高中数学-椭圆经典练习题-配答案
高中数学椭圆练习题及答案

高中数学椭圆练习题及答案椭圆是数学的重要考点,考生要加以重视。
今天,店铺为大家整理了高中数学椭圆练习题及答案。
高中数学椭圆练习题一、选择题2.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是( )(A)+=1 (B)+=1(C)+y2=1 (D)+=13.(2013·安康模拟)若m是2和8的等比中项,则圆锥曲线x2+=1的离心率是( )(A) (B) (C)或 (D)或4.已知椭圆:+=1(0b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为( )(A) (B) (C) (D)6.(能力挑战题)以F1(-1,0),F2(1,0)为焦点且与直线x-y+3=0有公共点的椭圆中,离心率最大的椭圆方程是( )(A)+=1 (B)+=1(C)+=1 (D)+=1高中数学椭圆练习题二、填空题7.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x 轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为.8.已知点P是椭圆16x2+25y2=400上一点,且在x轴上方,F1,F2分别是椭圆的左、右焦点,直线PF2的斜率为-4,则△PF1F2的面积是.9.分别过椭圆+=1(a>b>0)的左、右焦点F1,F2所作的两条互相垂直的直线l1, l2的交点在此椭圆的内部,则此椭圆的离心率的取值范围是.高中数学椭圆练习题三、解答题10.(2013·西安模拟)在平面直角坐标系中,已知曲线C上任意一点P 到两个定点F1(-,0)和F2(,0)的距离之和为4.(1)求曲线C的方程.(2)设过(0,-2)的直线l与曲线C交于A,B两点,以线段AB为直径作圆.试问:该圆能否经过坐标原点?若能,请写出此时直线l的方程,并证明你的结论;若不能,请说明理由.11.(2013·渭南模拟)已知椭圆C:+=1(a>b>0)的右顶点A为抛物线y2=8x的焦点,上顶点为B,离心率为.(1)求椭圆C的方程.(2)过点(0,)且斜率为k的直线l与椭圆C相交于P,Q两点,若线段PQ的中点横坐标是-,求直线l的方程.12.(能力挑战题)已知点P是圆F1:(x+)2+y2=16上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线与PF1交于M点.(1)求点M的轨迹C的方程.(2)设轨迹C与x轴的两个左右交点分别为A,B,点K是轨迹C上异于A,B的任意一点,KH⊥x轴,H为垂足,延长HK到点Q使得|HK|=|KQ|,连接AQ并延长交过B且垂直于x轴的直线l于点D,N为DB的中点.试判断直线QN与以AB为直径的圆O的位置关系.高中数学椭圆练习题答案1.【解析】选B.由题意得2a=2b,即a=b.又a2=b2+c2,所以有b=c,∴a=c,得离心率e=.2.【解析】选A.圆C的方程可化为(x-1)2+y2=16.知其半径r=4,∴长轴长2a=4,∴a=2.又e==,∴c=1,b2=a2-c2=4-1=3,∴椭圆的标准方程为+=1.3.【解析】选C.因为m是2和8的等比中项,所以m2=16,所以m=±4.当m=4时,圆锥曲线为椭圆x2+=1,离心率为,当m=-4时,圆锥曲线为双曲线x2-=1,离心率为,综上选C.4.【解析】选D.由题意知a=2,所以|BF2|+|AF2|+|AB|=4a=8.因为|BF2|+|AF2|的最大值为5,所以|AB|的最小值为3,当且仅当AB⊥x 轴时,取得最小值,此时A(-c,),B(-c,-),代入椭圆方程得+=1.又c2=a2-b2=4-b2,所以+=1,即1-+=1,所以=,解得b2=3,所以b=,选D.5.【解析】选 B.由题意知点P的坐标为(-c,)或(-c,-),因为∠F1PF2=60°,那么=,∴2ac=b2,这样根据a,b,c的关系式化简得到结论为.6.【思路点拨】由于c=1,所以只需长轴最小,即公共点P,使得|PF1|+|PF2|最小时的椭圆方程.【解析】选C.由于c=1,所以离心率最大即为长轴最小.点F1(-1,0)关于直线x-y+3=0的对称点为F′(-3,2),设点P为直线与椭圆的公共点,则2a=|PF1|+|PF2|=|PF′|+|PF2|≥|F′F2|=2.取等号时离心率取最大值,此时椭圆方程为+=1.7.【解析】根据椭圆焦点在x轴上,可设椭圆方程为+=1(a>b>0).∵e=,∴=.根据△ABF2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程为+=1.答案:+=18.【解析】由已知F1(-3,0),F2(3,0),所以直线PF2的方程为y=-4(x-3),代入16x2+25y2=400,整理得76x2-450x+650=0,解得:x=或x=(因为x<3,故舍去),又点P(x,y)在椭圆上,且在x轴上方,得16×()2+25y2=400,解得y=2,∴=|F1F2|·y=×6×2=6.答案:69.【思路点拨】关键是由l1, l2的交点在此椭圆的内部,得到a,b,c 间的关系,进而求得离心率e的取值范围.【解析】由已知得交点P在以F1F2为直径的圆x2+y2=c2上. 又点P在椭圆内部,所以有c20,∴k2>,………………②则x1+x2=,x1·x2=,代入①,得(1+k2)·-2k·+4=0.即k2=4,∴k=2或k=-2,满足②式.所以,存在直线l,其方程为y=2x-2或y=-2x-2.11.【解析】(1)抛物线y2=8x的焦点为A(2,0),依题意可知a=2. 因为离心率e==,所以c=.故b2=a2-c2=1,所以椭圆C的方程为:+y2=1.(2)直线l:y=kx+,由消去y可得(4k2+1)x2+8kx+4=0,因为直线l与椭圆C相交于P,Q,所以Δ=(8k)2-4(4k2+1)×4>0,解得|k|>.又x1+x2=,x1x2=,设P(x1,y1),Q(x2,y2),PQ中点M(x0,y0),因为线段PQ的中点横坐标是-,所以x0===-,解得k=1或k=,因为|k|>,所以k=1,因此所求直线l:y=x+.12.【解析】(1)由题意得,F1(-,0),F2(,0),圆F1的半径为4,且|MF2|=|MP|,从而|MF1|+|MF2|=|MF1|+|MP|=4>|F1F2|=2,∴点M的轨迹是以F1,F2为焦点的椭圆,其中长轴2a=4,焦距2c=2, 则短半轴b===1,椭圆方程为:+ y2=1.(2)设K(x0,y0),则+=1.∵|HK|=|KQ|,∴Q(x0,2y0),∴OQ==2,∴Q点在以O为圆心,2为半径的圆上,即Q点在以AB为直径的圆O上.又A(-2,0),∴直线AQ的方程为y=(x+2).令x=2,得D(2,).又B(2,0),N为DB的中点,∴N(2,).∴=(x0,2y0),=(x0-2,).∴·=x0(x0-2)+2y0·=x0(x0-2)+=x0(x0-2)+=x0(x0-2)+x0(2-x0)=0,∴⊥,∴直线QN与以AB为直径的圆O相切.。
高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆:的左焦点,离心率为,函数,(Ⅰ)求椭圆的标准方程;(Ⅱ)设,,过的直线交椭圆于两点,求的最小值,并求此时的的值.【答案】(Ⅰ);(Ⅱ)的最小值为,此时.【解析】(Ⅰ)利用左焦点F(-1,0),离心率为,及求出几何量,即可求椭圆C的标准方程;(Ⅱ)分类讨论,设直线l的方程来:y=k(x-t)代入抛物线方程,利用韦达定理,结合向量的数量积公式,即可求的最小值,并求此时的t的值.试题解析:(Ⅰ),由得,椭圆方程为(Ⅱ)若直线斜率不存在,则=若直线斜率存在,设直线,由得所以故故的最小值为,此时.【考点】直线与圆锥曲线的综合问题.2.设分别是椭圆的左,右焦点.(1)若是椭圆在第一象限上一点,且,求点坐标;(5分)(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.(7分)【答案】(1);(2).【解析】(1)设,求点坐标,即要构建关于的两个方程,第一个方程可根据点在曲线上,点的坐标必须适合曲线的方程得到,即有,第二个方程可由通过坐标化得到,即有,联立方程组,可解得点坐标;(2)求直线的斜率的取值范围,即要构建关于的不等式,可通过为锐角,转化为不等关系,进而转化为关于的不等式,解出的取值范围.注意不要忽略,这是解析几何中常犯的错误.试题解析:(1)依题意有,所以,设,则由得:,即,又,解得,因为是椭圆在第一象限上一点,所以. 5分(2)设直线与椭圆交于不同两点的坐标为、,将直线:代入,整理得:(),则,,因为为锐角,所以,从而整理得:,即,解得,且()方程必须满足:,解得,因此有,所以直线的斜率的取值范围为. 12分【考点】1.直线与椭圆的位置关系;2.方程与不等式思想,3.设而不求的思想与等价转化思想.3.双曲线与椭圆的离心率互为倒数,则()A.B.C.D.【答案】B.【解析】由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为、,然后由题意得,即,将其两边平方化简即可得出结论.【考点】双曲线的几何性质;椭圆的几何性质.4.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
高二数学椭圆练习题及答案

