、 D、2、下列各分式中,最简分式是()A、 B、 C、 D、3、下列各分式中,当x取何值时,分式有意义?()A、 B、 C、 D、4、下列各分式中,分式的值等于零的是()A、 B、 C、 D、5、下列各分式中,分式的值不存在的是()A、 B、 C、 D、二、解答题6、请解以下分式方程:(1)(2)61、请解以下分式方程:(1)(2)611、请解以下分式方程:(1)(2)6111、请解以下分式方程:(1)(2)请解以下分式方程:(1)(2)八年级培优计划一、目标:通过培优,使优生更上一层楼,提高优生的学习能力和思维能力,提高他们的竞争意识和一定的应试技巧,但也帮助他们发现不足,进一步提高他们学习的自觉性,以真正取得理想的成绩。

二、具体措施:1、思想方面培优辅差。

做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。

了解学生们的学习态度、学习习惯、学习方法等。

从而根据学生的思想心态进行相应的辅导。

定期与学生家长、班主任沟通了解学生的家庭、生活、思想等各方面的情况,以利于教师做好学生的思想引导工作。

2、培优辅差内容:数学方面:在讲完新课后,编拟一些较高思维层次的专题知识渗透到教学中,培养优生的发散思维能力、探究能力和创新思维能力。

3、辅差内容:对差生主要从以下几个方面进行:1)认真备课,设计好每一节课的层次教学,利用多种多样的教学手段吸引差生的注意力,让差生有机会表现自己,多设计一些对应差生的问题,提高差生的学习信心。

2)经常与家长,了解差生各方面的情况,对症下药,讲究方法。

3)采用“一帮一”的方法,安排学习优秀的学生对后进生进行辅导训练。

并开展“手拉手”活动,让优生和差生结成对子。

4)注意保持和蔼可亲的态度去面对学生,不能对他们采用强硬的态度和手段。

这样会使他们对老师既亲近又尊重,更愿意接近老师并乐于接受教育。

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。

八年级数学分式培优试卷

八年级数学分式培优试卷

一、选择题(每题5分,共25分)1. 下列各式中,不是分式的是()A. 2a + bB. a/bC. 3/xD. a/(2b + 1)2. 已知a、b是实数,且a ≠ 0,b ≠ 0,下列分式中,值为1的是()A. a/bB. b/aC. a/b + b/aD. a/b - b/a3. 已知x + y ≠ 0,下列分式中,分母有理化后为x + y的是()A. x/(x + y)B. y/(x + y)C. x - y/(x + y)D. x + y/(x - y)4. 若a、b、c是等差数列,且a + b + c = 0,则下列分式中,值为0的是()A. a/b + b/cB. b/a + c/bC. c/a + a/bD. a/b + c/a5. 下列各式中,值为-1的是()A. 1 - 1/2B. 1 + 1/2C. 1 - 2/3D. 1 + 2/3二、填空题(每题5分,共25分)6. 已知x + 2/x = 5,则x = __________。

7. 已知a/b + b/a = 2,则a² + b² = __________。

8. 已知a、b、c是等差数列,且a + b + c = 0,则b² + c² = __________。

9. 若x² + y² = 1,则x² - y² = __________。

10. 已知a、b、c是等比数列,且a + b + c = 0,则a² + b² + c² =__________。

三、解答题(每题15分,共45分)11. 已知a、b是实数,且a ≠ 0,b ≠ 0,求证:a² + b² ≥ 2ab。

12. 已知x + y + z = 0,求证:(x + y)² + (y + z)² +(z + x)² = 2(x² + y² + z²)。

八下第十章《分式》尖子生培优训练(二)(有答案)

八下第十章《分式》尖子生培优训练(二)(有答案)

