椭圆基础练习题(复习)
(完整版)椭圆基础练习题

(完整版)椭圆基础练习题1. 问题描述请解决以下椭圆基础练题:1. 椭圆的标准方程是什么?请给出椭圆标准方程的一般形式和参数的含义。
2. 如何确定椭圆的焦点和直径?请解释每个参数的意义。
3. 已知椭圆的半长轴和半短轴的长度分别为a和b,求椭圆的离心率。
4. 已知一椭圆的焦点F1位于原点,离心率为e,焦点F2位于(0, c),求椭圆的标准方程。
5. 若一椭圆的长轴与x轴夹角为θ,离心率为e,求椭圆的标准方程。
2. 解答1. 椭圆的标准方程是$x^2/a^2 + y^2/b^2 = 1$,其中a和b分别为椭圆的半长轴和半短轴的长度。
2. 椭圆的焦点和直径可以通过半长轴和半短轴的长度来确定。
焦点F1和F2位于椭圆的长轴上,与长轴的中点O等距离。
焦点和直径的参数含义如下:- 焦点F1和F2:焦点是椭圆的两个特殊点,其与椭圆上的每个点到焦点的距离之和等于2a,即2倍的半长轴的长度。
- 直径:椭圆的直径是通过椭圆的中心点O,并且两端点与椭圆上的点相切。
直径的长度等于2倍的短轴的长度。
3. 椭圆的离心率e可以通过半长轴和半短轴的长度计算。
离心率的计算公式为e = √(a^2 - b^2) / a。
4. 已知椭圆的焦点F1位于原点,离心率为e,焦点F2位于(0,c)。
根据定义,焦距为c = ae。
代入焦点和离心率的信息,可以得到椭圆的标准方程为$x^2/a^2 + y^2/(a^2(1-e^2)) = 1$。
5. 若一椭圆的长轴与x轴夹角为θ,离心率为e。
由于椭圆是一个轴对称图形,所以可以将长轴对齐于x轴。
根据该信息,可以得到椭圆的标准方程为$[(x*cosθ + y*sinθ)^2 / a^2] + [(x*sinθ -y*cosθ)^2 / b^2] = 1$。
以上是关于椭圆的基础练习题的解答。
希望可以帮助到您!。
椭圆基础题(含答案)

4.设 P 是椭圆 2 +
3
A.2√2
= 1上的动点,则 P 到该椭圆的两个焦点的距离之和为(
B.2√3
5.椭圆:
2
+
4
2
2
C.2√5
B.−2
2
100
+
D.4√2
= 1的左、右焦点分别为1 , 2 ,点在椭圆上,已知|1 | = 3,则|2 | =(
A.−1
6.如果椭圆
)
2
)
D.不能确定
3.已知△ 的周长为 20,且顶点(0, −4), (0,4),则顶点的轨迹方程是(
2
2
2
2
2
2
2
)
2
A.36 + 20 = 1( ≠ 0) B.20 + 36 = 1( ≠ 0) C. 6 + 20 = 1( ≠ 0) D.20 + 36 = 1
2
√6
A. 3
B.−
2
2
= 1有且只有一个交点,则的值是(
√6
3
C.±
2
33.直线 y=k(x﹣2)+1 与椭圆
16
A.相离
+
2
9
2
A.相交
2
4
= 1的位置关系是(
2
A. + 3 − 4 = 0
36.已知椭圆:
2
4
+
2
2
D.无法判断
)
C.相离
D.不确定
= 1交于点 A、B,线段的中点为(1,1),则直线 l 的方程为(
(2)焦点在轴上的椭圆上任意一点到两个焦点的距离的和为8, = √3.