高二数学椭圆练习题及答案一:选择题 1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是2.已知椭圆,长轴在y轴上、若焦距为4,则m等于 4.已知点F1、F2分别是椭圆+=1的左、右焦点,弦AB过点F1,若△ABF26.方程=10,化简的结果是7.设θ是三角形的一个内角,且,则方程xsinθ﹣ycosθ=1表示的曲线221、22129.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP,则该椭10.若点O和点F分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为11.如图,点F为椭圆=1的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为12.椭圆顶点A,B,若右焦点F到直线AB的距离等于,则椭圆的离心率e=高二数学周测一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B 为焦点的椭圆”,那么 A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件.若椭圆2kx?ky?1的一个焦点是,则k的是 A.2211B.C. D.3228D.3x2-y2=363.双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为 A.y2-3x2=36B.x2-3y2=36C.3y2-x2=364.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是 A.23B.33C.22D.2x2y25.椭圆2?2?1的两个焦点F1,F2三等分它的两条准线间的距离,那么它的离心率abA.B. C. D.336x2y26.已知是直线l被椭圆??1所截得的线段的中点,则l 的方程为369A.x?2y?0B. x?2y?4?0C.x?3y?4?0D. x?2y?8?0x2y27.设F1,F2分别是椭圆2?2?1的左、右焦点,若在其右准线上存在P,ab使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是?A.?0 ?2???B.?01?C.?1?D.? ??x2y28.在椭圆,F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|??1内有一点P43的值最小,则这一最小值是 A.D.457B. 2C.3二、填空题.双曲线3mx2-my2=3的一个焦点是,则m的值是x2y210.已知方程??1表示椭圆,则k的取值范围是____________.3?k2?kx2y211.设F1、F2是椭圆C:+=1的焦点,在曲线C上满足PF1?PF2=0的点P的个数124为________x2y2?12. 已知椭圆+=1的两个焦点为F1、F2,P为椭圆上一点,满足∠F1PF2=,则△F1PF2433的面积为_________________.13.已知椭圆C的焦点F1和F2,长轴长6,设直线y?x?2交椭圆C于A、B两点,则线段AB的中点坐标 .14. 已知圆A:?x?2??y?16,圆B:?x?2??y?14.动圆C与圆A内切,且222与圆B外切.则动圆圆心的轨迹方程为.三、解答题 x2y215. 求以椭圆+1的两个顶点为焦点,以椭圆的焦点为顶点的169双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.16. 从双曲线C:x?y?1上一点Q引直线l:x?y?2的垂线,垂足为N,求线段QN的中点P的轨迹方程.17. 已知动点P与平面上两定点A,对应的准线方程为y??且离心率e为和42时,求直线l的方程.92,4234的等比中项.平分?2求椭圆方程,是否存在直线l与椭圆交于不同的两点M、N,且线段MN恰为直线x??若存在,求出直线l的斜率的取值范围,若不存在,请说明理由.x219. 设F1、F2分别是椭圆?y2?1的左、右焦点.4若P是该椭圆上的一个动点,求PF1?PF2的最大值和最小值;设过定点M的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.x2y220. 知椭圆2??1的左、右焦点分别为F1、F2,离心ab率e?x?2。
高中椭圆练习题(答案-基础题)

一、选择题:1.下列方程表示椭圆的是()A.22199x y += B.2228x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D .不能确定3.已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为()A.(B.(0,C.(0,3)±D.(3,0)±4.椭圆222222222222211()x y x y a b k a b a k b k+=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线D .有相同的焦点5.已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是()A.3B.2C.3D.66.如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R 7.“m>n>0”是“方程221mx ny +=表示焦点在y 轴上的椭圆的”()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 8.椭圆的短轴长是4,长轴长是短轴长的32倍,则椭圆的焦距是()B.4C.6D.9.关于曲线的对称性的论述正确的是() A.方程220x xy y ++=的曲线关于X 轴对称 B.方程330x y +=的曲线关于Y 轴对称 C.方程2210x xy y -+=的曲线关于原点对称D.方程338x y -=的曲线关于原点对称第11题10.方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ). A.有相同的离心率;B.有共同的焦点;C.有等长的短轴.长轴; D.有相同的顶点. 二、填空题:(本大题共4小题,共20分.)11.(6分)已知椭圆的方程为:22164100x y +=,则a=___,b=____,c=____,焦点坐标为:___ __,焦距等于______;若CD 为过左焦点F1的弦,(如图)则∆2F CD 的周长为________.12.(6分)椭圆221625400x y +=的长轴长为____,短轴长为____,焦点坐标为 四个顶点坐标分别为___ ,离心率为 ;椭圆的左准线方程为 13.(4分)比较下列每组中的椭圆:(1)①229436x y += 与②2211216x y += ,哪一个更圆 (2)①221610x y +=与②22936x y +=,哪一个更扁 14.(4分)若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(30分)求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(0,-3),(0,3),椭圆的短轴长为8;(2)两个焦点的坐标分别为(),),并且椭圆经过点2)32F CcD1F(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点12P P 、16.(12分)已知点M 在椭圆221259x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂直为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程17.(12分)设点A ,B 的坐标为(,0),(,0)(0)a a a ->,直线AM,BM 相交于点M ,且它们的斜率之积为(01)k k k ->≠且求点M 的轨迹方程,并讨论k 值与焦点的关系.18.(12分)当m 取何值时,直线l :y x m =+与椭圆22916144x y +=相切,相交,相离?19.(14分)椭圆221(045)45x y m m+=<<的焦点分别是1F 和2F ,已知椭圆的离心率3e =过中心O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF V 的面积是20, 求:(1)m 的值(2)直线AB 的方程参考答案1.选择题:二.填空题:11 10,8,6,(0,6±),12,40 12 10,8,(3,0±),(-5,0).(5,0).(0,-4).(0,4),35,253x=-13 ②,② 1435三.解答题:15.(1)解:由题意,椭圆的焦点在y轴上,设椭圆的标准方程为22221(0)y xa ba b+=>>由焦点坐标可得3c=,短轴长为8,即28,4b b==,所以22225a b c=+=∴椭圆的标准方程为2212516y x+=(2)由题意,椭圆的焦点在x轴上,设椭圆的标准方程为22221(0)x ya ba b+=>>由焦点坐标可得c=2a==6 所以2b=22a c-=9-5=4,所以椭圆的标准方程为22194x y+=(3)设椭圆的方程为221mx ny+=(0,0m n>>),因为椭圆过12P P、61321m nm n+=+=⎧∴⎨⎩解得1913mn==⎧⎨⎩所以椭圆的标准方程为:22193x y+=16.解:设p点的坐标为(,)p x y,m点的坐标为00(,)x y,由题意可知022yyx xx xy y====⎧⎧⇒⎨⎨⎩⎩①因为点m在椭圆221259x y+=上,所以有22001259x y += ② , 把①代入②得2212536x y +=,所以P 点的轨迹是焦点在y 轴上,标准方程为2212536x y +=的椭圆. 17.解:设点M 的坐标为(,)x y ,因为点A 的坐标是(,0)a -,所以,直线AM 的斜率()AM y k x a x a =≠-+,同理直线BM 的斜率()BM y k x a x a=≠-.由已知有(),y y k x a x a x a=-≠±+-g 化简得点M 的轨迹方程为22221()x y x a a ka +=≠±当01k <<时,表示焦点在x 轴上的椭圆;当1k >时,表示焦点在y 轴上的椭圆.18.解:{22916144y x m x y =++=…… … … ①②①代入②得22916()144x x m ++=化简得222532161440x mx m ++-=222(32)425(16144)57614400m m m ∆=-⨯-=-+当0,∆=即5m =±时,直线l 与椭圆相切; 当0∆>,即55m -<<时,直线与椭圆相交; 当0∆<,即5m <-或5m >时,直线与椭圆相离.19.解:(1)由已知3c e a ==,a ==5c =, 所以222452520m b a c ==-=-=(2)根据题意21220ABF F F B S S ==V V ,设(,)B x y ,则121212F F B S F F y =V g ,12210F F c ==,所以4y =±,把4y =±代入椭圆的方程2214520x y +=,得3x =±,所以B 点的坐标为34±±(,),所以直线AB 的方程为4433y x y x ==-或。
高中数学 椭圆经典练习题 配答案

椭圆练习题一.选择题:1.已知椭圆上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D )A .2B .3C .5D .72.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C )A. B. C. D. 3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为4的椭圆方程是( B )A4.椭圆的一个焦点是,那么等于( A )A. B.C.D.5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B ) A.B.C.D.6.椭圆两焦点为 , ,P 在椭圆上,若 △的面积的最大值为12,则椭圆方程为( B )A.B .C .D . 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( C )。