八下第十章《分式》尖子生培优训练(二)班级:___________姓名:___________ 得分:___________ 一、选择题 1. 使二次根式√3−x x−4有意义的条件是( )A. x ≤3B. x ≥3C. x ≤3且x ≠4D. x ≥3且x ≠42. 把分式2x+3yx 2−y 2的均扩大为原来的10倍后,则分式的值:A. 为原分式值的110 B. 为原分式值的1100 C. 为原分式值的10倍D. 不变3. 甲、乙二人同时从A 地出发去往B 地,甲的速度保持不变,乙用2倍于甲的速度行全程的一半,又用甲的速度的一半走完另一半路程,最后结果是( ) A. 甲、乙二人同时到达B 地 B. 甲先到达B 地 C. 乙先到达B 地 D. 上述三种情况都有可能 4. 关于ax−2+3=1−x2−x 的方程有增根,那么a 的值为( )A. 2B. 2或1C. 1D. 05. 若关于x 的方程ax x−2=3+a x−2−x 2−x 的解为整数,且不等式组{2x −3>9x −a <0无解,则这样的非负整数a 有( ) A. 2个 B. 3个 C. 4个 D. 5个6. 某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x 米,则可得方程3000x−10−3000x=15,根据此情景,题中用“…”表示的缺失的条件应补为( )A. 每天比原计划多铺设10米,结果延期15天才完成B. 每天比原计划少铺设10米,结果延期15天才完成C. 每天比原计划多铺设10米,结果提前15天才完成D. 每天比原计划少铺设10米,结果提前15天才完成7. 若关于x 的方程m1−x =3x−1−2有非负数解,关于x 的不等式组{x−12<2x +1x +m ≤1有解,则满足这两个条件的所有整数m 的值之和是( ) A. −14 B. −12 C. −11 D. −98. 如果关于x 的分式方程12−x −1−ax x−2=2有正数解,关于x 的不等式组{2x +1>0,5a −2x ≥4a有整数解,则符合条件的整数a 的值是( )A. 0B. 1C. 2D. 39. 当x 分别取−2019,−2018,−2017,….,−2,−1,0,1,12,13,…,12017,12018,12019时,分别计算分式x 2−1x 2+1的值,再将所得结果相加,其和等于A. −1B. 1C. 0D. 201910. 已知方程x +1x =a +1a 的两根分别为a,1a ,则方程x +1x−1=a +1a−1的根是( )A. a,1a−1B. 1a−1,a−1 C. 1a,a−1 D. a,aa−1二、填空题11.熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍速度跑过去,结果它们同时到达,如果设熊二的速度为x米/分钟,那么可列方程为________.12.给定一列分式:a32b 、−11a55b2、23a78b3、−47a911b4、……(a≠0,b≠0),则第五个分式是,第n个分式是;13.已知a为自然数,若分式105(a+1)(a+5)的值是整数,则a=________.14.已知关于x的方程2x+mx−2=3的解是正数,则m的取值范围为_____________.15.已知:1x −1y=2,则代数式2x−14xy−2yx−2xy−y的值为__.16.若2x+1(x+1)(x+2)=−Ax+1+Bx+2恒成立,则A+B=______.17.若代数式4x−3x−1的值为整数,则满足条件的整数x的值为____________.18.有六张正面分别标有数字−4,−3,−2,−1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的分式方程1+axx−4+4=14−x有正整数解,并且使关于x的不等式组{x−2a<−1−x+52≤−a+4无解的概率为________.三、解答题19.一项工程,若由甲、乙两公司合作18天可以完成,共需付施工费144000元,若甲、乙两公司单独完成此项工程,甲公司所用时间是乙公司的1.5倍,已知甲公司每天的施工费比乙公司每天的施工费少2000元.(1)求甲、乙两公司单独完成此项工程,各需多少天?(2)若由一个公司单独完成这项工程,哪个公司的施工费较少?20.阅读材料:方程:3−√x+1=1是无理方程,求解过程如下:解:3−√x+1=1−√x+1=1−3√x+1=2x +1=4 x =3检验:把x =3代入x +1得x +1=4>0 ∴x =3是原方程的根 ∴原方程的解是x =3(1)仿照上面阅读材料,解方程:2√x −3=8.(2)是否存在一个直角三角形,它的边长都是整数,它的面积和周长的数值相等,若存在,求出它三边的长;若不存在,说明理由.(温馨提示:如果你不会求解,可以猜想符合条件的三角形边长,并加予验证,若举出正确的例子并验证正确,可适当得分.)21. 阅读下面材料,并解答问题.材料:将分式−x 4−x 2+3−x 2+1拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为−x 2+1,可设−x 4−x 2+3=(−x 2+1)(x 2+a)+b 则−x 4−x 2+3=(−x 2+1)(x 2+a)+b =−x 4−ax 2+x 2+a +b =−x 4−(a −1)x 2+(a +b)∵对应任意x ,上述等式均成立,∴{a −1=1a +b =3,∴a =2,b =1∴−x 4−x 2+3−x +1=(−x 2+1)(x 2+2)+1−x +1=(−x 2+1)(x 2+2)−x +1+1−x +1=x 2+2+1−x +1这样,分式−x 4−x 2+3−x 2+1被拆分成了一个整式x 2+2与一个分式1−x 2+1的和.解答: (1)将分式−x 4−6x 2+8−x +1拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试求−x 4−6x 2+8−x 2+1的最小值.(3)如果2x−1x+1的值为整数,求x 的整数值,22. 已知实数b 、c 满足c 2+b 2−6c +10b =−34,直线y 1=−x +2a 和直线y 2=3x +a +2交于点Q .(1)求b 、c 的值;(2)a 取何整数时,点Q 落在第二象限;(3)在(2)的结论下,实数x 、y 、z 满足1x +1y =1a , 1x +1z =ba , 1z +1y =bc ,求代数式xyzxy+xz+yz 的值.23. 阅读下面材料,并解答问题.材料:将分式−x 4−x 2+3−x +1拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为−x 2+1,可设−x 4−x 2+3=(−x 2+1)(x 2+a)+b ,则−x 4−x 2+3=(−x 2+1)(x 2+a)+b =−x 4−ax 2+x 2+a +b =−x 4−(a −1)x 2+(a +b).∵对于任意x ,上述等式均成立, ∴{a −1=1,a +b =3.∴{a =2,b =1.∴−x 4−x 2+3−x 2+1=(−x 2+1)(x 2+2)+1−x 2+1=(−x 2+1)(x 2+2)−x 2+1+1−x 2+1=x 2+2+1−x 2+1.这样,分式−x 4−x 2+3−x +1被拆分成了一个整式x 2+2与一个分式1−x 2+1的和.请仿照上述过程将分式−x 4−6x 2+8−x 2+1拆分成一个整式与一个分式(分子为整数)的和的形式.24. 先阅读下列解法,再解答后面的问题.已知3x−4x 2−3x+2=Ax−1+Bx−2,求A 、B 的值.解法一:将等号右边通分,再去分母,得:3x −4=A(x −2)+B(x −1), 即:3x −4=(A +B)x −(2A +B), ∴{A +B =3−(2A +B )=−4. 解得 {A =1B =2. 解法二:在已知等式中取x =0,有−A +−B2=−2, 整理得2A +B =4;取x =3,有A2+B =52,整理得A +2B =5. 解 {2A +B =4A +2B =5, 得:{A =1B =2.(1)已知11x−3x 2−14x+24=Ax+6+B4−3x ,用上面的解法一或解法二求A 、B 的值. (2)计算:[1(x−1)(x+1)+1(x+1)(x+3)+1(x+3)(x+5)+⋯+1(x+9)(x+11)](x +11),并求x 取何整数时,这个式子的值为正整数.答案和解析1. A解:由题意得:{3−x ≥0x −4≠0,解得:x ≤3.2. A解:分式2x+3yx 2−y 2的x 、y 均扩大为原来的10倍后,则分式的值变为原分式的110,3. B解:设甲的速度为x ,路程为y ,则甲所用时间为yx , 乙所用时间为12y 2x +12y 12x =54·yx, 因为x >0,y >0, 所以54·yx >yx ,所以甲先到达B 地. 4. C解:方程两边都乘(x −2), 得:a +3(x −2)=x −1, ∵方程有增根,∴最简公分母x −2=0,即增根是x =2, 把x =2代入整式方程,得a =1. 5. B解:axx−2=3+ax−2−x2−x ,去分母,方程两边同时乘以x −2, ax =3+a +x , x =a+3a−1,且x ≠2, {2x −3>9 ①x −a <0 ②,由①得:x >6,由②得:x<a,∵不等式组{2x−3>9x−a<0无解,∴a≤6,当a=0时,x=a+3a−1=−3,当a=1时,x=a+3a−1无意义,当a=2时,x=a+3a−1=2+32−1=5,当a=3时,x=a+3a−1=3+33−1=3,当a=4时,x=a+3a−1=4+34−1=73,当a=5时,x=a+3a−1=5+35−1=2,分式方程无解,不符合题意,当a=6时,x=a+3a−1=6+36−1=95,∵x是整数,a是非负整数,∴a=0,2,3;6.C解:设实际每天铺设管道x米,原计划每天铺设管道(x−10)米,方程3000x−10−3000x=15,则表示实际用的时间−原计划用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.7.C解:分式方程m1−x =3x−1−2的解为x=m+52且x≠1,∵关于x的分式方程m1−x =3x−1−2有非负数解,∴{m+52≥0 m+52≠1,∴m≥−5,且m≠−3;又∵关于x的不等式组{x−12<2x+1x+m⩽1有解,∴此不等式组的解集是−1<x≤1−m,∴1−m>−1,即m<2,∴−5≤m <2,且m ≠−3,∴满足这两个条件的所有整数m 的值为−5,−4,−2,−1,0,1, ∴−5−4−2−1+0+1=−11.8. A解: ①解分式方程,得1+1−ax =2(2−x), 即x =22−a .∵分式方程有正数解且x ≠2, ∴2−a >0且2−a ≠1, 即a <2且a ≠1.②解不等式组,得−12<x ≤a2. ∵不等式有整数解,∴a 2≥0,即a ≥0,综上所述,0≤a <2且a ≠1,则符合条件的整数a 的值为0. 9. A解:设a 为负整数 当x =a 时,分式的值=a 2−1a 2+1当x =−1a 时,分式的值=(−1a )2−1(−1a)2+1=1−a 2a 2+1所以当x =a 时与当x =−1a 时,两分式的和=a 2−1a 2+1+1−a 2a 2+1=0 即当x 的值互为负倒数时,两分式之和为0 而当x =0时,x 2−1x +1=0−10+1=−1因此,当x 分别取−2019,−2018,−2017,….,−2,−1,0,1,12,13,…,12017,12018,12019时, 分式x 2−1x +1的值相加其和等于−1,10. D解:方程x +1x−1=a +1a−1 可以写成x −1+1x−1=a −1+1a−1 的形式, ∵方程x +1x =a +1a 的两根分别为a ,1a ,∴方程x +1x−1=a +1a−1 的两根的关系式为x −1=a −1,x −1=1a−1, 即方程的根为x =a 或x =aa−1, ∴方程x +1x−1=a +1a−1 的根是a ,aa−1,11. 300x−3001.2x=2解:熊二的速度为x 米/分钟, 由题意得300x−3001.2x=2.12. 95a 1114b5;(−1)n+1(3×2n −1)a 2n+1(3n−1)b n;解:观察分式的变化规律可得,分式的分母中的字母是b ,指数与分式的个数相同, 分子中的字母是a ,指数是从1开始的奇数,后一个分式的分母的系数比前一个分式的分母的系数的多3, 后一个分式的分子的系数是前一个分式的分子的系数的2倍多1, 分式本身的符号是正负相间的, 由此可得第五个分式是95a 1114b 5;第n 个分式是(−1)n+1(3×2n −1)a2n+1(3n−1)b n;13. 0或2解:若分式105(a+1)(a+5)的值是整数,即3×7×5×1(a+1)(a+5)的值是整数,已知a 为自然数,(a+1)(a+5)=3×7或(a+1)(a+5)=1×5解得a=0或2,14.m>−6且m≠−4解:解关于x的方程2x+mx−2=3,得x=m+6,∵x−2≠0,解得x≠2,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>−6且m≠−4.15.4.5解:∵1x−1y=2,∴y−x=2xy,∴x−y=−2xy,2x−14xy−2yx−2xy−y=2(x−y)−14xyx−y−2xy=−4xy−14xy−2xy−2xy=4.5.16.4解:−Ax+1+Bx+2=−A(x+2)+B(x+1)(x+1)(x+2)=(−A+B)x+(−2A+B)(x+1)(x+2),∴{−A+B=2−2A+B=1,解得A=1,B=3,A+B=4,17.0或2解:原式=4(x−1)+1x−1=4+1x−1,当x=0时,原式=3;当x=2时,原式=4+1=5,则满足条件的整数x有0或2.18. 13解:∵1+ax x−4+4=14−x , ∴1+ax +4x −16=−1,解得x =14a+4,∴当a +4>0,即,a =−3,−2,3时,关于x 的分式方程1+ax x−4+4=14−x 有正整数解,{x −2a <−1①−x +52⩽−a +4②,由①得:x <2a −1,由②得:x ≥a −32,当2a −1≤a −32,a ≤−12使关于x 的不等式组时,{x −2a <−1−x +52⩽−a +4无解, ∴a =−3,−2,−12∴使关于x 的分式方程1+ax x−4+4=14−x 有正整数解,并且使关于x 的不等式组{x −2a <−1−x +52⩽−a +4无解的有:−3,−2, ∴使关于x 的分式方程1+ax x−4+4=14−x 有正整数解,并且使关于x 的不等式组{x −2a <−1−x +52⩽−a +4无解的概率26=13, 19. 解:(1)设乙公司单独完成此项工程需x 天,则甲公司单独完成此项工程需1.5x 天. 根据题意,得1x +11.5x =118,解得x =30,经检验知x =30是方程的解且符合题意,∴1.5x =45答:甲公司单独完成此项工程,需45天,乙公司单独完成此项工程,需30天;(2)设乙公司每天的施工费为y 元,则甲公司每天的施工费为(y −2000)元, 根据题意得18(y +y −2000)=144000,解得y =5000,甲公司单独完成此项工程所需的施工费:45×(5000−2000)=135000(元);乙公司单独完成此项工程所需的施工费:30×5000=150000(元); 因为135000<150000故甲公司的施工费较少.答:若让一个公司单独完成这项工程,甲公司的施工费较少.20. 解:(1)2√x −3=8√x −3=4x −3=16x =19经检验x =19是原方程的根∴原方程的解是x =19;(2)设三角形的三边长分别为a 、b 、c ,其中斜边为c ,且a <b , 则{c =√a 2+b 2a +b +c =ab 2∴ a +b −ab 2=√a 2+b 2∴ab −4a −4b +8=0∴ (a −4)(b −4)=8∵a 、b 、b 均为正整数∴ {a −4=8b −4=1 或 {a −4=4b −4=2∴{a =12b =5 或 {a =8b =6∴ c =13或c =10∴符合条件的直角三角形的三边长分别为12,5,13或8,6,10.21. 解:(1)由分母为−x 2+1,可设−x 4−6x 2+8=(−x 2+1)(x 2+a )+b , 则−x 4−6x 2+8=(−x 2+1)(x 2+a )+b =−x 4−ax 2+x 2+a +b =−x 4−(a −1)x 2+(a +b )∵对应任意x ,上述等式均成立,∴ {a −1=6a +b =8, 解得:{a =7b =1, ∴−x 4−6x 2+8−x 2+1=(−x 2+1)(x 2+7)+1−x 2+1=(−x 2+1)(x 2+7)−x 2+1+1−x 2+1=x 2+7+1−x 2+1这样,分式 −x 4−6x 2+8−x 2+1 被拆分成了一个整式x 2+7与一个分式 1−x 2+1 的和;(2)由 −x 4−6x 2+8−x 2+1 = x 2+7+1−x 2+1 知,对于x 2+7+1−x 2+1, 当x =0时,这两个式子的和有最小值,最小值为8, 即 −x 4−6x 2+8−x 2+1 的最小值为8;(3)2x−1x+1=2x+2−3x+1=2(x+1)−3x+1=2−3x+1 ∵2x−1x+1的值为整数,且x 为整数;∴x +1为3的约数,∴x +1的值为1或−1或3或−3;∴x 的值为0或−2或2或−4.22. 解:(1)∵c 2+b 2−6c +10b =−34,∴(c −3)2+(b +5)2=0,∴{c −3=0b +5=0, 解得:{b =−5c =3; (2)两直线解析式联立组成方程,得{y =−x +2a y =3x +a +2, 解得:{x =a−24y =7a+24, 当Q 在第二象限内时,{a−24<07a+24>0, 解得:−27<a <2,又∵a 为整数,∴a =0或1;(3)∵1x +1y =1a , 1x +1z =b a , 1z +1y =b c, ∴x+y xy =1a ,x+z xz=b a ,y+z yz =b c , ∴x+y xy +x+z xz +y+z yz =1a +b a +b c , 2(xy+yz+xz )xyz =c+bc+ab ac ,∴xyz xy+yz+xz =2ac c+bc+ab ,∵a ≠0,c ≠0,∴a =1,b =−5,c =3,∴xyz xy+yz+xz =2×1×33+(−5)×3+1×(−5)=−617.23. 解:由分母为−x 2+1,可设−x 4−6x 2+8=(−x 2+1)(x 2+a)+b , 则−x 4−6x 2+8=(−x 2+1)(x 2+a)+b =−x 4−ax 2+x 2+a +b =−x 4+(−a +1)x 2+(a +b).∵对应任意x ,上述等式均成立,∴{−a +1=−6a +b =8, ∴解得{a =7b =1, ∴−x 4−6x 2+8−x 2+1=(−x 2+1)(x 2+7)+1−x 2+1=(−x 2+1)(x 2+7)−x 2+1+1−x 2+1=x 2+7+1−x 2+1.这样,分式−x 4−6x 2+8−x 2+1被拆分成了一个整式(x 2+7)与一个分式1−x 2+1的和.24. 解:(1)等号右边通分、再去分母,得:11x =A(4−3x)+B(x +6), 即11x =(−3A +B)x +(4A +6B),∴{−3A +B =114A +6B =0, 解得:{A =−3B =2; (2)原式=12(1x−1−1x+1+1x+1−1x+3+1x+3−1x+5+⋯+1x+9−1x+11)×(x +11)=12×(1x−1−1x+11)×(x+11)=12×12(x−1)(x+11)×(x+11)=6x−1,∵式子的值为正整数,∴x−1=1、2、3、6,则x=2、3、4、7.。