椭圆基础大题训练25道

椭圆基础大题训练25道椭圆基础大题训练25道1.已知动点M(x,y)到直线l:x= 4的距离是它到点N(1,0)的距离的2倍.(Ⅰ) 求动点M的轨迹C的方程;(Ⅱ) 过点P(0,3)的直线m与轨迹C交于A, B两点. 若A是PB的中点, 求直线m的斜率.yA2.设椭圆C :x2a2+y2b2=1a>b>0 的左焦点为F,上顶F OPQ x点为A,过点A作垂直于AF直线交椭圆C于另外一点P,交x轴正半轴于点Q,且PQAP=85⑴求椭圆C的离心率;⑵若过A,Q,F三点的圆恰好与直线l:x+3y-5=0相切,求椭圆C的方程.3.已知椭圆E:x2a2+ y2b222 =1(a>b>0)过点A(3,1),左,右焦点分别为F,1,F2,离心率为3经过F1的直线l与圆心在x轴上且经过点A的圆C恰好相切于点B(0,2).(1)求椭圆E及圆C的方程;(2) 在直线l上是否存在一点P,使△PAB为以PB为底边的等腰三角形?若存在,求点P的坐标,否则说明理由.4. 已知F1, F2 是椭圆x21, F2 是椭圆x22+y2 = 1的左,右焦点,过F2 作倾斜角为π2 作倾斜角为π4的直线与椭圆相交于A,B两点.(1)求△F1AB的周长; (2)求△FAB的面积.1椭圆基础大题训练25道5.已知椭圆与双曲线2x2-2y2=1共焦点,且过(2, 0)(1)求椭圆的标准方程.(2)求斜率为2的一组平行弦的中点轨迹方程;6.已知椭圆C的中心在原点,焦点在x轴上,焦距为8,且经过点(0,3)(1)求此椭圆的方程(2)若已知直线l: 4x- 5y+ 40=0,问:椭圆C上是否存在一点,使它到直线l的距离最小?最小距离是多少?7.已知椭圆y2a2+x2b2=1(a>b>0)的焦点分别是F1(0,-1),F2(0,1),且3a2=4b2.(Ⅰ)求椭圆的方程;(Ⅱ)设点P在这个椭圆上,且PF 1 -PF 2 =1,求∠F1PF2的余弦值.8.已知动点P与直线x=4的距离等于它到定点F(1,0)的距离的2倍,(1)求动点P的轨迹C的方程;(2)点M1,1 在所求轨迹内,且过点M的直线与曲线C交于A,B,当M是线段AB中点时,求直线AB的方程.9.已知直线y=-x+1与椭圆x2a2+ y2b2=1(a>b>0)相交于A,B两点,且线段AB的中点在直线l:x-2y=0上.(Ⅰ)求此椭圆的离心率;(Ⅱ)若椭圆的右焦点关于直线l的对称点在圆x2+y2=4上,求此椭圆的方程.。
椭圆基础练习题

椭圆基础练习题一、选择题1. 椭圆的长轴和短轴长度分别为2a和2b,其中a和b的关系是()。
A. a > bB. a < bC. a = bD. 无法确定2. 椭圆的焦点到椭圆上任意一点的距离之和等于()。
A. 2aB. 2bC. a + bD. a - b3. 如果椭圆的方程是 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中a和b是常数,那么a和b的单位是什么?A. 米B. 秒C. 无单位D. 角度4. 椭圆的离心率e的取值范围是()。
A. 0 ≤ e < 1B. 0 ≤ e ≤ 1C. 0 < e < 1D. 1 < e ≤ 25. 椭圆的面积公式是()。
A. πabB. π(a + b)C. π(a - b)D. π(a^2 + b^2)二、填空题6. 椭圆的中心点坐标是(____,____)。
7. 椭圆的离心率e定义为____,其中c是焦点到中心的距离。
8. 如果一个椭圆的长轴是10,短轴是6,那么它的面积是____。
9. 椭圆的焦点坐标可以表示为(____,0)和(____,0)。
10. 椭圆的方程 \( \frac{x^2}{16} + \frac{y^2}{9} = 1 \) 中,a 和b的值分别是____和____。
三、简答题11. 描述椭圆的基本性质,并给出一个实际生活中椭圆的应用例子。
12. 解释为什么椭圆的离心率总是小于1。
13. 如果一个椭圆的长轴是20,短轴是10,求出它的焦点坐标。
四、计算题14. 给定一个椭圆的方程 \( \frac{x^2}{25} + \frac{y^2}{16} = 1 \),求出它的离心率e。
15. 已知一个椭圆的长轴是26,短轴是15,求出它的面积和离心率。
五、证明题16. 证明椭圆上任意一点到两个焦点的距离之和是一个常数。
17. 证明椭圆的中心点到长轴和短轴的距离相等。
椭圆基础练习题