A +=1B +=1C +=1D +=18.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C )(A)450 (B)600 (C)900 (D)1209.椭圆上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A ) A. 4 B . 2 C. 8 D .1162522=+y x 22143x y +=22134x y +=2214x y +=2214y x +=51858014520125201202522222222=+=+=+=+y x D y x C y x B y x 2255x ky -=(0,2)k 1-1512221(4,0)F -2(4,0)F 12PF F 221169x y +=221259x y +=2212516x y +=221254x y +=16x 29y 216x 212y 24x 23y 23x 24y 2221259x y +=2310.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( C )(A )2 3 (B )6 (C )4 3 (D )12二、填空题:11.方程表示焦点在轴的椭圆时,实数的取值范围_____12.过点且与椭圆有共同的焦点的椭圆的标准方程为_13.设,,△的周长是,则的顶点的轨迹方程为14.如图:从椭圆上一点向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点及短轴的端点的连线∥,则该椭圆的离心率等于_____________三、解答题:15.已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程。
高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案训练指要熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题1.椭圆中心在坐标原点,对称轴为坐标轴,离心率为0.6,长、短轴之和为36,则椭圆方程为A.16410022=+y xB.11006422=+y xC.1100641641002222=+=+y x y x 或D.110818102222=+=+y x y x 或 2.若方程x 2+ky 2=2,表示焦点在y 轴上的椭圆,那么实数k 的取值范围是A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)3.已知圆x 2+y 2=4,又Q (3,0),P 为圆上任一点,则PQ 的中垂线与OP 之交点M 轨迹为(O 为原点)A.直线B.圆C.椭圆D.双曲线 二、填空题4.设椭圆1204522=+y x 的两个焦点为F 1、F 2,P 为椭圆上一点,且PF 1⊥PF 2,则||PF 1|-|PF 2||=_________.5.(2002年全国高考题)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k =_________. 三、解答题6.椭圆2222by a x +=1(a >b >0),B (0,b )、B ′(0,-b ),A (a ,0),F 为椭圆的右焦点,若直线AB ⊥B ′F ,求椭圆的离心率.7.在面积为1的△PMN 中,tan M =21,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点P 的椭圆方程.8.如图,从椭圆2222by a x +=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM .(1)求椭圆的离心率e ; (2)设Q 是椭圆上任意一点,F 2是右焦点,求∠F 1QF 2的取值范围;(3)设Q 是椭圆上一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203,求此时椭圆的方程.参考答案一、1.C 2.D 3.C 二、4.25,40||||100)2(||||562|||:|212222121=⋅⇒⎪⎭⎪⎬⎫==+==+PF PF c PF PF a PF PF 提示 ∴(|PF 1|-|PF 2|)2=100-2×40=20. ||PF 1|-|PF 2||=25.5.1三、6.215- 7.以MN 所在直线为x 轴,线段MN 的中垂线为y 轴建立坐标系,可得椭圆方程为.1315422=+y x 8.(1)22 (2)[0,2π] (3)1255022=+y x 提示:(1)∵MF 1⊥x 轴,∴x M =-c ,代入椭圆方程求得y M =ab 2,∴k OM =-,,2ab k ac b AB -= ∵OM ∥AB ,∴-c b abac b =⇒-=2 从而e =22.(2)设|QF 1|=r 1,|QF 2|=r 2,∠F 1QF 2=θ,则r 1+r 2=2a ,|F 1F 2|=2c.由余弦定理,得cos θ=212222124r r c r r -+1242)(21221221221-=--+=r r a r r c r r r r≥,01)2(2212=-+r r a 当且仅当r 1=r 2时,上式取等号.∴0≤cos θ≤1,θ∈[0,2π].(3)椭圆方程可化为122222=+cy c x ,又PQ ⊥AB ,∴k PQ =-.21==bak AB PQ :y =2(x -c )代入椭圆方程,得5x 2-8cx +2c 2=0.求得|PQ |=,526c F 1到PQ 的距离为d =,362c ∴.25320||2121=⇒=⋅=∆c d PQ S PQ F ∴椭圆方程为.1255022=+y x椭圆训练题:1. 椭圆19822=++y m x 的离心率21=e ,则m=__________ 2. 椭圆4x 2+2y 2=1的准线方程是_______________3. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,A 、B 为过F 1的直线与椭圆的两个交点,则△ABF 2的周长是____________4. 椭圆12222=+by a x ()0>>b a 上有一点P 到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,则P 点的坐标是_______________5. 椭圆12222=+by a x 焦点为F 1、F 2,P 是椭圆上的任一点,M 为P F 1的中点,若P F 1的长为s ,那么OM 的长等于____________6. 过椭圆1273622=+y x 的一个焦点F 作与椭圆轴不垂直的弦AB ,AB 的垂直平分线交AB 于M ,交x 轴于N ,则FN :AB =___________7. 已知椭圆的对称轴是坐标轴,离心率32=e ,长轴长是6,则椭圆的方程是____________ 8. 方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的值是______________ 9. 椭圆的两焦点把准线间的距离三等分,则这椭圆的离心率是______________10. 椭圆142222=+by b x 上一点P 到右焦点F 2的距离为b ,则P 点到左准线的距离是_______11. 椭圆⎪⎭⎫ ⎝⎛∈=+2,4,1csc sec 2222ππt t y t x ,这个椭圆的焦点坐标是__________12. 曲线()023122=+--+m my y m x 表示椭圆,那么m 的取值是______________ 13. 椭圆13422=+y x 上的一点()11,y x A ,A 点到左焦点的距离为25,则x 1=___________ 14. 椭圆()()19216122=-+-y x 的两个焦点坐标是______________15. 椭圆中心在原点,焦点在x 轴上,两准线的距离是5518,焦距为52,其方程为______ 16. 椭圆上一点P 与两个焦点F 1、F 2所成的∆PF 1F 2中,βα=∠=∠1221,F PF F PF ,则它的离心率e=__________17. 方程142sin 322=⎪⎭⎫ ⎝⎛+-παy x 表示椭圆,则α的取值是______________ 18. 若()()065562222=--+-λλλλy x 表示焦点在x 轴上的椭圆,则λ的值是________19. 椭圆192522=+y x 上不同的三点()()2211,,59,4,,y x C B y x A ⎪⎭⎫ ⎝⎛与焦点()0,4F 的距离成等差数列,则=+21x x ____________ 20. P 是椭圆192522=+y x 上一点,它到左焦点的距离是它到右焦点的距离的4倍,则P 点的坐标是_______________21. 中心在原点,对称轴在坐标轴上,长轴为短轴的2倍,且过()6,2-的椭圆方程是______ 22. 在面积为1的△PMN 中,2tan ,21tan -==N M ,那么以M 、N 为焦点且过P 的椭圆方程是_____________23. 已知△ABC ,()()0,3,0,3-B A 且三边AC 、AB 、BC 的长成等差数列,则顶点C 的轨迹方程是_________24. 椭圆1422=+y m x 的焦距为2,则m 的值是__________ 25. 椭圆14922=+y x 的焦点到准线的距离是____________ 26. 椭圆()112222=-+m y m x 的准线平行于x 轴,则m 的值是__________ 27. 中心在原点,准线方程为4±=x ,离心率为21的椭圆方程是_______28. 椭圆的焦距等于长轴长与短轴长的比例中顶,则离心率等于___________29. 中心在原点,一焦点为()50,01F 的椭圆被直线23-=x y 截得的弦的中点横坐标为21,则此椭圆方程是_________ 30. 椭圆的中心为()0,0,对称轴是坐标轴,短轴的一个端点与两个焦点构成面积为12的三角形,两准线间的距离是225,则此椭圆方程是_____________31. 过点()2,3-且与椭圆369422=+y x 有相同焦点的椭圆方程是____________32. 将椭圆192522=+y x 绕其左焦点逆时针方向旋转90︒,所得椭圆方程是_______ 33. 椭圆192522=+y x 上一点M 到右准线的距离是7.5,那么M 点右焦半径是______ 34. AB 是椭圆14322=+y x 的长轴,F 1是一个焦点,过AB 的每一个十等分点作AB 的垂线,交椭圆同一侧于点P 1,P 2,P 3,⋅⋅⋅⋅⋅⋅,P 9,则11912111BF F P F P F P AF ++⋅⋅⋅+++的值是________35. 中心在原点,一焦点为F (0,1),长短轴长度比为t ,则此椭圆方程是__________ 36. 若方程222x ky +=表示焦点在y 轴的椭圆,则k 的取值是__________37. 椭圆221123x y +=的焦点为F 1、F 2,点P 为椭圆上一点,若线段PF 1的中点在y 轴上,那么1PF :2PF =___________38. 