初中数学分式方程的增根、无解问题选择题培优训练2(附答案详解)

初中数学分式方程的增根、无解问题选择题培优训练2(附答案详解)1.若a 为整数,关于x 的不等式组22340x x x a ≤+⎧⎨-<⎩有且只有3个整数解,且关于x 的分式方程1122ax x x-=--有负整数解,则整数a 的个数为( ) A .4B .3C .2D .1 2.若a 为整数,关于x 的不等式组2(1)4340x x x a +≤+⎧⎨-<⎩有且只有3个非正整数解,且关于x 的分式方程11222ax x x -+=--有负整数解,则整数a 的个数为( )个. A .4 B .3 C .2 D .13.若a 使得关于x 的分式方程21224a x x -=-- 有正整数解,且方程2420ax x --=有解,则满足条件的所有整数a 的个数为( )A .1B .2C .3D .44.若数a 使关于x 的不等式组111(1){3223(1)x x x a x -≤--≤-,有且仅有三个整数解,且使关于y 的分式方程31222y a y y++--=1有整数解,则满足条件的所有a 的值之和是( ) A .﹣10B .﹣12C .﹣16D .﹣18 5.若关于x 的分式方程21133x m x x --=--的解为正数,且关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,则符合条件的所有整数m 的取值之和为( )A .﹣7B .﹣9C .﹣12D .﹣14 6.关于x 的分式方程2322x m m x x ++=--的解为正实数,则实数m 的取值范围是( )A .6m <-且2m ≠B .6m >且2m ≠C .6m <且2m ≠-D .6m <且2m ≠ 7.若数a 使关于x 的分式方程41332a x x +=--的解为正数,使关于y 的不等式组12255(2)34y y a y y --⎧⎪⎨⎪+-⎩><无解,则所有满足条件的整数a 的值之积是( ) A .360B .90C .60D .15 8.若关于x 的方程x a c b x d -=-有解,则必须满足条件( ) A .a ≠b ,c ≠d B .a ≠b ,c ≠-d C .a ≠-b , c ≠d D .a ≠-b , c ≠-d 9.从7-,5-,1-,0,4,3这六个数中,随机抽一个数,记为m ,若数m 使关于x 的不等式组()x m 02x 43x 2-⎧>⎪⎨⎪-<-⎩的解集为x 1>,且关于x 的分式方程1x m 32x x 2-+=--有非负整数解,则符合条件的m 的值的个数是( )A .1个B .2个C .3个D .4个10.若数a 使关于x 的不等式组112352x x x x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a a y y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .211.如果关于x 的分式方程2ax x 3+--2=43x -有正整数解,且关于x 的不等式组()4x 3x 3x a 0<-⎧-≥⎨⎩无解,那么符合条件的所有整数a 的和是( )A .16-B .15-C .6-D .4-12.若关于x 的分式方程21x a x --=1的解为正数,则字母a 的取值范围是( ) A .a <2B .a≠2C .a >1D .a >1且a≠213.已知关于x 的方程33+3a x x -+=1的解为负数,且关于x 、y 的二元一次方程组27358x y x y a -=⎧⎨+=+⎩的解之和为正数,则下列各数都满足上述条件a 的值的是( ) A .23,2,5 B .0,3,5 C .3,4,5 D .4,5,614.若关于x 的分式方程412a x x -=-的解为正整数,且关于x 的不等式组1282{630x x a x -+-≤>有解且恰有6个整数解,则满足条件的所有整数a 的值之和是( )A .4B .0C .-1D .-315.(山东省济南市槐荫区2018届九年级下学期学业水平阶段性调研测试(一模)数学试题)若关于x 的分式方程m 1x 1--=2的解为非负数,则m 的取值范围是 A .m >−1B .m≥−1C .m >−1且m≠1D .m≥−1且m≠1 16.若关于x 的方程2622x a x x--=--1的解为正数,则所有符合条件的正整数a 的个数为( )A .1个B .2个C .3个D .4个 17.若数a 使关于x 的分式方程1133x a x x++=--有非负整数解,且使关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5B .﹣3C .0D .2 18.若关于x 的方程3344x m m x x ++=--的解为正数,则m 的取值范围是( ). A .92m < B .94m >-且34m ≠- C .6m < D .6m <且2m ≠ 19.已知关于x 的分式方程6111m x x+=--的解是非负数,则m 的取值范圈是( ) A .5m > B .5m ≥C .5m ≥且6m ≠D .5m >或6m ≠ 20.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠ 21.若关于 x 的分式方程3111m x x-=-- 的解是非负数,则 m 的取值范围是( )A .m ≥-4B .m ≥-4 且 m ≠-3C .m ≥2 且 m ≠3D .m ≥2 22.关于x 的方程2211x m m x x -+=--的解为正数,则m 的取值范围是( ) A .23m < B .23m > C .23m <且13m ≠ D .23m <且0m ≠ 23.若关于x 的方程232x m x +=-的解是正数,则m 的取值范围是( ) A .6m >- B .6m >-且2m ≠ C .6m >-且4m ≠- D .6m <-且4m ≠- 24.已知关于x 的分式方程11m x ---1=21x -的解是正数,则m 的取值范围是( ) A .m <4 且m ≠3B .m <4C .m ≤3且m ≠3D .m >5且m ≠625.已知二次函数y =(a+2)x 2+2ax+a ﹣1的图象与x 轴有交点,且关于x 的分式方程1ax x ++1=71x +的解为整数,则所有满足条件的整数a 之和为( ) A .﹣4B .﹣6C .﹣8D .3 26.若关于x 的分式方程121m x +=-的解为非负数,则m 的取值范围是( ) A .3m >- B .3m ≥-C .3m >-且1m ≠-D .3m ≥-且1m ≠- 27.对于二次函数y =2x 2﹣(a ﹣2)x +1,当x >1时,y 随x 的增大而增大;且关于x 的分式方程22x -﹣3=2ax x --有整数解,则满足条件的整数a 的和为( ) A .5 B .6 C .10 D .1728.若关于y 的不等式组122y-k 46y k k -⎧≥⎪⎨⎪≤+⎩有解,且关于x 的分式方程32222kx x x x +=---有非负整数解,则符合条件的所有整数k 的和为( )A .-5B .-9C .-10D .-16 29.关于x 的方程2334ax a x +=-的解为1x =,则a =( ) A .1 B .3 C .-1 D .-330.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数a 的个数为( ) A .1 B .2 C .3 D .431.若关于x 的分式方程1322m x x x ++=--有增根,则m 的值是( ) A .m =-1 B .m =2C .m =3D .m =0或m =3 32.(2017龙东地区)已知关于x 的分式方程3133x a x -=-的解是非负数,那么a 的取值范围是( )A .1a >B .1a ≥C .1a ≥且9a ≠D .1a ≤ 33.已知分式方程312(1)(2)x k x x x +=++-+的解为非负数,求k 的取值范围( ) A .5k ≥ B .1k ≥- C .5k ≥且6k ≠ D .1k ≥-且0k ≠ 34.已知关于x 的一次函数()210y a x a =--+的图象过一、三、四象限,且关于y 的分式方程93322ay a y y--=--有整数解,求所有满足条件的整数a 的和为( ) A .11 B .15 C .21 D .2435.若关于x 的方程3133x ax x x ++=--有正整数解,且关于y 的不等式组252510y a y -⎧<⎪⎨⎪--≤⎩至少有两个奇数解,则满足条件的整数a 有( )个A .0B .1C .2D .3参考答案1.C【解析】【分析】先解出不等式组,然后由不等式组有且只有3个整数解可得a 的范围;再解分式方程可得x=31a-,根据分式方程有负整数解可得a 的值,两者结合最终确定a 的值. 【详解】解:解不等式223x x ≤+,得:x≥-2,解不等式4x-a <0,得:x <4a , ∵不等式组有且只有3个整数解,∴0<4a ≤1, 解得:0<a ≤4, 由方程1122ax x x -=--得:x=31a- ∵方程有负整数解,∴a=2,4又∵0<a ≤4,∴a=2,4故选:C .【点睛】本题主要考查解不等式组和分式方程的能力,根据不等式组的解集情况和分式方程的解得出关于a 的范围是解题的关键.2.C【解析】【分析】由不等式组有且只有3个非正整数解可得014a <≤,即0<a ≤4,再求分式方程可得x 22a=-,根据分式方程有负整数解可得a 的值. 【详解】解不等式2(x +1)≤4+3x ,得:x ≥﹣2,解不等式4x ﹣a <0,得:x 4a <, ∵不等式组有且只有3个非正整数解, ∴014a <≤, 解得:0<a ≤4, 由方程得:x 22a =-且是负整数,∴2-a=-1或-2, ∴a =3,4.故选C .【点睛】本题考查了解不等式组和分式方程的能力,根据不等式组的解集情况和分式方程的解得出关于a 的范围是解题的关键.3.D【解析】【分析】先解分式方程,求得a 的值,再由方程2420ax x --=有解得a 的取值范围,则可求得a 的值,可求得答案.【详解】 解分式方程21224a x x -=--可得x=4-2a ,x≠2, ∵a 使得关于x 的分式方程21224a x x -=--有正整数解, ∴a 的值为0、2、6,方程2420ax x --=,当a=0时,方程有实数解,满足条件,当a≠0时,则有△≥0,即16+8a≥0,解得a≥-2且a≠0,∴满足条件的a 的值为-2,0、2、6,共4个,故选:D .【点睛】本题主要考查方程的解,求得a 的整数值是解题的关键.4.B【解析】【分析】根据不等式的解集,可得a 的范围,根据方程的解,可得a 的值,根据有理数的加法,可得答案.【详解】()()111132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩①②, 解①得x≥-3,解②得x≤35a +, 不等式组的解集是-3≤x≤35a +. ∵仅有三个整数解,∴-1≤35a +<0 ∴-8≤a <-3,31222y a y y++--=1, 3y-a-12=y-2.∴y=102a +, ∵y≠2,∴a≠-6,又y=102a +有整数解, ∴a=-8或-4,所有满足条件的整数a 的值之和是-8-4=-12,故选B .【点睛】本题考查了分式方程的解,利用不等式的解集及方程的解得出a 的值是解题关键. 5.A【解析】【分析】根据题意可以求得m 的取值范围,从而可以得到符合条件的m 的整数值,从而可以解答本题.【详解】 解:由方程21133x m x x--=--,解得:x =﹣2﹣m , 则2023m m -->⎧⎨--≠⎩ 可得:m <﹣2且m≠﹣5,212625y y y m +⎧+>⎪⎨⎪-≤⎩①②, 由①知,y >﹣2,由②知,y≤52m +, ∵关于y 的不等式组212625y y y m +⎧+>⎪⎨⎪-≤⎩至少两个整数解,∴y =﹣1和0∴5+m≥0,解得:m≥﹣5,又m <﹣2且m≠﹣5,∴-5<m <﹣2,∴m 的整数值为﹣4,﹣3,∴符合条件的所有整数m 的值之和=﹣4+(﹣3)=﹣7,故选:A.【点睛】本题考查分式方程的解、解一元一次不等式(组)、一元一次不等式组的整数解,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.6.D【解析】【分析】先根据分式方程的解法,求出用m 表示x 的解,然后根据分式有解,且解为正实数构成不等式组求解即可.【详解】2322x m m x x++=-- 去分母,得x+m+2m=3(x-2)解得x=62m -+ ∵关于x 的分式方程2322x m m x x ++=--的解为正实数 ∴x-2≠0,x >0 即62m -+≠2,62m -+>0, 解得m≠2且m <6故选D.点睛:此题主要考查了分式方程的解和分式方程有解的条件,用含m 的式子表示x 解分式方程,构造不等式组是解题关键.7.B【解析】【分析】表示出分式方程的解,由分式方程解为正数,得到a 的取值范围;不等式组变形后,根据不等式组无解,确定出a 的范围,进而求出a 的值,得到所有满足条件的整数a 的值之积.【详解】解:分式方程去分母得:2a ﹣8=x ﹣3,解得:x =2a ﹣5,由分式方程的解为正数,得到:2a ﹣5>0且2a ﹣5≠3,解得:a >52且a ≠4. 不等式组整理得:527y a y -⎧⎨-⎩><,由不等式组无解,得到:5﹣2a ≥﹣7,即a ≤6,∴a 的取值范围是:52<a ≤6且a ≠4,∴满足条件的整数a 的值为3,5,6,∴整数a 的值之积是90.故选B .【点睛】本题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解答本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解. 8.B【解析】【分析】把a 、b 、c 、d 都看做已知数解方程,去分母,转化为关于x 的整式方程,讨论x 的系数,再讨论最简公分母≠0,得出结论.【详解】方程两边都乘以d(b-x),得d(x-a)=c(b-x),∴dx-da=cb-cx ,即(d+c)x=cb+da ,∴当d+c ≠0,即c ≠-d 时,原方程的解为x=cb da d c ++, 由题意知还要满足b-x ≠0,即cb da d c++≠b , 所以b ≠a ,当c+d=0时,c=-d ,0x=d(a-b),∴当a=b 时,方程有无数个解,故选B.【点睛】本题考查了解字母系数的分式方程,解含有字母系数的方程和解数字系数的方程一样,均是通过去分母,将分式方程转化为整式方程,但因为分式方程中字母的取值决定着方程的解,故对转化后的整式方程中的未知数系数应加以限制,对解出的解还要进行检验. 9.A【解析】【分析】根据分式方程有非负整数解,即可从7-,5-,1-,0,4,3这六个数中找出符合要求的m 的值,综上即可得到答案.【详解】()x m 02x 43x 2-⎧>⎪⎨⎪-<-⎩①②, 解不等式①得:x m >,解不等式②得:x 1>,该不等式组的解集为:x 1>,m 1∴≤,即m 取7-,5-,1-,0;1x m 32x x 2-+=--, 方程两边同时乘以()x 2-得:()x 1m 3x 2-+=-,去括号得:x 1m 3x 6-+=-,移项得:x 3x 16m -=--,合并同类项得:2x 5m -=--,系数化为1得:m 5x 2+=, 该方程有非负整数解,∴即m 502+≥,m 522+≠,且m 52+为整数, m ∴取5-,3,综上:m 取5-,即符合条件的m 的值的个数是1个,故选A .【点睛】本题考查了分式方程的解,解一元一次不等式组,一元一次不等式组的整数解,正确掌握解不等式组的方法,解分式方程的方法是解题的关键.10.C【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a 的取值范围,解分式方程后根据解为非负数,可得关于a 的不等式组,解不等式组求得a 的取值范围,即可最终确定出a 的范围,将范围内的整数相加即可得.