椭圆基础练习题一、选择题1. 下列关于椭圆的说法,正确的是()A. 椭圆的长轴和短轴长度相等B. 椭圆的焦点到中心的距离相等C. 椭圆的离心率大于1D. 椭圆的离心率小于02. 在椭圆的标准方程 x^2/a^2 + y^2/b^2 = 1(a>b>0)中,下列说法正确的是()A. a表示椭圆的短轴长度B. b表示椭圆的长轴长度C. a和b分别表示椭圆的焦点到中心的距离D. a和b分别表示椭圆的半长轴和半短轴长度二、填空题1. 椭圆的标准方程是 x^2/a^2 + y^2/b^2 = 1,若椭圆的焦距为2c,则离心率e=______。
2. 在椭圆 x^2/25 + y^2/16 = 1 中,长轴的长度为______,短轴的长度为______。
3. 椭圆的两个焦点到椭圆上任意一点的距离之和等于______。
三、解答题1. 已知椭圆的标准方程为 x^2/4 + y^2/3 = 1,求椭圆的焦点坐标。
2. 设椭圆的方程为 x^2/36 + y^2/25 = 1,求椭圆的离心率。
3. 已知椭圆的长轴为10,焦距为6,求椭圆的短轴长度。
4. 在椭圆 x^2/25 + y^2/16 = 1 上任取一点P,求点P到椭圆两个焦点的距离之和。
5. 已知椭圆的离心率为0.6,求椭圆的焦距与长轴长度的比值。
6. 设椭圆的方程为 x^2/9 + y^2/16 = 1,求椭圆上离原点最近的点的坐标。
7. 已知椭圆的两个焦点分别在x轴上,且椭圆经过点(2, 3),求椭圆的标准方程。
8. 设椭圆的方程为 x^2/4 + y^2/b^2 = 1(b>0),若椭圆的焦距为2,求椭圆的离心率。
9. 已知椭圆的长轴长度为8,离心率为0.5,求椭圆的焦距。
10. 在椭圆 x^2/25 + y^2/9 = 1 上任取一点P,求点P到椭圆长轴的距离范围。
四、应用题1. 一个椭圆的长轴长度为20米,短轴长度为10米,一个人从椭圆的一个焦点出发,沿着椭圆边缘行走一周,求此人走过的总路程。
椭圆练习题带答案,知识点总结(基础版)

椭圆练习题带答案,知识点总结(基础版)椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (其中2a>F1F2)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
当椭圆焦点在x轴上时,标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。
当椭圆焦点在y轴上时,标准方程为x^2/b^2+y^2/a^2=1(a>b>0)。
椭圆的范围为-a≤x≤a,-b≤y≤b。
椭圆有x轴和y轴两条对称轴,对称中心为坐标原点O(0,0)。
椭圆的长轴长为2a,短轴长为2b。
椭圆的顶点坐标为(±a,0),(0,±b)。
椭圆的焦点坐标为(±c,0),其中c^2=a^2-b^2.椭圆的离心率为e=c/a(其中0<e<1)。
a、b、c、e的几何意义:a叫做长半轴长;b叫做短半轴长;c叫做半焦距;a、b、c之间满足a^2=b^2+c^2.e叫做椭圆的离心率,e可以刻画椭圆的扁平程度,e越大,椭圆越扁,e 越小,椭圆越圆。
对于椭圆上任一点P和椭圆的一个焦点F,PF_max=a+c,PF_min=a-c。
当点P在短轴端点位置时,∠F1PF2取最大值(余弦定理)。
椭圆方程常用三角换元为x=acosθ,y=bsinθ。
弦长公式为:设直线y=kx+b交椭圆于P1(x1,y1),P2(x2,y2),则|P1P2|=√(1+k^2(x1-x2)^2)或|P1P2|=√(1+(y1-y2)^2/k^2)(k≠0)。
判断点P(x,y)是否在椭圆内,当且仅当x^2/a^2+y^2/b^21.若椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为c/a,短轴长为4√2,则它的长轴长为2a=6.1.在椭圆$x^2/a^2+y^2=1$的内部,点$A(a,1)$,则$a$的取值范围是$-2<a<2$。
2.已知椭圆方程$x^2/16+y^2/8=1$,焦点为$F_1,F_2$,点$P$在椭圆上且$\angle F_1PF_2=\pi/3$。
(完整)椭圆的定义与方程基础练习(含答案),推荐文档