经过)()122,M M --两点的椭圆方程是_____________39. 以椭圆的右焦点F 2(F 1为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于M 、N ,若直线MF 1是圆F 2的切线,则椭圆的离心率是___________40. 椭圆的两个焦点F 1、F 2及中心O 将两准线间的距离四等分,则一焦点与短轴两个端点连线的夹角是__________41. 点A (),0a 到椭圆2212x y +=上的点之间的最短距离是___________ 42. 椭圆2214x y +=与圆()2221x y r -+=有公共点,则r 的取值是________ 43. 若k R ∈,直线1y kx =+与椭圆2215x y m+=总有公共点,则m 的值是___________ 44. 设P 是椭圆上一点,两个焦点F 1、F 2,如果00211275,15PF F PF F ∠=∠=,则离心率等于__________45. P 是椭圆22143x y +=上任一点,两个焦点F 1、F 2,那么12F PF ∠的最大值是_______ 46. 椭圆2244x y +=长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,则此直角三角形的面积是__________47. 椭圆长轴长为6,焦距过焦点F 1作一倾角为α的直线交椭圆于M 、N 两点,当MN 等于短轴长时,α的值是_______48. 设椭圆22143x y +=的长轴两端点A 、B ,点P 在椭圆上,那么直线PA 与PB 的斜率之积是__________49. 倾斜角为4π的直线与椭圆2214x y +=交于A 、B 两点,则线段AB 的中点M 的轨迹方程是______________50. 已知点A (0,1)是椭圆上的一点,P 是椭圆上任一点,当弦长AP 取最大值时,点P 的坐标是_____________椭圆训练题答案1. 544-或 2. 1y =± 3. 20 4. ()()0,0,b b -或 5. 2sa - 6. 1:4 7. 2222119559x y x y +=+=或 8. 9252m <<9. 310.11. (0,12. ()1,+∞ 13. 114. ()()1,115.22194x y += 16. cos2cos2αβαβ+- 17. ()37,,88k k k Z ππππ⎛⎫++∈ ⎪⎝⎭18.)19. 820. 1515,44⎛⎛ ⎝⎭⎝⎭或21.222211148371352x y x y +=+=或 22. 2241153x y += 23. 2213627x y += 24. 53或26. 102m m <≠且 27. 22143x y +=2212575x y += 30. 222211259925x y x y +=+=或 31.2211510x y += 32. ()()22441925x y +-+= 33. 634. 20+35.222221111x y t t t +=-- 36. ()0,1 37. 7 38. 221155x y +=39.1 40.2π41. a a +42. 3⎤⎥⎣⎦43. m ≥1且m ≠5 44. ︒ 46. 162547. 566ππ或48. 34-49. 1,4y x x ⎛⎫⎛=-∈ ⎪⎝⎝⎭ 50. 13⎛⎫- ⎪ ⎪⎝⎭ 椭圆训练试卷一、选择题:本大题共12小题,每小题5分,共60分.请将唯一正确结论的代号填入题后的括号内.1.椭圆3m 2y mx 222++=1的准线平行于x 轴,则实数m 的取值范围是 ( )A .-1<m <3B .-23<m <3且m ≠0 C .-1<m <3且m ≠0 D .m <-1且m ≠02. a 、b 、c 、p 分别表示椭圆的半长轴、半短轴、半焦距、焦点到相应准线的距离,则它们的关系是 ( )A .p=22a b B .p=ba 2 C .p=ca 2 D .p=cb 23.短轴长为5,离心率为32的椭圆的两个焦点分别为F 1、F 2,过F 1作直线交椭圆于A 、B两点,则ΔABF 2的周长为 ( )A .24B .12C .6D .34.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线x=ca 2和定F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线x=-ca 2的距离之比为a c(a>c>0)的点的轨迹 是左半个椭圆D .到定直线x=ca 2和定点F(c ,0)的距离之比为ca (a>c>0)的点的轨迹是椭圆5.P 是椭圆4x 2+3y 2=1上任意一点,F 1、F 2是焦点,那么∠F 1PF 2的最大值是( )A .600B .300C .1200D .906.椭圆22b 4x +22b y =1上一点P 到右准线的距离是23b ,则该点到椭圆左焦点的距离是( )A .bB .23b C .3b D .2b 7.椭圆12x 2+3y 2=1的焦点为F 1和F 2,点P 在椭圆上,如果线段F 1P 的中点在y 轴上,那么|PF 1|是|PF 2|的 ( ) A .7倍 B .5倍 C .4倍 D .3倍8.设椭圆22a x +22b y =1(a>b>0)的两个焦点是F 1和F 2,长轴是A 1A 2,P 是椭圆上异于A 1、A 2的点,考虑如下四个命题:①|PF 1|-|A 1F 1|=|A 1F 2|-|PF 2|; ②a-c<|PF 1|<a+c ; ③若b 越接近于a ,则离心率越接近于1;④直线PA 1与PA 2的斜率之积等于-22a b .其中正确的命题是 ( ) A .①②④ B .①②③ C .②③④ D .①④9.过点M(-2,0)的直线l 与椭圆x 2+2y 2=2交于P1、P2两点,线段P1P2的中点为P,设直线l 的斜率为k 1(k 1≠0),直线OP的斜率为k 2,则k 1k 2的值为 ( ) A .2B .-2C .21D .-2110.已知椭圆22ax +22b y =1(a>b>0)的两顶点A(a ,0)、B(0,b),右焦点为F ,且F 到直线AB的距离等于F 到原点的距离,则椭圆的离心率e 满足 ( )A .0<e<22B .22<e<1C . 0<e<2-1D .2-1<e<111.设F1、F2是椭圆2222b ya x +=1(a >b >0)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是( )A .2-3B .3-1C .23 D .2212.在椭圆4x 2+3y 2=1内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是` ( )A .25B .27 C .3D .4二、填空题:本大题共4小题,每小题4分,共16分.请将最简结果填入题中的横线上.13.椭圆3x 2+ky 2=1的离心率是2x 2-11x+5=0的根,则k= .14.如图,∠OFB=6π,SΔABF=2-3,则以OA为长半轴,OB 为短半轴,F为一个焦点的椭圆的标准方程为 .15.过椭圆3y 2x 22+=1的下焦点,且与圆x 2+y 2-3x +y +23=0相切的直线的斜率是 .16.过椭圆9x 2+5y 2=1的左焦点作一条长为12的弦AB ,将椭圆绕其左准线旋转一周,则弦AB 扫过的面积为 .三、解答题:本大题共6小题,共74分.解答题应写出必要的计算步骤或推理过程. 17.(本小题满分12分)已知A 、B 为椭圆22a x +22a 9y 25=1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.18.(本小题满分12分)设中心在原点,焦点在x 轴上的椭圆的离心率为23,并且椭圆与圆x 2+y 2-4x-2y+25=0交于A 、B 两点,若线段AB 的长等于圆的直径. (1) 求直线AB 的方程; (2) 求椭圆的方程.19.(本小题满分12分)已知9x 2+5y 2=1的焦点F 1、F 2,在直线l :x+y-6=0上找一点M ,求以F 1、F 2为焦点,通过点M 且长轴最短的椭圆方程.20.(本小题满分12分)一条变动的直线l 与椭圆4x 2+2y 2=1交于P 、Q 两点,M 是l 上的动点,满足关系|MP|·|MQ|=2.若直线l 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状. 21.(本小题满分12分)设椭圆22ax +22b y =1的两焦点为F 1、F 2,长轴两端点为A 1、A 2.(1) P 是椭圆上一点,且∠F 1PF 2=600,求ΔF 1PF 2的面积;(2) 若椭圆上存在一点Q ,使∠A 1QA 2=1200,求椭圆离心率e 的取值范围.22.(本小题满分14分)已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M、N,当|AM|=|AN|时,求m 的取值范围.椭圆训练试卷参考答案一、B D C D A A A A DC B C二、13.4或4914.12y 8x 22=+ 15.5623± 16.18π三、17.解:设A(x 1,y 1),B(x 2,y 2),由焦点半径公式有a-ex 1+a-ex 2=58a ,∴x 1+x 2=21a(∵e=54),即AB中点横坐标为41a ,又左准线方程为x=-45a ,∴41a+45a=23,即a=1,∴椭圆方程为x 2+925y 2=1. 18.解:(1)直线AB 的方程为y=-21x+2; (2)所求椭圆的方程为12x 2+3y 2=1.19.解:由9x2+5y 2=1,得F 1(2,0),F 2(-2,0),F 1关于直线l 的对称点F 1/(6,4),连F 1/F 2交l 于一点,即为所求的点M ,∴2a=|MF 1|+|MF 2|=|F 1/F 2|=45,∴a=25,又c=2,∴b 2=16,故所求椭圆方程为20x 2+16y 2=1.20.解:设动点M(x ,y),动直线l :y=x+m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=04y 2x ,m x y 22的解,消去y ,得3x 2+4mx+2m 2-4=0,其Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,x 1+x 2=-3m4, x 1x 2=34m 22-,故|MP|=2|x-x 1|,|MQ|=2|x-x 2|.由|MP||MQ|=2,得|x-x 1||x-x 2|=1,也即|x 2-(x 1+x 2)x+x 1x 2|=1,于是有|x 2+3mx 4+34m 22-|=1.∵m=y-x ,∴|x 2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆7x 2+7y 22=1夹在直线y=x ±6间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1.21.