【详解】解不等式112352x x x x a-+⎧<⎪⎨⎪-≥+⎩,得524x a x <⎧⎪⎨+≥⎪⎩, 由于不等式组只有四个整数解,即254a a +≤<只有4个整数解, ∴2014a +<≤, ∴22a -<≤; 解分式方程2211y a a y y++=--,得2y a =-, ∵分式方程的解为非负数,∴20210a a -≥⎧⎨--≠⎩, ∴a≤2且a≠1,∴22a -<≤且a≠1,∴符合条件的所有整数a 为:-1,0,2,和为:-1+0+2=1,故选C.【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.11.D【解析】【分析】根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意a 的值,求出之和即可.【详解】分式方程去分母得:2+ax ﹣2x +6=﹣4,整理得:(a ﹣2)x =﹣12(a ﹣2≠0),解得:x =﹣122a -,由分式方程有正整数解,得到:a =1,0,﹣1,﹣4,﹣10,不等式组整理得:9x x a -⎧⎨≥⎩<,解得:a ≤x <﹣9,由不等式组无解,即a ≥﹣9,∴a =1,0,﹣1,﹣4,之和为﹣4.故选D .【点睛】本题考查了分式方程的解,解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解答本题的关键.12.D【解析】去分母得:21,1x a x x a -=-=- ,则10,110a a ->--≠且 ,解得:a >1且a≠2.故选D.13.A【解析】【分析】先解分式方程得:x =a ﹣6,根据分式方程的解是负数列不等式求出a 的取值;再解方程组,把方程的解相加得:x +y =a +3+2a ﹣1=3a +2>0,得出a 的取值.【详解】3a x +﹣33x +=1,去分母得:a ﹣3=x +3,(a ≠3),x =a ﹣6. 由题意得:a ﹣6<0且x ≠-3,解得:a <6且a ≠3.27358x y x y a -=⎧⎨+=+⎩①②,①+②得:5x =5a +15,x =a +3③,把③代入①得:2(a +3)﹣y =7,y =2a ﹣1,∴x +y =a +3+2a ﹣1=3a +2>0,∴a >﹣23,则a 的取值为:﹣23<a <6且a ≠3. 故选A .【点睛】本题考查了分式方程和二元一次方程组以及不等式,解分式方程时要先去分母,化成整式方程后再求解,注意分母不为0,解二元一次方程组时常运用加减法解方程组,根据已知要求列不等式,最后求其解集即可.14.B【解析】【分析】【详解】分析:根据分式方程的解为正数求a的范围,注意使x=2的a的值;由不等式组有6个整数解求a的范围,综合得到a的范围后,取整数值求解.详解:把分式方程去分母,整理得,(a+3)x=8,当a≠-3时,x=83a+,所以83a+>0,解得a>-3.因为当x=2时,a=1,所以a>-3且a≠1.解不等式组128263xxa x+>-⎧⎪⎨⎪-≤⎩得,a≤x<5.因为有解且恰有6个整数解,所以-2<a≤-1.则满足条件的所有整数a的值是-1,0和是-1.故选B.点睛:由分式方程的解的情况求字母系数的取值范围,一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.15.D【解析】去分母得,m−1=2(x−1),去括号得,m−1=2x−2,移项,合并同类项得,2x=m+1,系数化为1得,x=1 2m+.因为x≥0,所以12m+≥0,解得m≥−1.把x=1代入m−1=2x−2,得m=1,所以m≥−1且m≠1.故选D.16.B【解析】【分析】分式方程去分母转化为整式方程,由分式方程有正数解确定出a的范围即可得到结论.【详解】2622x a x x--=-- 1 去分母得:2x +a ﹣6=x ﹣2,解得:x =4﹣a ,由分式方程有正数解,得到4﹣a >0,且4﹣a ≠2,解得:a <4且a ≠2,∴所有符合条件的正整数a 的个数为1,3.故选:B .【点睛】此题考查了分式方程的解,熟练分式方程的解法是解本题的关键.17.D【解析】【分析】解出分式方程,根据题意确定a 的范围,解不等式组,根据题意确定a 的范围,根据分式不为0的条件得到a ≠﹣2,根据题意计算即可.【详解】 解:()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩①②由①得y >﹣8,由②得y ≤a ,∴不等式组的解集为:﹣8<y ≤a ,∵关于y 的不等式组()()321262234y y y y a ++⎧>⎪⎨⎪-≥-+⎩至少有3个整数解,∴a ≥﹣5, 解分式方程1133x a x x++=--,得x =42a - , ∵关于x 的分式方程1133x a x x ++=--有非负整数解,且42a -≠3, ∴a ≤4且a ≠﹣2且a 为偶数;∴﹣5≤a ≤4且a ≠﹣2且a 为偶数,∴满足条件的整数a 为﹣4,0,2,4,∴所有整数a 的和=﹣4+0+2+4=2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.18.D【解析】【分析】把分式方程化为整式方程,根据解为正数,得出m 的取值范围.【详解】解:去分母得:x+m-3m=3x ﹣12,整理得:2x=﹣2m+12,解得:x=2122-+m , 已知关于x 的方程3344x m m x x++=--的解为正数, 所以﹣2m+12>0,解得m <6,当x=4时,x=2122-+m =4,解得:m=2, 所以m 的取值范围是:6m <且2m ≠.故答案选:D .【点睛】本题考查了分式方程的解,以及一元一次不等式,掌握方程和不等式的解法是解题的关键,注意要排除产生增根时m 的值.19.C【解析】【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得61m x -=-所以5x m =-因为方程的解是非负数所以50m -≥,且51m -≠所以5m ≥且6m ≠故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键. 20.B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x -=--, 21x k x +∴=-, 2x k ∴=+,该分式方程有解,21k ∴+≠, 1k ∴≠-,0x ,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.21.B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x ,根据方程的解为非负数求出m 的范围即可.【详解】解:分式方程去分母得:m+3=x-1,解得:x=m+4,由方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m ≥-4且m ≠-3.故选:B .【点睛】此题考查了解分式方程,分式方程的解,时刻注意分母不为0这个条件.解题的关键是熟练掌握运算法则进行解题.22.A【解析】【分析】将分式方程化为整式方程解得x=2-3m ,根据方程的解是正数列得2-3m>0,即可求出m 的取值范围.【详解】2211x m m x x-+=--, x-m-2m=2(x-1),x-3m=2x-2,∴x=2-3m , ∵方程2211x m m x x-+=--的解为正数, ∴2-3m>0, ∴23m <, 故选:A.【点睛】此题考查根据分式方程的解的情况求参数,将方程化为整式方程求出整式方程的解,列出不等式是解答此类问题的关键.23.C【解析】【分析】解分式方程,可得分式方程的解,根据分式方程的解是正数且分式方程有意义,可得不等式组,解不等式组,可得答案.【详解】232x m x +=-, 方程两边都乘以(x−2),得:2x+m=3x−6,解得:x=m+6,由分式方程的意义,得:m+6−2≠0,即:m≠−4,由关于x 的方程的解是正数,得:m+6>0,解得:m>−6,∴m 的取值范围是:m>−6且m≠−4,故选:C .【点睛】本题主要考查根据分式方程的解的情况,求参数的范围,掌握解分式方程,是解题的关键. 24.A【解析】【分析】方程两边同乘以1x -,化为整式方程,求得x ,再列不等式得出m 的取值范围.【详解】 解:12111m x x--=-- 12111m x x --=--- 方程两边同时乘以1x -()112m x ---=-4x m =-+∵已知关于x 的分式方程12111m x x--=--的解是正数,10x -≠ ∴4041m m -+>⎧⎨-+≠⎩∴4m <且3m ≠.故选:A【点睛】本题考查了分式方程的解的概念、解分式方程、数的分类、解不等式组等知识点,要注意分式的分母不为0的条件,此题是一道易错题,有一定的难度.25.A【解析】【分析】根据二次函数的定义和判别式的意义得到a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,则a≤2且a≠﹣2,再解分式方程得到x=61a+且x≠﹣1,利用分式方程的解为整数可求出解得a=0,﹣2,1,﹣3,2,﹣4,5,加上a的范围可确定满足条件的a的值,然后计算它们的和.【详解】解:根据题意得a+2≠0且△=4a2﹣4×(a+2)(a﹣1)≥0,解得a≤2且a≠﹣2,去分母得ax+x+1=7,解得x=61a+且x≠﹣1,因为分式方程的解为整数,所以a+1=±1,±2,±3,±6,且a≠﹣7,解得a=0,﹣2,1,﹣3,2,﹣4,5,所以满足条件的a的值为﹣4,﹣3,0,2,1.所以所有满足条件的整数a之和为﹣4+(﹣3)+0+2+1=﹣4.故选:A.【点睛】本题考查的是二次函数与x轴的交点问题,分式方程的解为整数,注意分式方程有意义的条件,掌握以上知识是解题的关键.26.D【解析】【分析】先将m视为常数,求解出分式方程的解(包含m),然后根据解的条件判断m的取值范围.【详解】121m x +=- m+1=2x-2解得:x=32m + ∵分式方程的解为非负数 ∴302m +≥ 解得:m≥-3 ∵方程是分式方程,∴312m +≠ 解得:m≠-1综上得:m≥-3且m≠-1故选:D .【点睛】本题考查解含有字母的分式方程,注意最后得到的结果,一定要考虑增根的情况. 27.C【解析】【分析】先解分式方程得x =4-3a -,根据分式方程22x -﹣3=2ax x --有整数解,可推出a 可以取的值,再根据二次函数的性质可推出a 的取值范围,即可求解.【详解】 解分式方程22x -﹣3=2ax x --, 可得x =4-3a -, ∵分式方程22x -﹣3=2ax x --有整数解, ∴a =﹣1,2,4,5,7,∵y =2x 2﹣(a ﹣2)x +1,∴抛物线开口向上,对称轴为x =24a -, ∴当x >24a -时,y 随x 的增大而增大, ∵x >1时,y 随x 的增大而增大,∴24a-≤1,解得a≤6,∴a能取的整数为﹣1,2,4,5;∴所有整数a值的和为10,故选:C.【点睛】本题考查了分式方程和二次函数的性质,掌握知识点是解题关键.28.A【解析】【分析】先解关于y的不等式组,根据不等式组有解,确定k的范围.整理分式方程,用含k的代数式表示出x,根据x有非负整数解,确定k的值,并得结论.【详解】不等式组整理得:4156 y ky k≥+≤+⎧⎨⎩,由不等式组有解,得到5k+6≥4k+1,即k≥-5,分式方程去分母得:kx=2x-4-3x-2,整理,得kx+x=-6即(k+1)x=-6,解得:x=-61k+,由方程有非负整数解,∴k+1=-6或-3或-2或-1 所以k=-7或-4或-3或-2又因为k≥-5,且-61k+≠2,所以k=-3,-2∵-3-2=-5.故选:A.【点睛】本题考查了求不等式组、求分式方程的解等知识点,题目难度较大,求分式方程非负数解的过程中,容易忘记分式方程的分母不等于0条件.29.D【解析】【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a 的新方程,解此新方程可以求得a 的值.【详解】解:把x=1代入原方程得:23314a a +=-, 去分母得,8a+12=3a-3,解得a=-3,故选:D .【点睛】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.30.B【解析】【分析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2.【详解】 解方程2311a x x x--=--,得: 12a x +=, ∵分式方程的解为正数,∴1a +>0,即a>-1,又1x ≠, ∴12a +≠1,a ≠1, ∴a>-1且a ≠1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解, ∴a-1<y ≤8-2a ,即a-1<8-2a ,解得:a<3,综上所述,a 的取值范围是-1<a<3,且a ≠1,则符合题意的整数a 的值有0、2,有2个,故选:B .【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.31.C【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根得到x ﹣2=0,求出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:13(2)m x x --=-,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m ﹣3=0,解得:m =3,故选:C【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.32.C【解析】【分析】【详解】解:略33.D【解析】【分析】先把分式方程转化为整式方程求出用含有k 的代数式表示的x ,根据x 的取值求k 的范围.【详解】解:分式方程转化为整式方程得,(3)(1)k (1)(2)x x x x +-=+-+解得:k 1x =+解为非负数,则k+10≥,∴k -1≥又∵x≠1且x≠-2,∴k+11k+1-2≠≠,∴k -1≥ ,且k 0≠故选D【点睛】本题考查了分式方程的解,解答本题的关键是先把分式方程转化为整式方程,求出方程的解,再按要求列不等式,解不等式.34.B【解析】【分析】先根据一次函数图像过一、三、四象限求出a 的取值范围,再解分式方程,进而确定其整数【详解】解:∵一次函数()210y a x a =--+过一、三、四象限∴20100->⎧⎨-+<⎩a a ,求得a 的取值范围为:210a << 解分式方程:93322ay a y y --=-- 得:3(2)39--=-ay y a整理得:3153(3)663333---===----a a y a a a ∵解为整数 ∴3a -能被6整除,且3a ≠∴31,2,3,6-=±±±±a解得4,2,5,1,6,0,9,3=-a又2y ≠,∴6323-≠-a ,∴9a ≠ 又210a <<∴4,5,6.=a∴所有满足条件的整数a 的和为4+5+6=15.故答案为:B.【点睛】本题考查了一次函数图像问题和分式方程解的整数个数问题,熟练掌握一次函数的图像及分式方程的解法是解决此类题的关键.35.D【解析】【分析】分式方程去分母转化为整式方程,表示出正整数方程的解,代入检验确定出a 的值,再表示出不等式组的解集,由解集至少有两个奇数解确定出整数a 的值,求出之和即可.【详解】 解:3133x ax x x++=-- 解得:6x a = ∴方程有正整数解 且63a≠即2a ≠ ∴136a =、、 解不等式组252510y a y -⎧<⎪⎨⎪--≤⎩解得1521y y a ⎧<⎪⎨⎪≥-⎩关于y 的不等式组至少有两个奇数解a-≤∴15a≤∴6∴满足条件得整数a有3个,故选:D.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。