椭圆的定义与标准方程一.选择题(共19 小题)1.若F1(3,0),F2(﹣3,0),点P 到F1,F2 距离之和为10,则P 点的轨迹方程是()A B..C. D.或2.一动圆与圆x2+y2+6x+5=0 及圆x2+y2﹣6x﹣91=0 都内切,则动圆圆心的轨迹是()A 椭圆B.双曲线C.抛物线 D 圆..3.椭圆上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为()A 4 B.5 C.6 D 10..4.已知坐标平面上的两点A(﹣1,0)和B(1,0),动点P 到A、B 两点距离之和为常数2,则动点P 的轨迹是()A 椭圆B.双曲线C.抛物线 D 线段..5.椭圆上一动点P 到两焦点距离之和为()不确定A 10 B.8 C.6 D..6.已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P 的轨迹方程是()A B.C. D..7.已知F1、F2 是椭圆=1 的两焦点,经点F2 的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()A 16 B.11 C.8 D 3..8.设集合A={1,2,3,4,5},a,b∈A,则方程表示焦点位于y 轴上的椭圆()A 5 个B.10 个C.20 个 D..25 个9.方程=10,化简的结果是()A B.C. D..10.平面内有一长度为2 的线段AB 和一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围是()A [1,4] B.[2,6] C.[3,5] D..[3,6]11.设定点F1(0,﹣3),F2(0,3),满足条件|PF1|+|PF2|=6,则动点P 的轨迹是()A 椭圆B.线段.C.椭圆或线段或不存在 D.不存在12.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是()A.(x≠0)B.(x≠0)C.(x≠0)D.(x≠0)13.已知P 是椭圆上的一点,则P 到一条准线的距离与P 到相应焦点的距离之比为()A B.C. D..14.平面内有两定点A、B 及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A.B 为焦点的椭圆”,那么()A 甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件.C.甲是乙成立的充要条件 D.甲是乙成立的非充分非必要条件15.如果方程表示焦点在y 轴上的椭圆,则m 的取值范围是()A 3<m<4 B.C. D ..16.“mn>0”是“mx2+ny2=mn 为椭圆”的(A 必要不充分.C.充要)条件.B.充分不必要D 既不充分又不必要.17.已知动点P(x、y)满足10 =|3x+4y+2|,则动点P 的轨迹是()A 椭圆B.双曲线.C.抛物线 D 无法确定.18.已知A(﹣1,0),B(1,0),若点C(x,y)满足=()A 6 B.4 C.2 D..与x,y 取值有关19.在椭圆中,F1,F2 分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是()A .B.C. D.二.填空题(共7 小题)20.方程+=1 表示椭圆,则k 的取值范围是.21.已知A (﹣1,0),B(1,0),点C(x,y)满足:,则|AC|+|BC|= .22.设P 是椭圆上的点.若F1、F2 是椭圆的两个焦点,则PF1+PF2= .23.若k∈Z,则椭圆的离心率是.24.P 为椭圆=1 上一点,M、N 分别是圆(x+3)2+y2=4 和(x﹣3)2+y2=1 上的点,则|PM|+|PN|的取值范围是.25.在椭圆+ =1 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标是.26.已知⊙Q:(x﹣1)2+y2=16,动⊙M 过定点P(﹣1,0)且与⊙Q 相切,则M 点的轨迹方程是:.三.解答题(共4 小题)27.已知定义在区间(0,+∞)上的函数f(x)满足,且当x>1 时f(x)<0.(1)求f(1)的值(2)判断f(x)的单调性(3)若f(3)=﹣1,解不等式f(|x|)<228.已知对任意x.y∈R,都有f(x+y)=f(x)+f(y)﹣t(t 为常数)并且当x>0 时,f(x)<t(1)求证:f(x)是R 上的减函数;(2)若f(4)=﹣t﹣4,解关于m 的不等式f(m2﹣m)+2>0.29.已知函数y=f(x)的定义域为R,对任意x、x′∈R 均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=﹣3.(1)试证明:函数y=f(x)是R 上的单调减函数;(2)试证明:函数y=f(x)是奇函数;(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.30.已知函数是奇函数.(1)求 a 的值;(2)求证f(x)是R 上的增函数;(3)求证xf(x)≥0 恒成立.参考答案与试题解析一.选择题(共19 小题)1.若F1(3,0),F2(﹣3,0),点P 到F1,F2 距离之和为10,则P 点的轨迹方程是()A B..C. D.或考点:椭圆的定义。