解:(1)设|PF 1|=r 1,|PF 2|=r 2,则S 21F PF ∆=21r 1r 2sin ∠F 1PF 2,由r 1+r 2=2a , 4c 2=r 12+r 22-2cos ∠F 1PF 2,得r 1r 2=212PF F cos 1b 2∠+.代入面积公式,得 S 21F PF ∆=2121PF F cos 1PF F sin ∠+∠b 2=b 2tg ∠2PF F 21=33b 2.(2)设∠A 1QB=α,∠A 2QB=β,点Q(x 0,y 0)(0<y 0<b).tg θ=tg(α+β)=βα-β+αtg tg 1tg tg =22020000y x a 1y x a y x a --++-=220200a y x ay 2-+.∵220a x +220b y =1,∴x 02=a 2-22b a -y 02.∴tg θ=22220y bb a ay 2--=022y c ab 2-=-3.∴2ab 2≤3c 2y 0≤3c 2b , 即3c 4+4a2c 2-4a 4≥0,∴3e 4+4e 2-4≥0,解之得e 2≥32,∴36≤e<1为所求. 22.解:(1)用待定系数法.椭圆方程为22y 3x +=1.(2)设P为弦MN的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(3k 2+1)x 2+6kmx +3(m 2-1)=0.由Δ>0,得m 2<3k 2+1 ①,∴x P =1k 3mk 32x x 2N M +-=+,从而,y P =kx p +m =1k 3m 2+.∴k AP =km 31k 3m 2++-.由MN⊥AP,得 km 31k 3m 2++-=-k 1,即2m =3k 2+1 ②.将②代入①,得2m >m 2,解得0<m <2.由②得k 2=31m 2->0.解得m >21.故所求m 的取值范围为(21,2).1、征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。
椭圆专题训练卷(含解析)

椭圆专题训练卷一、单选题1.(2019·宁波市第四中学高二期中)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .102.(2020·全国高三课时练习(理))设x 、y ∈R ,则“|x |≤4且|y |≤3”是“216x +29y ≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.(2019·浙江省春晖中学高二月考)已知椭圆221102x y m m +=--的焦点在y 轴上,且焦距为4,则m 等于( ) A .4B .5C .7D .84.(2020·雅安市教育科学研究所高三一模(理))已知椭圆()222210x y a b a b+=>>的左顶点为A ,上顶点为B ,且OA (O 为坐标原点),则该椭圆的离心率为( )A B C D5.(2020·四川资阳 高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=6.(2020·全国高三课时练习(理))已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A .13B .12C .23D .347.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( )A .2B .34C .12D .148.(2020·甘肃城关 兰大附中高三月考(理))已知1F ,2F 分别为椭圆221168x y +=的左、右焦点,M 是椭圆上的一点,且在y 轴的左侧过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若2ON =(O 为坐标原点)则21MF MF -等于( )A .4B .2C D 9.(2020·黑龙江南岗 哈师大附中高三其他(文))已知1F 、2F 是椭圆22143x y +=的左、右焦点,点P 是椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则12QF QF ⋅=( )A .B .4C .3D .110.(2019·宁波市第四中学高二期中)设椭圆22221x y a b+=0)a b >>(的左、右焦点分别为12(,0)(,0)F c F c -,,点(,)2aN c 在椭圆的外部,点M 是椭圆上的动点,满足11232MF MN F F +<恒成立,则椭圆离心率e 的取值范围是( )A .(0B .1)C .5)6, D .5(,1)6二、多选题11.(2019·江苏省苏州实验中学高二月考)已知椭圆22221(0)x y a b a b+=>>的左焦点F ,焦距为2,过点F的弦长最小值不小于2,则该椭圆的离心率可以是( ) A .45B .23C .12D .1312.(2019·辽宁葫芦岛 高二月考)椭圆C :2211612x y +=的右焦点为F ,点P 是椭圆C 上的动点,则||PF 的值可能是( ) A .1B .3C .4D .813.(2020·岳麓 湖南师大附中高二期末)设椭圆22:143x y C +=的左、右焦点分别为12,F F ,点P 为椭圆C上一动点,则下列说法中正确的是( ) A .当点P 不在x 轴上时,12PF F ∆的周长是6 B .当点P 不在x 轴上时,12PF F ∆面积的最大值为3 C .存在点P ,使12PF PF ⊥ D .1PF 的取值范围是[1,3]14.(2020·山东中区 济南外国语学校高三月考)我们通常称离心率为512-的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b+=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 三、单空题15.(2020·商丘市回民中学高二期末(理))若椭圆的方程为221102x y a a +=--,且此椭圆的焦距为4,则实数a =________.16.(2020·河北桃城 衡水中学高三其他(文))已知椭圆C 的中心在原点,焦点在x 轴上,若C 的短轴长为2个相邻的五等分点,则此椭圆的标准方程为________.17.(2020·河南中原 郑州一中高三其他(文))已知A 、F 分别是椭圆C :22221x y a b+=()0a b >>的下顶点和左焦点,过A 且倾斜角为60︒的直线l 分别交x 轴和椭圆C 于M ,N 两点,且N 点的纵坐标为35b ,若FMN 的周长为6,则FAN 的面积为_____.四、双空题18.(2019·浙江高二学业考试)椭圆2214x y +=的离心率是___________,焦距长是________.19.(2020·上海高二课时练习)椭圆22192x y +=的焦点为F 1,F 2,点P 在椭圆上,若14PF =,2PF =_______;12F PF ∠的小大为__________.20.(2019·浙江高二期中)若方程22121x y m m+=+-表示椭圆,则实数m 的取值范围是______;当1m =-时,椭圆的焦点坐标为______.21.(2020·福建高三其他(理))已知椭圆22:143x y C +=的焦点是12,F F ,,A B 是C 上(不在长轴上)的两点,且1//2F A F B .M 为1F B 与2F A 的交点,则M 的轨迹所在的曲线是______;离心率为_____. 五、解答题22.(2020·上海高二课时练习)已知椭圆的中心在原点,焦距为6,且经过点(0,4).求它的标准方程.23.(2019·于都县第二中学高二月考(文))焦点在x 轴上的椭圆的方程为2214x ym+=,点(2,1)P 在椭圆上.(1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率. 24.(2019·永济市涑北中学校高二月考(理))设点是椭圆上一动点,椭圆的长轴长为,离心率为.(1)求椭圆的方程; (2)求点到直线距离的最大值.25.(2019·河南宛城 南阳中学高二月考(理))已知椭圆的两焦点为12(1,0),(1,0)F F -,P 为椭圆上一点,且12F F 是1PF 与2PF 的等差中项. (1)求此椭圆方程;(2)若点P 满足1260F PF ︒∠=,求12PF F ∆的面积.26.(2019·牡丹江市第三高级中学高二期末(文))已知点(2,1)P -在椭圆()222:102x yC a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点. (1)求椭圆C 的方程; (2)求直线AB 的斜率.27.(2018·西藏拉萨中学高二期末(理))椭圆C 的中心在坐标原点,焦点在x 轴上,右焦点F 的坐标为(2,0),且点F 6. (1)求椭圆C 的方程;(2)过点F 作斜率为k 的直线l ,与椭圆C 交于A 、B 两点,若43OA OB ⋅>-,求k 的取值范围.一、单选题1.(2019·宁波市第四中学高二期中)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .10【答案】D 【解析】因为椭圆的方程为2251162x y +=,所以225a =,由椭圆的的定义知12=210PF PF a +=,故选D .2.(2020·全国高三课时练习(理))设x 、y ∈R ,则“|x |≤4且|y |≤3”是“216x +29y ≤1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】“|x |≤4且|y |≤3”表示的平面区域M 为矩形区域,“216x +29y ≤1”表示的平面区域N 为椭圆216x +29y ≤1及其内部, 则如图显然N 在M 内, 故选:B .3.(2019·浙江省春晖中学高二月考)已知椭圆221102x y m m +=--的焦点在y 轴上,且焦距为4,则m 等于( ) A .4 B .5C .7D .8【答案】D 【解析】∵ 椭圆221102x y m m +=--的焦点在y 轴上,∴ 22a m =-,210b m =-, ∵ 焦距为4, ∴ 24c =即24c =,在椭圆中:222a b c =+即2(10)4m m -=-+,解得:8m =, 故选:D4.(2020·雅安市教育科学研究所高三一模(理))已知椭圆()222210x y a b a b+=>>的左顶点为A ,上顶点为B ,且OA (O 为坐标原点),则该椭圆的离心率为( )A .3B .3C .2D .3【答案】B 【解析】依题意可知3ab ,即3b =,又c ===,所以该椭圆的离心率3c e a ==. 故选:B5.