初中数学因式分解综合训练培优练习2(附答案详解)

初中数学因式分解综合训练培优练习2(附答案详解)1.下列各式分解因式正确的是A .()()2228244a b a b a b -=+- B .()22693x x x -+=-C .()22224923m mn n m n -+=-D .()()()()x x y y y x x y x y -+-=-+2.因式分解:a (n -1)2-2a (n -1)+a.3.分解因式:412x 3y xy -+4.因式分解:(1)316x x - (2)221218x x -+5.因式分解:(1)﹣3x 3+6x 2y ﹣3xy 2; (2)a 3-4ab 2.6.2221x x y ++-7.(x 2+2x)2+2(x 2+2x)+18.分解因式:(1) 3a 3-6a 2+3a .(2) a 2(x -y)+b 2(y -x).9.因式分解:(1)3349x y xy - (2)222(6)6(6)9x x ---+10.因式分解: (1) x 2﹣36;(2) xy 2﹣x ;(3) ab 4﹣4ab 3+4ab 2;(4) (m +1)(m ﹣9)+8m .11.已知ab =-3,a +b =2.求下列各式的值: (1)a 2+b 2; (2)a 3b +2a 2b 2 +ab 3; (3)a -b .12.(1)因式分解:3a 3+12a 2+12a ;2016+20162-20172(2)解不等式组:()263125x x x -<⎧⎨+≤+⎩,并将解集在数轴上表示出来.(3)解分式方程:2236x 1x 1x 1+=+--.13.观察下列式子:23(1)(1)1x x x x +-+=+;23(2)(24)8x x x x +-+=+;2233(2)(42)8m n m mn n m n +-+=+;……(1)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过程,请你写出一个新的乘法公式(用含a 、b 的字母表示),并加以证明;(2)直接用你发现的公式写出计算结果:(2a +3b )(4a 2﹣6ab +9b 2)= ;(3)分解因式:m 3 + n 3 + 3mn (m + n ).14.分解因式:4322221x x x x ++++15.因式分解:(1)x 2y -2xy +xy 2; (2)422x -+.16.222---x xy y =__________17.分解因式212x 123y xy y -+-=___________18.将22363ax axy ay -+分解因式是__________.19.在实数范围内分解因式:4244x x -+=_____________.20.因式分解:m 3n ﹣9mn =______.21.分解因式:339a b ab -=_____________.22.分解因式:x 3y ﹣2x 2y+xy=______.23.分解因式:3x 2﹣3y 2=_____.24.因式分解:2328x y y -=_________.25.分解因式:am 2﹣9a=_________________.26. 分解因式:(p+1)(p ﹣4)+3p =_____.27.因式分解:x 3﹣6x 2y +9xy 2=____.28.分解因式:222x 2y -= ______.29.分解因式:22xy xy x -+-=__________.30.分解因式:a 3b +2a 2b 2+ab 3=_____.31.分解因式:3a 2+6ab+3b 2=________________.32.分解因式:29y x y -=_____________.33.分解因式:4a 2b ﹣b =_____.34.分解因式:222m -=_________________________.35.分解因式:2a 2﹣18=________.36.分解因式:x 3﹣2x 2+x=______.37.因式分解:34x x -=____________________.参考答案1.B【解析】【分析】利用完全平方公式a 2-2ab+b 2=(a-b )2和平方差公式以及提公因式法分别进行分解即可.【详解】A. ()()2222282(4)222a b a b a b a b -=-=+-,故该选项错误; B. ()22693x x x -+=-,分解正确;C. ()22224923m mn n m n -+≠-,故原选项错误;D. ()()()()2()x x y y y x x y x y x y -+-=--=-,故原选项错误. 故选B.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.2.a(n-2)2【解析】试题分析:根据题意,先提公因式a ,然后把n-1看做一个整体,利用完全平方公式分解即可.试题解析:原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2=a(n-2)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 3.()()32121xy x x -+-【解析】试题分析:根据因式分解的方法,先提公因式-3xy ,然后根据平方差公式因式分解即可. 试题解析:()()()4212x 334132121y xy xy x xy x x -+=--=-+- 4.(1)(4)(4)x x x +-;(2)22(3)x -【解析】试题分析:根据因式分解的方法步骤,一提(公因式)二套(平方差公式,完全平方公式)三检查(是否分解彻底),可直接进行因式分解.试题解析:(1)原式=()216x x -=()()44x x x +-(2)原式=()2269x x -+=()223x -5.(1)-3x (x-y )2;(2) a (a+2b )(a-2b ).【解析】试题分析:根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),可以直接接计算即可.试题解析:(1)﹣3x 3+6x 2y ﹣3xy 2=-3x (x 2-2xy+y 2)=-3x (x-y )2(2)a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b )点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 6.(1)(1)x y x y +++-【解析】解:原式=()221x y +-=()()11x y x y +++- 7.4(1)x +【解析】解:原式=()2221x x ++=()41x +8.(1) 3 a (a -1)2;(2) (x -y)(a -b)(a+b );(3)(a+7b )(7a+b )【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1) 原式=3 a (a 2-2a+3)=3 a (a -1)2;(2) 原式= (x -y)(a 2-b 2)= (x -y)(a -b)(a+b );(3) 原式=[4(a+b)-3(a -b)] [4(a+b)+3(a -b)]=(a+7b )(7a+b ).9.(1)(2)22(3)(3)x x +- 【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1)3349x y xy -=xy (2x-3y )(2x+3y )(2)()()2226669x x ---+ =(x 2-6-3)2=(x+3)2(x-3)210.(1)(x +6)(x ﹣6).(2)x (y ﹣1)(y +1).(3)ab 2(b ﹣2)2. (4)(m +3)(m ﹣3).【解析】试题分析:(1)利用平方差公式进行因式分解即可;(2)先提公因式,再根据平方差公式分解即可;(3)先提公因式,再根据完全平方公式分解即可;(4)先根据乘法公式计算,再合并同类项,最后根据平方差公式分解即可.试题解析:(1)x 2﹣36=(x +6)(x ﹣6).(2)xy2﹣x=x(y2﹣1)=x(y﹣1)(y+1).(3)ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.(4)(m+1)(m﹣9)+8m=m2﹣9m+m﹣9+8m=m2﹣9=(m+3)(m﹣3).点睛:此题主要考查了因式分解,解题的关键是灵活选用适当的方法进行饮食费解。

八年级数学分式专题培优(2)(K12教育文档)

八年级数学分式专题培优(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学分式专题培优(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学分式专题培优(2)(word版可编辑修改)的全部内容。

分式提高训练1、学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的2、下列四种说法(1)分式的分子、分母都乘以(或除以)2+a ,分式的值不变;(2)分式y -83的值可以等于零;(3)方程11111-=++++x x x 的解是1-=x ;(4)12+x x 的最小值为零;其中正确的说法有( ) A 。

1个 B.2 个 C 。

3 个 D 。

4 个3、关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-2 4.若解分式方程xx x x m x x 11122+=++-+产生增根,则m 的值是( ) A. --12或 B. -12或 C. 12或D 。

初中数学分式方程的无解问题填空题培优训练2(附答案详解)

初中数学分式方程的无解问题填空题培优训练2(附答案详解)1.若关于x 的分式方程122m x x x-=--﹣3有增根,则实数m 的值是_____. 2.如果2x =是关于x 的方程21124k x x =+--的增根,那么实数k 的值为__________ 3.当m=____时,关于x 的分式方程2x m -1x-3+=无解. 4.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为_____. 5.若关于x 的方程2361mx m x x x x++=--无解,则m =______________。