2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆练习题
一、选择题
1.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(9
21>+=+a a a PF PF ,则点P 的轨迹
是 ( )
A .椭圆
B .线段
C .不存在
D .椭圆或线段 2.椭圆116
252
2=+y x 上的一点P,到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7
3.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是
( )
A .),0(+∞
B .(0,2)
C .(1,+∞)
D .(0,1) 4.若方程x 2a 2 —y 2a
=1表示焦点在y 轴上的椭圆,则实数a 的取值范围是( ) A 、a<0 B 、-1<a<0 C 、a<1 D 、以上皆非
5、椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于 ( )
A .-1 B.1 C.5 D. -5
6.过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是 ( ) A.2211510x y += B.221510x y += C.2211015x y += D.22
12510
x y += 7. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( ) A. 22 B. 2 C. 2 D. 1
9.椭圆12222=+b y a x 和k b
y a x =+2222()0>k 具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长、短轴
10.椭圆22
1259
x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为 ( ) A. 4 B . 2 C. 8 D . 2
3 11.椭圆13
1222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )
A .4倍 B.5倍 C.7倍 D.3倍
12.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中
项,则该椭圆方程是. ( )
A. 16x 2+9y 2=1
B. 16x 2+12y 2=1
C. 4x 2+3y 2=1
D. 3x 2+4
y 2=1 13.21,F F 是椭圆17
922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为 ( )
A .7
B .47
C .27
D .2
57 14.若点P 在椭圆12
22=+y x 上,1F 、2F 分别是椭圆的两焦点,且 9021=∠PF F ,则21PF F ∆的面积是( )
A. 2
B. 1
C. 2
3 D. 21 二、、填空题:
2. 若点()y ,4是椭圆180
1442
2=+y x 上的点,则它到左焦点的距离为 . 3.点P 在椭圆252x +92
y =1上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标是
4.设P 是椭圆2
214
x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 。
6.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点
M 的轨迹方程为 。
三、解答题
1.已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为15,求顶点A 轨迹方程.
3.椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值
为12,求此椭圆的方程。