(2020·四川资阳 高三其他(理))已知椭圆C :()222210x y a b a b +=>>经过点),且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=【答案】A 【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选:A 点睛:求椭圆标准方程的两种思路方法(1)定义法:根据椭圆的定义,确定22a b ,的值,结合焦点位置可写出椭圆方程.(2)待定系数法:这种方法是求椭圆方程的常用方法,具体思路是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a b ,的方程组.如果焦点位置不确定,也可把椭圆方程设22100()mx ny m n m n >>≠+=,,的形式.6.(2020·全国高三课时练习(理))已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A .13B .12C .23D .34【答案】A 【解析】试题分析:如图取P 与M 重合,则由2(,0),(,)b A a M c a--⇒直线22:()(0,)bb a AM y x a Ec a a c=+⇒-+-同理由222221(,0),(,)(0,)33b b b b B a Mc G a c e a a c a c a c -⇒⇒=⇒=⇒=+-+,故选A.7.(2020·河北枣强中学高三月考(文))已知椭圆C 的方程为()222210x y a b a b +=>>,焦距为2c ,直线2:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为( ) A .32B .34C .12D .14【答案】A 【解析】设直线与椭圆在第一象限内的交点为()x,y A ,则24y x =由2AB c =,可知22OA x y c =+=2224x x c ⎛⎫+= ⎪ ⎪⎝⎭,解得22x =, 所以221,33A c ⎛⎫ ⎪ ⎪⎝⎭把点A 代入椭圆方程得到222222131c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,整理得4281890e e -+=,即()()2243230e e --=,因01e <<,所以可得3e =故选A 项.8.(2020·甘肃城关 兰大附中高三月考(理))已知1F ,2F 分别为椭圆221168x y +=的左、右焦点,M 是椭圆上的一点,且在y 轴的左侧过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若2ON =(O 为坐标原点)则21MF MF -等于( ) A .4 B .2C .32D .332【答案】A 【解析】延长2F N 交1MF 的延长线于点P ,作图如下:因为MN 为12F MF ∠的角平分线,且2F N MN ⊥, 所以2MF MP =,所以2111MF MF MP MF F P -=-=, 因为,O N 分别为122,F F F P 的中点, 所以ON 为12PF F ∆的中位线, 所以1122ON F P ==, 所以21124MF MF F P ON -===. 故选:A9.(2020·黑龙江南岗 哈师大附中高三其他(文))已知1F 、2F 是椭圆22143x y +=的左、右焦点,点P 是椭圆上任意一点,以1PF 为直径作圆N ,直线ON 与圆N 交于点Q (点Q 不在椭圆内部),则12QF QF ⋅=( )A .23B .4C .3D .1【答案】C 【解析】连接2PF ,设椭圆的基本量为,,a b c ,()()()()2212121QF QF QO OF QO OF QO QF ⋅=+⋅+=-,()221222222322PF PF QN NO c c a c b ⎛⎫=+-=+-=-== ⎪⎝⎭故答案为:C10.(2019·宁波市第四中学高二期中)设椭圆22221x y a b+=0)a b >>(的左、右焦点分别为12(,0)(,0)F c F c -,,点(,)2aN c 在椭圆的外部,点M 是椭圆上的动点,满足11232MF MN F F +<恒成立,则椭圆离心率e 的取值范围是( ) A .2(0, B .21) C .25)6, D .5(,1)6【答案】D 【解析】∵点,2a N c ⎛⎫ ⎪⎝⎭在椭圆的外部,∴222214c a a b +>,2212b a < ,由椭圆的离心率22121122c b e a a ==--=> ,122MF MN a MF MN +=-+, 又因为2MF MN -+≤2NF ,且22aNF =,要11232MF MN F F +<恒成立,即22a MF MN -+≤32222a a c +<⨯,则椭圆离心率的取值范围是5,16⎛⎫⎪⎝⎭.故选D . 二、多选题11.(2019·江苏省苏州实验中学高二月考)已知椭圆22221(0)x y a b a b+=>>的左焦点F ,焦距为2,过点F的弦长最小值不小于2,则该椭圆的离心率可以是( ) A .45B .23C .12D .13【答案】CD 【解析】由22c =,则1c =.过点F 的弦长最小值为222b a≥,即22b a ≥即有222a c a -≥,即2210a a --≥,解得:a ≥或152a(舍),122c e a=≤=. 故选: CD.12.(2019·辽宁葫芦岛 高二月考)椭圆C :2211612x y +=的右焦点为F ,点P 是椭圆C 上的动点,则||PF 的值可能是( ) A .1 B .3C .4D .8【答案】BC 【解析】由题意可得4a =,16122c ,则26a cPF a c .故选:BC .13.(2020·岳麓 湖南师大附中高二期末)设椭圆22:143x y C +=的左、右焦点分别为12,F F ,点P 为椭圆C上一动点,则下列说法中正确的是( )A .当点P 不在x 轴上时,12PF F ∆的周长是6B .当点P 不在x 轴上时,12PF F ∆C .存在点P ,使12PF PF ⊥D .1PF 的取值范围是[1,3] 【答案】ABD 【解析】由椭圆方程可知,2,a b ==,从而1c ==. 据椭圆定义,1224PF PF a +==,又1222F F c ==, 所以12PF F ∆的周长是6,A 项正确. 设点()()000,0P x y y ≠,因为122F F =, 则12120012PF F S F F y y ∆⋅==.因为003y b <=,则12PF F ∆项正确. 由椭圆性质可知,当点P 为椭圆C 短轴的一个端点时,12F PF ∠为最大. 此时,122PF PF a ===,又122F F =,则12PF F ∆为正三角形,1260F PF ︒∠=,所以不存在点P ,使12PF PF ⊥,C 项错误.由图可知,当点P 为椭圆C 的右顶点时,1PF 取最大值,此时13PF a c =+=; 当点P 为椭圆C 的左顶点时,1PF 取最小值,此时11PF a c =-=, 所以1[1,3]PF ∈,D 项正确, 故选:ABD .14.(2020·山东中区 济南外国语学校高三月考)我们通常称离心率为12的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b+=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 【答案】BD 【解析】2222:1(0)x y C a b a b+=>>()()()()1212,0,,0,0,,0,A a A a B b B b ∴--,()()12,0,,0F c F c -对于A :111222||,||,||A F F F F A 为等比数列则2112212||||||A F F A F F ⋅=()()222a c c ∴-=2a c c ∴-=13e ∴=不满足条件,故A 错误; 对于B :11290F B A ∠=︒222211112A F B F B A ∴=+ ()2222a c a a b ∴+=++220c ac a ∴+-=即210e e ∴+-=解得e =或e = 故B 正确;对于C :1PF x ⊥ 轴,且21//PO A B2,b P c a ⎛⎫∴- ⎪⎝⎭21POA B k k =即2b c ab a =--解得bc =222a b c =+2c e a ∴===不满足题意,故C 错误; 对于D :四边形1221A B A B 的内切圆过焦点12,F F 即四边形1221A B A B 的内切圆的半径为c ,ab ∴=422430c a c a ∴-+=42310e e ∴-+=解得232e +=(舍去)或232e =e ∴=故D 正确 故选:BD 三、单空题15.(2020·商丘市回民中学高二期末(理))若椭圆的方程为221102x y a a +=--,且此椭圆的焦距为4,则实数a =________. 【答案】4或8 【解析】因为221102x y a a +=--是椭圆的方程,所以100a ->且a 20->,所以210a <<,由椭圆的方程可得()2c 102122a a a =---=-,又2c 4=,所以1224a -=,解得4a =或8a =. 故答案为4或816.(2020·河北桃城 衡水中学高三其他(文))已知椭圆C 的中心在原点,焦点在x 轴上,若C 的短轴长为2个相邻的五等分点,则此椭圆的标准方程为________.【答案】2212524x y +=【解析】椭圆的短轴长为,即2b =,∴b = .∵两个焦点恰好为长轴的2个相邻的五等分点,∴1225c a =⨯,得5a c =, 又因为222a b c =+,故可解得1c =,5a =,故该椭圆的标准方程为2212524x y +=.故答案为:2212524x y +=.17.(2020·河南中原 郑州一中高三其他(文))已知A 、F 分别是椭圆C :22221x y a b+=()0a b >>的下顶点和左焦点,过A 且倾斜角为60︒的直线l 分别交x 轴和椭圆C 于M ,N 两点,且N 点的纵坐标为35b ,若FMN 的周长为6,则FAN 的面积为_____.【解析】 如图所示,由题意得,()0,A b -,(),0F c -,直线MN 的方程为3y x b =-,把35y b =代入椭圆方程解得45x a =,∴4355N a b ⎛⎫ ⎪⎝⎭,, ∵N 在直线MN 上,∴34355b a b =-,解得3b a =又222a b c =+,∴222)3b c =+,解得3b c =, 令3y x b =-=0,则3M ⎫⎪⎭,即(),0M c ,∴M 为椭圆的右焦点,∴2FM c =, 由椭圆的定义可知,2NF NM a +=, ∵FMN 的周长为6,∴226a c +=, ∵3b a =2a c =,∴1,2,3c a b === ∴()13883255FANSFM b b c b ⎡⎤=⋅⋅--=⋅=⎢⎥⎣⎦故答案为:35. 四、双空题18.(2019·浙江高二学业考试)椭圆2214x y +=的离心率是___________,焦距长是________.323【解析】椭圆2214x y +=得:2,1,a b c ===2214x y +=椭圆的焦距长为:19.