6.若分式方程544x a x x =+--有增根,则a 的值为____. 7.当m =_____时,关于x 的分式方程4133x m x x -=--会产生增根. 8.若关于x 的方程122x m x x +=--有增根,则m 的值是________. 9.已知方程355x a x x =---有增根,则a 的值为 . 10.若y =1是方程1m y -+32y -=()()112y y --的增根,则m =____. 11.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为_______. 12.若关于 x 的方程1222x m x x-=+--产生增根,那么 m 的值是_____. 13.在用“方程两边同时乘以最简公分母”的方法解关于x 的分式方程21x x --21m x x ++=1x x+时产生增根,则m=______________________. 14.若关于x 的方程24334712x x m x x x x +++=---+有增根,则m =_____. 15.如果方程x 3m 1x 2x 2-+=--有增根,那么m =______. 16.如果关于x 的方程1101mx x +-=-有增根,则m =_______________. 17.若分式方程22111x m x x x x x ++-=++产生增根,则m 的值是_________. 18.若关于x 的方程237111k x x x +=+--无解,则k =__________. 19.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________.20.若分式方程3x x -﹣3a x -=2有增根,则a =_____. 21.若关于x 的分式方程1x a a x +=-无解,则a 的值是_______. 22.(2017四川省攀枝花市)若关于x 的分式方程7311mx x x +=--无解,则实数m =_______.23.若关于x 的分式方程233x m x x -=--+2无解,则m 的值为________. 24.若关于x 的方程133x m x x =+-+无解,则m 的值为_________________. 25.已知12322kx x x x --=--为分式方程,有增根,则k =_____. 26.若关于x 的分式方程有增根,则m =________. 27.若关于x 的分式方程322x m x x -=--无解,则m =__________. 28.如果关于x 的方程1322k x x -=--+1有增根,那么k 的值为_____ 29.若方程244x a x x =+--有增根,则a =________. 30.已知关于x 的方程311x m x x +=--,当m =______时,此方程的解为4x =;当m =______时,此方程无解.31.若关于 x 的方程322x m x x -=--无解,则 m =_____. 32.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 33.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 34.若关于x 的分式方程133x m x x -=--无解,则m=_________. 35.若关于x 的方程2333x a a x x++=--无解,则a 的值为__________. 36.若关于x 的分式方程2133x k x x+=--无解,则k 的值等于______________. 37.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 38.若关于x 的分式方程3222x m x +=+有增根,则m 的值为__________. 1x -40.若关于x 的分式方程x x 4-+4m 4x - = 2m 无解,则m 的值为___________ 41.关于x 的方程233tx t x x +=--无解,则t =_____________. 42.若分式方程211x m x x-=--有增根,则m =________. 43.若关于x 的分式方程11222kx x x-+=-- 无解,则k 的值为________. 44.若方程233x m x x -=--无解,则m =_______________; 45.若关于x 的方程3101ax x +-=-无解,则a 的值为__________. 46.若方程233x m x x =---有增根,则m =___________. 47.若分式方程3211x m x x =+++无解,则m =______. 48.若关于x 的方程3533-+=--x m x x 无解,则m 的值等于_____. 49.若分式方程213+33kx x x-=--无解,则k=__________ 50.关于x 的分式方程214224k x x x +=-+-有增根2x =-,则k =______.参考答案1.1【解析】【分析】【详解】解:去分母,得:m=x﹣1﹣3(x﹣2),由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程可得:m=1,故答案为1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.2.4【解析】【分析】分式方程去分母转化为整式方程,把x=2代入计算即可求出k的值.【详解】去分母得:x+2=k+x2-4,把x=2代入得:k=4,故答案为:4.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.4【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.方程两边都乘x-3,得x-2(x-3)=m 2,∵原方程增根为x=3,∴把x=3代入整式方程,得【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.5.9或3或-3【解析】【分析】去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0.【详解】分式方程化简,得()()3161x x m x +=+﹣整理,得()93m x m +﹣= 当90m =﹣时,即9m =,整式方程无解;当()10x x -=,即0x =或1x =时,分式方程无解,当0x =时,3m =﹣;当1x =时,3m =.故答案为:9或3或﹣3.【点睛】本题主要考查了分式方程的解,正确分类讨论是解题关键.6.4【解析】首先将分式方程去掉分母转化为整式方程,根据分式方程有增根进一步得出整式方程的解,由此代入整式方程求出a 的值即可.【详解】原分式方程去掉分母可得:520x x a =-+,∵原分式方程有增根,∴40x -=,即:4x =,将4x =代入方程520x x a =-+可得:42020a =-+,∴4a =,故答案为:4.【点睛】本题主要考查了分式方程中增根的运用,熟练掌握相关方法是解题关键.7.-12【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:4x-x+3=-m ,由分式方程有增根,得到x-3=0,即x=3,把x=3代入整式方程得:m=-12,故答案为:-12.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.8.3m =.【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解:方程两边都乘x-2,得1x m +=∵方程有增根,∴最简公分母x-2=0,即增根是x=2,把x=2代入整式方程,得3m =.故答案为:3m =.【点睛】考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.9.-5【解析】【分析】【详解】解:方程两边都乘以最简公分母(x+2),把分式方程化为整式方程,再根据分式方程的最简公分母等于0求出方程有增根为x=5,然后代入即可得到a 的值为﹣5.故答案为﹣5.考点:分式方程的增根.10.-1.【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.先去分母,然后把y=1代入代入整式方程,即可算出m 的值.【详解】去分母,可得m (y-2)+3(y-1)=1,把y=1代入,可得m (1-2)+3(1-1)=1,解得m=-1,故答案为-1.【点睛】本题考查了分式方程的增根,在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.11.1-或5或13-【解析】【分析】去分母,将分式方程转化为整式方程,根据分式方程无解分三种情况,分别求m 的值.【详解】 解:2134416x m m x x ++=-+- ()()134444m m x x x x ++=-++- 方程两边同时乘以()()44x x +-得()()1443x m x m ⋅++⋅-=+()151m x m +=-∵关于x 的方程2134416x m m x x ++=-+-无解 ∴①当10m +=,且()()440x x +-≠,即1m =-时则方程无解;②当4x =,则()1451m m +⋅=-,即5m =时方程无解;③当4x =-,则()()1451m m +⋅-=-,即13m =-时方程无解. ∴综上所述,当1m =-或5m =或13m =-时方程无解. 故答案是:1-或5或13-【点睛】本题是一道基础题,考查了分式方程的解,要熟练掌握.关键是理解方程无解:一种情况为使分母为0,由此可得5m =或13m =-;另一种情况为分母不等于0,化简后所得的整式方程无解.12.-1【解析】【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到20x -=,将x=2代入整式方程计算即可求出m 的值.【详解】解:分式方程去分母得:124x m x -=-+-,由题意得:20x -=,即x=2,代入整式方程得:2144m -=-+-,解得:1m =-.故答案为:1-.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.m=-1或m=-2【解析】【分析】先去分母,得到整式方程,把方程的增根逐一代入整式方程求解即可.【详解】 解:因为:21x x --21m x x ++=1x x+ 去分母:222(1)(1)(1)(1)(1)x x x m x x +--+=+-因为方程的增根为:0x =或1x =或1x =-把0x =代入222(1)(1)(1)(1)(1)x x x m x x +--+=+-得:2m =-把1x =代入222(1)(1)(1)(1)(1)x x x m x x +--+=+-不合题意,把1x =-代入222(1)(1)(1)(1)(1)x x x m x x +--+=+-得:1m =-综上:2m =-或1m =-故答案为:2m =-或1m =-.【点睛】本题考查的是分式方程的增根问题,掌握增根产生的原因及求解有增根时字母的值是解题的关键.14.±7.【解析】【分析】将已知方程化为m=2x 2-25,由方程有增根可得x=3或x=4,代入即可求m 的值.【详解】4334x x x x +++--=(4)(4)(3)(3)(3)(4)x x x x x x +-++---=22225712x x x --+, ∴m =2x 2﹣25,∵方程有增根,∴x =3或x =4,∴m =﹣7或m =7,故答案为:±7.【点睛】本题考查分式方程的增根;熟练掌握分式方程的解法,理解增根的定义是解题的关键. 15.-1【解析】【分析】分式方程去分母转化为整式方程,把x 2=代入整式方程求出m 的值即可.【详解】解:去分母得:x 3x 2m -+-=,由分式方程有增根,得到x 2=,代入整式方程得:m 1=-,故答案为1-【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.-1【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x−1=0,所以增根是x =1,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘x−1得mx +1-x +1=0,∵方程有增根,∴最简公分母x−1=0,即增根是x =1,把x =1代入整式方程,得m =−1.故答案为:−1.【点睛】本题考查了分式方程的增根,解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.2m =-或1m =【解析】【分析】先把方程两边同乘以(1)x x +得到整式方程2220x x m ---=,由于原方程存在增根,则(1)0x x +=,即可求出增根为0或1-,然后把增根代入2220x x m ---=求出m 即可.【详解】解:方程两边同乘以(1)x x +得,222(1)(1)x m x -+=+,整理得:2220x x m ---=, 方程22111x m x x x x x++-=++存在增根, (1)0x x ∴+=0x ∴=或1x =-,把0x =与1x =-,分别代入2220x x m ---=,解得:2m =-或1m =,故本题答案是:2m =-或1m =【点睛】本题考查了分式方程的增根的问题,增根就是使分式方程的最简公分母等于0的未知数的值,把分式方程化为整式方程代入求解即可.18.3-或72-【解析】【分析】 首先方程两边都乘()()11x x +-,整理可得方程:()3?4k x k +=+,然后分析1k -的情况,再利用关于x 的方程237111k x x x +=+--无解,得1x =±,继而求得答案. 【详解】解:两边都乘以()()11x x +-,得 ()()1317x x k -++=,整理,得()34k x k +=+,当3k +=0时,即3k =-时,方程无解;当3k +≠0时,43k x k +=+, ∵关于x 的方程237111k x x x +=+--无解, ∴(x +1)(x -1)=0,解得:x =1或x =-1,当x =-1时,413k k +=-+,解得:72k =-; 当x =1时,413k k +=+,此时无解; ∴3k =-或72k =-. 