(2020·上海高二课时练习)椭圆22192x y +=的焦点为F 1,F 2,点P 在椭圆上,若14PF =,2PF =_______;12F PF ∠的小大为__________.【答案】2 ;23π; 【解解:因为由椭圆的定义,我们可知1221222121212121222||||cos 21642812422PF PF a PF a PF PF PF F F PF F F PF PF PF +=∴=-+-∆∠=⨯+-==-⨯⨯中,20.(2019·浙江高二期中)若方程22121x y m m+=+-表示椭圆,则实数m 的取值范围是______;当1m =-时,椭圆的焦点坐标为______. 【答案】11(2,)(,1)22---; (0,1),(0,1)-. 【解析】①根据椭圆的方程特征,方程22121x y m m+=+-表示椭圆,则201021m m m m+>⎧⎪->⎨⎪+≠-⎩解得:11(2,)(,1)22m ∈---; ②1m =-时,椭圆的方程2212y x +=,焦点在y 轴,其坐标分别为(0,1),(0,1)-故答案为:①11(2,)(,1)22m ∈---;②(0,1),(0,1)- 21.(2020·福建高三其他(理))已知椭圆22:143x y C +=的焦点是12,F F ,,A B 是C 上(不在长轴上)的两点,且1//2F A F B .M 为1F B 与2F A 的交点,则M 的轨迹所在的曲线是______;离心率为_____. 【答案】椭圆 45【解析】设()11,A x y ,()22,C x y 则()22,B x y --,1AF 的斜率不为0,可设1:1AF l x my =- 则122:11BF y y l x x =+-①,211:11AF y y l x x =--② 所以()12121221212121211112224y y y y y y y y x x x x my my m y y m y y ⋅=⋅=⋅=+------++ 联立221143x my x y =-⎧⎪⎨+=⎪⎩得2242303m y my ⎛⎫+--= ⎪⎝⎭,得122243m y y m +=+,122343y y m -=+ 所以222316133y x m -=--+由①②得()12122112y y x x m y y y y ++-+=-,所以35x m y = 所以22231316353y x x y -=-⎛⎫-+⎪⎝⎭整理得222215344x x +=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以M 的轨迹所在的曲线是椭圆,14554e == 故答案为:椭圆;45.五、解答题22.(2020·上海高二课时练习)已知椭圆的中心在原点,焦距为6,且经过点(0,4).求它的标准方程.【答案】2212516x y +=或221167y x +=【解析】(1)若椭圆的焦点在x 轴上,设椭圆的标准方程为22221(0)x ya b a b+=>>.将点(0,4)代入,得4b =.由26c =,解得3c =.22225∴=+=a b c ,从而椭圆方程为2212516x y +=; (2)若椭圆的焦点在y 轴上,设椭圆的标准方程为22221(0)y xa b a b+=>>.将点(0,4)代入,得4a =.由26c =,解得3c =,2227b a c =-=,从而椭圆方程为221167y x +=. 综上所述,椭圆的标准方程为2212516x y +=或221167y x +=.23.(2019·于都县第二中学高二月考(文))焦点在x 轴上的椭圆的方程为2214x ym+=,点2,1)P 在椭圆上.(1)求m的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率.【答案】(1)2(2)长轴长4、短轴长22、焦距22、离心率2 2【解析】(1)由题意,点(2,1)P在椭圆上,代入,得222114m+=,解得2m=(2)由(1)知,椭圆方程为22142x y+=,则2,2,2a b c===椭圆的长轴长24a=;’短轴长222b=;焦距222c=;离心率22cea==.24.(2019·永济市涑北中学校高二月考(理))设点是椭圆上一动点,椭圆的长轴长为,离心率为.(1)求椭圆的方程;(2)求点到直线距离的最大值.【答案】(1);(2)【解析】(1)由已知得,得椭圆(2)设,则当时,.25.(2019·河南宛城 南阳中学高二月考(理))已知椭圆的两焦点为12(1,0),(1,0)F F -,P 为椭圆上一点,且12F F 是1PF 与2PF 的等差中项.(1)求此椭圆方程;(2)若点P 满足1260F PF ︒∠=,求12PF F ∆的面积.【答案】(1) 22143x y +=;(2) 3【解析】(1)设所求椭圆方程为22221(0,0)x y a b a b+=>>, 根据已知可得2221212242,2,413F F PF PF a a b a c =∴+==∴==-=-=, 所以此椭圆方程为22143x y +=; (2)在12PF F ∆中,设12,PF m PF n ==,由余弦定理得:22242cos604()22cos60163m n mn m n mn mn mn︒︒=+-⋅∴=+--⋅=- 121134sin 6004322PF F mn S mn ︒∆=∴=⋅=⨯=26.(2019·牡丹江市第三高级中学高二期末(文))已知点(2,1)P -在椭圆()222:102x y C a a +=>上,动点,A B 都在椭圆上,且直线AB 不经过原点O ,直线OP 经过弦AB 的中点.(1)求椭圆C 的方程;(2)求直线AB 的斜率.【答案】(1)22182x y +=;(2)12. 【解析】(1)将(2,1)P -代入22212x y a +=, 得()2222112a -+=,28a =. 故椭圆方程为22182x y +=. (2)当直线AB 斜率不存在时不合题意,故设直线:AB y kx m =+,1122(,),(,)A x y B x y ,AB 的中点为00(,)M x y ,由22182y kx m x y =+⎧⎪⎨+=⎪⎩得222()148480k x kmx m +++-=, 0122()14214km x x x k +=-=+,00214m y kx m k =+=+, 直线OP 经过弦AB 的中点,则OM OP k k =,0012y x =-, 142m km =--,12k ∴=,即直线AB 的斜率为12. 27.(2018·西藏拉萨中学高二期末(理))椭圆C 的中心在坐标原点,焦点在x 轴上,右焦点F 的坐标为(2,0),且点F 到短轴的一个端点的距离是6.(1)求椭圆C 的方程;(2)过点F 作斜率为k 的直线l ,与椭圆C 交于A 、B 两点,若43OA OB ⋅>-,求k 的取值范围. 【答案】解(I )(II ) 【解析】(I )由已知,;,故椭圆C 的方程为………………4分(II )设则A、B坐标是方程组的解.消去,则,………………7分所以k的取值范围是………………12分。
高中椭圆经典练习题1(含答案)

高中椭圆经典练习题【编著】黄勇权一、填空题:1、已知椭圆的焦点为(3,0),长轴是短轴的2倍,则椭圆的方程是 。
2、已知椭圆22221(0)x y a b a b +=>>的短轴为4,且过点( 132 , 233 ),则椭圆的离心率是 。
3、直线y=21x+1于椭圆12y 3x 22=+相交于A 、B 两点。
则线段AB 的长度是 。
4、如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒. 则椭圆的离心率 。
5、F1、F2分别为椭圆1by a 2222=+x 的左右两个焦点,过左焦点F1作x 轴垂线交椭圆于P ,若∠21PF F =45°,则椭圆的离心率为 。
6、F1、F2分别为椭圆15y 922=+x 的左右两个焦点,P 为椭圆上的一点, 若∠21PF F =60°,则△21PF F 的面积为 。
7、椭圆16y 822=+x ,点M 不与C 的焦点重合,A 、B 是M 关于焦点对称的点,若另外一点N ,使得N 与点M 连线的中点落在椭圆上,则=+BN AN 。
1by 22=(a >b >0),过点M(4,1)作斜率k= -2的直线,与椭圆相交9、F 为椭圆15y 922=+x 的右焦点,P 为椭圆上的一点,并在第一象限,且PF=2,点M 在FP 上,若2PM=MF,O 为椭圆的中心,那么线段OM 的长度= 。
120y 2=+有一动点P (x ,y ),点M 地坐标为(4,0),有另一动点N ,若MN =1,且0=•PN MN,则丨PN 丨的最大值= 。
二、选择题1、椭圆1by a x 2222=+(a >b >0)的长轴是短轴的3倍,且过(3,2),则椭圆其中一个焦点的坐标是( )A 、(0102,)B 、(010,)C 、(053,)D 、(05,) 2、已知椭圆C :18y a x 222=+(a >b >0)的离心率为31,则椭圆的焦距为( ) A 、6 B 、3 C 、2 D 、1 过点( 3, 2),则椭圆的右准线方程是( ) A 、 x=3 62 B 、 x= 2 63 C 、x= 3 32 D41b y 22=+(a >b >0)的左右两个焦点为F1、F2,过F2的直线交椭圆于M 、N 两点,若MN F 1∠=60°,MN M F =1,则椭圆的离心率为( )1by 22=+(a >b >0)的左焦点到右顶点的距离是8,右焦点到左准线的距离是20,,则椭圆的方程:( )A 、116y 2022=+xB 、112y 1622=+xC 、136y 4022=+xD 、132y 3622=+x7、已知椭圆12m y 1m x 222=++的焦距为4,则椭圆的离心率为( )A 、51 B 、 510 C 、 131 D 、1326213y 2=,直线过P (1,-1)交椭圆于A 、B ,若P 为线段AB 的中点,那么直线AB 的方程为( )A 、 3x-4y-7=0B 、 3x-4y+7=0C 、 3x-4y+1=0D 、3x-4y-1=01by 22=+(a >b >0)与直线y+x=1相交于A 、B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长度是( )10、过P (-2,0)的直线斜率为k1(k1≠0),与椭圆1222=+y x 交于A 、B ,线段AB 的中点为M ,直线OM 的斜率为k2,则k1k2的值为( )A 、 - 12B 、 12C - 13D 、 13三、解答题16y 2=+的左右焦点是F1,F2,P 是第一象限内该椭圆上的点, 且F 1P ⊥F 2P ,则P 的横坐标为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆练习题一.选择题:1.已知椭圆1162522=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( D )A .2B .3C .5D .72.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( C )A. 22143x y +=B. 22134x y +=C. 2214x y +=D. 2214y x +=3.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是( B )A 1858014520125201202522222222=+=+=+=+y x D y x C y x B y x 4.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( A )A. 1-B. 1C. 5D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( B )A.12B.C.D. 26.椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为( B )A. 221169x y += B . 221259x y += C . 2212516x y += D . 221254x y += 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( C )。
A 16x 2+9y 2=1B 16x 2+12y 2=1C 4x 2+3y 2=1D 3x 2+4y 2=18.椭圆的两个焦点和中心,将两准线间的距离四等分,则它的焦点与短轴端点连线的夹角为( C )(A)450 (B)600 (C)900 (D)12009.椭圆221259x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为( A )A. 4 B . 2 C. 8 D .2310.已知△ABC 的顶点B 、C 在椭圆+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外x3一个焦点在BC 边上,则△ABC 的周长是 ( C )(A )2 (B )6 (C )4 (D )1233二、填空题:11.方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围(1,3)(3,1)m ∈-- _____12.过点(2,3)-且与椭圆229436x y +=有共同的焦点的椭圆的标准方程为_2211510y x +=13.设(5,0)M -,(5,0)N ,△MNP 的周长是36,则MNP ∆的顶点P 的轨迹方程为221(0)169144x y y +=≠14.如图:从椭圆上一点M 向x A 及短轴的端点B 的连线AB ∥OM,则该椭圆的离心率等于__________三、解答题:15.已知椭圆的对称轴为坐标轴,离心率32=e ,短轴长为58,求椭圆的方程。
18014422=+y x 或 11448022=+y x 16.已知点()3,0A 和圆1O :()16322=++y x ,点M 在圆1O上运动,点P 在半径M O 1上,且PA PM =,求动点P 的轨迹方程。
1422=+y x 17.已知A 、B 为椭圆22a x +22925a y =1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.设)y ,A(x 11,)y ,B(x 22,,54=e 由焦半径公式有21ex a ex a -+-=a 58,∴21x x + =a 21,即AB 中点横坐标为a 41,又左准线方程为a x 45-=,∴234541=+a a ,即a =1,∴椭圆方程为x 2+925y 2=1.18.(10分)根据条件,分别求出椭圆的方程: (1)中心在原点,对称轴为坐标轴,离心率为12,长轴长为8;(1)2211612x y +=或2211612y x +=(2)中心在原点,对称轴为坐标轴,焦点在x 轴上,短轴的一个顶点B 与两个焦点12,F F 组成的三角形的周长为4+,且1223F BF π∠=。
22141x y +=19.(12分)已知12,F F 为椭圆2221(010)100x y b b+=<<的左、右焦点,P 是椭圆上一点。
(1)求12||||PF PF ⋅的最大值;(2)若1260F PF ∠= 且12F PF ∆b 的值;21212||||||||1002PF PF PF PF +⎛⎫≤= ⎪⎝⎭(当且仅当12||||PF PF =时取等号), ()12max |||100PF PF ∴⋅=(2)12121||||sin 602F PF S PF PF ∆=⋅=12256||||3PF PF ∴⋅= ①又22212122221212||||2||||4||||42||||cos 60PF PF PF PF a PF PF c PF PF ⎧++⋅=⎨+-=⋅⎩2123||||4004PF PF c ⇒⋅=- ②由①②得68c b =∴=一、选择题(本大题共10小题,每小题5分,共50分)2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点,则椭圆方程是(D 23,25(-)A .B .C .D .14822=+x y 161022=+x y 18422=+x y 161022=+y x 3.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( D)A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件,则点P 的)0(921>+=+a aa PF PF 轨迹是(Dn dAl l t h i ng)A .椭圆B .线段C .不存在D .椭圆或线段5.椭圆和具有(A12222=+b y a x k by a x =+2222()0>k )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( D)A .B .C .D .412242217.已知是椭圆上的一点,若到椭圆右准线的距离是,则点到左焦P 13610022=+y x P 217P 点的距离是( B )A .B .C .D .5165668758778( D )22x y +=14cos 2sin 164+0d4PP ααα⎛⎫⎪⎝⎭试题分析:∵椭圆方程,可设椭圆上任意一点坐标(,)π方法二:由题意只需求于直线相切的点取到最大值2y =14或最小值设此直线为,x+2y+c=0x=-2y-c 2y =14化简得228y +4cy+c -16=0()()22=-484c c -06=1∆⋅⋅c=±解两直线的距离max d 9.在椭圆内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使13422=+y x |MP|+2|MF|的值最小,则这一最小值是( C)A .B .C .3D .42527()22a c01(M )a x==41e=2c4-1=3.e e MF MN MP MF P PN NPN MP MF <<=++到定点(焦点)距离与到定直线(准线)的距离的比等于定值的点的轨迹叫椭圆。
可知2点到准线距离所以2的最小值,就是由作垂直于椭圆的准线于。
的长即为所求解:由已知,椭圆的离心率由椭圆的第二定义,。
椭圆右准线方程2的最小值:10.过点M (-2,0)的直线m 与椭圆交于P 1,P 2,线段P 1P 2的中点为P ,设直1222=+y x 线m 的斜率为k 1(),直线OP 的斜率为k 2,则k 1k 2的值为(01≠k )A .2B .-2C .D .-21211222211122111222112111112221112121-2,0y=k x+22k +1x 8k 8k 20-8k -4k x +x =2k +12k +12k -4k 2k k x +2)2k +12k +12k +1-11k =k k =-2k 2M x PP P++-==解析:设过()的直线方程为()代入椭圆方程整理得()∴,∴的横坐标的纵坐标为(得(,)O P 斜率,二、填空题(本题共4小题,每小题6分,共24分)11.离心率,一个焦点是的椭圆标准方程为 .21=e ()3,0-F 1273622=+x y 12.与椭圆4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为____.1101522=+y x 13.已知是椭圆上的点,则的取值范围是______ .()y x P ,12514422=+y x y x +]13,13[-14.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于_____54高考及模拟题:1. (文科)已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于( B )2A. B. C. D.12222322. (理科)如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为( B )A. B. C. D.543222123.若椭圆+=1(a >b >0)的左、右焦点分别为F 1、F 2,抛物线y 2=2bx 的焦点为F .若x 2a 2y 2b 2=3,则此椭圆的离心率为( B )F 1F → FF 2→A. B. C. D.122213334.已知F 1、F 2是椭圆的两个焦点,满足·=0的点M 总在椭圆内部,则椭圆离心率MF 1→ MF 2→ 的取值范围是( C )A .(0,1)B .(0,]C. D.12(0,22)[22,1)解:由向量垂直可知M 点轨迹是以原点为圆心,半径等于半焦距的圆。
所以圆在椭圆内部,222222c 1c b c a -c e =0ea 2<,即<,解<,所以<<5.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若x 2a 2y 2b 2∠F 1PF 2=60°,则椭圆的离心率为( B )A. B. C. D.223312136.(2008年全国卷Ⅰ)在△ABC 中,AB =BC ,cos B =-.若以A ,B 为焦点的椭圆经过点718C ,则该椭圆的离心率e =____._______.(余弦定理)387.(2009年田家炳中学模拟)设椭圆+=1(a >b >0)的四个顶点分别为A 、B 、C 、D,若菱x 2a 2y 2b 2形ABCD 的内切圆恰好经过椭圆的焦点,则椭圆的离心率为_(只能求出e 的平方)_______.4224422(a bx y+=1a b a -3a c +c =0e -3e +1=0e 0e 1A 解:设,0),B (0,)则直线A B 的方程为,由内切圆恰好经过交点得整理得,即,解得∵<<,所以8.(2008年江苏卷)在平面直角坐标系中,椭圆+=1(a >b >0)的焦距为2,以O 为圆心,x 2a 2y 2b 2a 为半径作圆,过点作圆的两切线互相垂直,则离心率e =________.(利用45(a 2c ,0)22度的余弦值求e )。