故答案为:3-或72-.【点睛】分式方程无解有两种情况:①相应的整式方程无解; ②求出的整式方程的解是原分式方程的増根,也就是使原分式方程的分母为0的根.19.4.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=4,故答案为4.20.3【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:去分母得:x+a=2x﹣6,解得:x=a+6,由分式方程有增根,得到x﹣3=0,即x=3,代入整式方程得:a+6=3,解得:a=﹣3,故答案为:﹣3【点睛】考核知识点:分式方程增根问题.去分母是关键.21.﹣1或1【解析】【分析】分式方程去分母转化为整式方程,根据分式方程无解分两种情况讨论分别求出a的值.【详解】去分母得:x+a=a(x﹣1),(1)2a x a-=,分两种情况讨论:①当a=1时整式方程方程无解,从而分式方程无解;②当a≠1时,根据分式方程无解,得到x﹣1=0,即x=1,∴a-1=2a,解得:a=﹣1.故答案为:﹣1或1.【点睛】本题考查了分式方程的解,分式方程无解包括两种情况:①最简公分母为0;②化简后的整式方程无解.22.3或7.【解析】解:方程去分母得:7+3(x﹣1)=mx,整理得:(m﹣3)x=4.①当整式方程无解时,m﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7.综上所述:∴m的值为3或7.故答案为3或7.23.1【解析】分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.详解:22 33x mx x-=+ --去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.故答案为1.点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.24.3m =或0m =【解析】【分析】方程两边同时乘以()()33x x +-,根据方程无解去确定m 的值即可.【详解】当3030x x -≠+≠,,133x m x x =+-+ 22339x x mx m x +=-+-()339m x m -=+由于方程无解∴30m -=解得3m = ∴3933m x m +==-,无解 ∴3933m x m +==--,解得0m = ∴3m =或0m =故答案为:3m =或0m =.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.25.1【解析】【分析】去分母得(2)2k x -=-,根据有增根即可求出k 的值.【详解】去分母得,123kx x -=-(2)2k x -=-,当20k -≠时,22x k =--为增根, 222k ∴-=- 21k -=-1k =故答案为:1.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.26.-2【解析】【分析】【详解】解:根据关于x 的方程有增根,可知x-3=0,增根为x=3,原方程化为整式方程为2=(x-3)-m ,代入x=3可得m=-2.故答案为:-2.【点睛】本题考查分式方程的增根,理解概念正确计算是解题关键.27.2【解析】【分析】去分母,将分式方程转化为整式方程,根据分式方程有增根时无解求m 的值.【详解】去分母,得x-3(x-2)=m ,整理,得-2x+6= m ,当x=2时,原方程有增根,分式方程无解,此时-2×2+6= m ,解得m=2,故答案为2.【点睛】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.28.4【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出k 的值.【详解】去分母得:1=k-3+x-2,由分式方程有增根,得到x-2=0,即x=2,把x=2代入整式方程得:k=4,故答案为4【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.29.4.【解析】【分析】先去掉分母将分式方程转化为整式方程,再根据原方程有增根而得出x 的值,将其代入之前得到的整式方程进一步求解即可.【详解】将分式方程去掉分母可得:()24x x a =-+,即:8x a -=-+,∵原方程有增根,∴40x -=,即4x =,∴48a -=-+,∴4a =,故答案为:4.【点睛】本题主要考查了分式方程中增根的性质,熟练掌握相关概念是解题关键.30.5 -1【解析】【分析】分式方程去分母转化为整式方程,将x=4代入计算即可求出m的值;分式方程无解,将x=1代入即可解答.【详解】解:由原方程,得x+m=3x-3,∴2x=m+3,将x=4代入得m=5;∵分式方程无解,∴此方程有增根x=1将x=1代入得m=-1;故答案为:5,-1;【点睛】本题考查了分式方程的解法和方程的解,以及分式方程无解的问题,理解分式方程无解的条件是解题的关键.31.1.【解析】试题解析:原方程可化为x-3=-m,∴x=3-m,由已知得:3-m=2,∴m=1.考点:分式方程的解.32.3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.33.-1或5或13-【解析】【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分母得:()443x m x m ++-=+,可得:()151m x m +=-,当10m +=时,一元一次方程无解,此时1m =-,当10m +≠时, 则5141m x m -==±+, 解得:5m =或13-. 故答案为:1-或5或13-.【点睛】此题主要考查了分式方程的解,正确分类讨论是解题关键.34.2【解析】【分析】因为关于x 的分式方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=3,据此即可求解.【详解】两边同时乘以(x-3)去分母解得x=1+m ,∵方程无解,∴说明有增根x=3,所以1+m=3,解得m=2,故答案为:2.【点睛】本题考查了分式方程的解,理解分式方程的增根产生的原因是解题的关键.35.3【解析】【分析】根据方程无解可得该方程的增根为3x =,分式方程去分母转化为整式方程,将x =3代入即可求出a 的值.【详解】解:分式方程去分母得:23(3)x a a x +-=-,根据题意得:当x -3=0时,该分式方程有增根,为x =3,将x =3代入整式方程得:320a a +-=解得3a =故答案为:3.【点睛】本题考查分式方程无解问题. 依据分式方程的增根确定字母参数的值的一般步骤:① 先将分式方程转化为整式方程;②由题意求出增根;③将增根代入所化得的整式方程,解之就可得到字母参数的值.36.6【解析】【分析】将分式方程转化为整式方程,由已知该分式方程无解,则有x=3,进而求出k 的值.【详解】解:原分式方程可化为:2x-k=x-3因为原分式方程无解,所以x=3.∴2⨯3-k=3-3解得,k=6.故答案为:6.【点睛】本题考查分式方程的解;熟练掌握分式方程的解法,明确分式方程无解的情况是解题的关键. 37.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.38.3【解析】【分析】将分式方程去分母转化为整式方程,并求出x 的值,然后再令x+2=0,即可求得m 的值.【详解】 解:由3222x m x +=+得:x=4-2m 令x+2=0,得4-2m+2=0,解得m=3故答案为3.【点睛】本题考查了分式方程的增根,解分式方程和把增根代入整式方程求得相关字母的值是解答本题的关键.39.1【解析】【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【详解】解:去分母得,1x ax -=,∴1x ax -= ∴11x a=- , 当分母1-a=0时方程无解,即a=1时方程无解,则a 的值是1.故答案为:1.【点睛】本题考查了分式方程无解的条件,是需要识记的内容.40.12或1 【解析】【分析】方程无解分两种情况:①方程的根是增根②去分母后的整式方程无解,去分母后分情况讨论即可.【详解】①去分母得:x-4m=2m (x-4)若方程的根是增根,则增根为x=4把x=4代入得:4-4m=0 解得:m=1②去分母得:x-4m=2m (x-4)整理得:(2m-1)x=4m∵方程无解,故2m-1=0 解得:m=12∴m 的值为12或1 故答案为:12或1 【点睛】本题考查的是分式方程的无解问题,注意无解的两种情况是解答的关键.41.0或23-【解析】【分析】 根据等式的基本性质,将分式方程化为整式方程,因为方程无解,讨论当t=0时和t≠0时两种情况下确定字母的值即可.【详解】 解:233tx t x x+=-- 两边同乘3x -得:(3)2tx t x +-=-32tx tx t +-=-232tx t =-①当t=0时,0=-2,满足方程无解;②当t≠0时,322t x t-=, 要使分式方程无解,则30x -=即x=3将3x =代入得:3232t x t-== 解得:23t =- 故答案为:0或23-【点睛】本题考查分式方程无解时求字母的值,解决本题的关键是熟练掌握分式方程的变形,将分方程转化为整式方程.42.-1【解析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.43.2或1【解析】11222kx x x-+=-- 去分母得,2(x-2)+(1-kx)=-1,整理得(2-k)x=2,∴当2-k=0时或x-2=0时原方程无解.当2-k=0时,k=2;当x-2=0时,即x=2时,2-k=1,k=1.∴当,k=2或k=1时,原方程无解.点睛:本题考查了根据分式方程的无解求参数的值,分式方程的无解包括两种情况,①当分母为0时,分式方程无解,求出x 的值,代入到去分母后的整式方程求出参数的值;②去分母整理成ax =b 的形式,如果a =0,b ≠0,此时分式方程也无解.44.1【解析】【分析】先去分母得出x-2=m ,且x-3=0,得出x 的值再代入x-2=m ,即可得出m 的值.去分母,得x-2=m.∵分式原方程无解,∴x-3=0,即x=3.将x=3代入x-2=m ,得m=1.【点睛】本题考查了分式方程的解,熟练掌握无解的情况时分母为0是解题的关键.45.1或-3.【解析】【分析】分式方程去分母转化为整式方程,去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【详解】3101ax x +-=-, ()310ax x +-=﹣即:()14a x -=-∴当1a =时,整式方程无解,分式方程无解;当1a ≠时,41x a -=- 1x =时,分式的分母为0,方程无解, 即411a --,解得:3a =-, 因此3a =-时,方程无解.故答案为:1或-3.【点睛】本题主要考查解分式方程,去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.46.﹣3【解析】【分析】先去分母,根据方程有增根求出x=3,代入以上方程即可求出a 的值.【详解】解:方程两边同乘以x−3得:x=2(x-3)-m ,∵分式方程有增根,∴最简公分母x-3=0,即x=3.当x=3时,m=-3.故答案为-3.【点睛】此题考查了分式方程的增根.增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母等于0,得到未知数的值,然后代入化为整式方程的方程算出字母的值.47.-3【解析】【分析】先将分式方程化成整式方程,再将x=-1代入求出m 的值,即可得出答案.【详解】3211x m x x =+++ 3x=m+2(x+1)∵分式方程无解∴x=-1将x=-1代入得:3×(-1)=m+2×(-1+1) 解得:m=-3故答案为:-3.【点睛】本题考查的是解分式方程,难度中等,分析分式方程有增根是解决本题的关键.48.6【解析】【分析】分式方程无解的条件是:去分母后所得整式方程,解这个整式方程得到的解使原方程的分母【详解】解:3533-+=--x mx x,x+5(x﹣3)=m﹣3 x+5x﹣15=m﹣3∴x=16m+2,当(16m+2)﹣3=0时,方程无解,解得m=6.故答案为:6.【点睛】本题主要考查解分式方程,分式方程的意义,关键在于明确当3x=时,原方程无解,求出x 关于m的表达式,认真正确的解关于m的方程.49.3和1【解析】试题解析:方程去分母得:3(x-3)+2-kx=-1,整理得(3-k)x=6,当整式方程无解时,3-k=0即k=3,当分式方程无解时,x=3,此时3-k=2,k=1,所以k=3或1时,原方程无解.故答案为3或1.50.1-【解析】【分析】化分式方程为整式方程,把增根代入化为整式方程的方程即可求出k的值.【详解】方程两边都乘(x+2)(x−2),得x+2+k(x−2)=4∵原方程增根为x=−2,∴把x=−2代入整式方程,得k=−1.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优训练(2)
1、下列运算中,错误的是( ) A 、
)0(≠=c bc
ac b a B 、
1-=+--b
a b a
C 、
b
a b a b
a b a 321053.02.05.0-+=
-+ D 、
x
y x y y
x y x +-=
+-
2、将分式
b
a a +2中的a 扩大到2倍,
b 扩大到4倍,而分式的值不变,则( )
A 、0=a
B 、0=b
C 、0=a 且0=b
D 、0=a 或0=b 3、若对于分式m x +2
1,不论x 取何实数,分式
m
x +2
1总有意义,则m 的取值范围是
4、若分式m
x x +-21
2
,不论x 取何实数总有意义,则直线m mx y -=一定经过 象
限。

5、若分式
3
492
2
+--x x x 的值为0,则x 的值为
6、若5
55
43,43,43--⎪
⎭⎫
⎝⎛=⎪⎭⎫ ⎝⎛-=⎪
⎭⎫
⎝⎛-=c b a ,试把c b a ,,用“<”连接起来为 。

7、已知3
51
=



⎝⎛-m n ,则
2
2
2
n
m n
n
m m n
m m --
-+
+的值为 。

8、若8131,3212=⎪

⎫ ⎝⎛=y
x ,则y x 的值为 9、化简4
22
4
2
2
23-⎪⎪⎭
⎫ ⎝⎛-
÷⎪⎪⎭⎫ ⎝⎛-⋅⎪⎪⎭⎫ ⎝⎛ca b a c
b b a
c 为 。

10、已知1>a ,A=
1
-a a ,B=
a
a 1-,C=
1+a a ,则A 、B 、C 的大小关系是 。

11、设c b a >>>0,1=++c b a ,M=b
c a N c
b a P a
c b +=
+=+,,,则M 、N 、P 之间的大小关系
是 。

12、已知01
1
≠+=+--y
x
y x ,则xy 的值为( )
A 、-1
B 、0
C 、1
D 、2 13、已知n
n
b a 2
1
1,21+=+=,则用含a 的式子表示b 是 。

14、已知
411=-b
a ,则
ab
b a b
ab a 7222+---的值等于( )
A 、6
B 、-6
C 、15
2 D 、7
2-
15、已知z y x ,,满足
z
x z
y x
+=
-=
532,则
z
y y x 25+-的值为
16、已知正实数b a ,满足b a ab +=,则b
a a
b +ab -的值为
17

已知
实数
c b a ,,均
不为零,且0=++c b a ,则
2
222
222
2
2
1
1
1c
b a b
a c c
c b -++
-++
-+的值( )
A 、为正
B 、为负
C 、为零
D 、与c b a ,,的取值有关 18、化简与计算: ①a
b b b a b
a a

⎪⎭⎫ ⎝⎛+-
-1
2
2
②y
x y y
xy x y
x y
x y x +-
++-÷
+-29632
2
2
2

1
43
41
221
11
1++++++
-x x x x x x
④先化简,再求值:)2(1212
2
x
y x y x y
x x
++
-+-
,其中3,2==
y x
⑤求代数式的值:⎪⎭⎫ ⎝
⎛+---÷--2422422
2
x x x x x
x ,其中22+=x
⑥先化简,再求值:41221
12
2
-++÷⎪⎭⎫ ⎝

+-
x x x x ,其中3-=x
⑦)
102)(99(1
)
6)(3(1)
3(1+++
++++
+x x x x x x
19、已知a 是整数,且代数式4
842
-+-a a a 的值也是整数,求a 的值。

20、c b a ,,为非零数,且0≠++c b a , 若a
c
b a b
c
b a c
c
b a ++-=
+-=
-+,
求a b c
a c c
b b a )
)()((+++的值。

21、甲、乙两位采购员同去一家饲料公司购买两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料。

(1)甲、乙所购买饲料的平均单价各是多少? (2)谁的购货方式更合算?
22、已知0,0≠=++xyz z y x ,求+⎪⎪⎭

⎝⎛+z y
x 11

⎪⎭
⎫ ⎝⎛++⎪⎭⎫
⎝⎛+y x z z x y 1111的值。

23、若2=+b a ,4)
1()1(2
2-=-+-a
b b a ,求ab 的值。

24、已知
161,171151
=+=+=
+a c ca c b bc b
a a
b ,,
求ca
bc ab abc ++的值。

25、设实数z y x ,,满足11,11=+
=+
z
y y x ,求xyz 的值。

26、已知0≠abc ,且0=++c b a ,
求代数式ab
c
ac
b
bc
a
2
2
2
+
+
的值。

27、已知1=abc ,求证:
1
1
+++
++b bc b a ab a +
11
=++c ac c
28、若11,11=+
=+c
b b a ,求a
c 1+
的值。

29、已知c b a ,,满足11=++c b a ,
++b
a 1
c a c b +++11=1713
,求++b a c c
a b c b a +++ 的值。

相关文档
最新文档