(完整word版)高中椭圆基础知识专题练习题(有答案)

合集下载

椭圆基础题(含答案)

椭圆基础题(含答案)

4.设 P 是椭圆 2 +
3
A.2√2
= 1上的动点,则 P 到该椭圆的两个焦点的距离之和为(
B.2√3
5.椭圆:
2
+
4
2
2
C.2√5
B.−2
2
100
+
D.4√2
= 1的左、右焦点分别为1 , 2 ,点在椭圆上,已知|1 | = 3,则|2 | =(
A.−1
6.如果椭圆

2

D.不能确定
3.已知△ 的周长为 20,且顶点(0, −4), (0,4),则顶点的轨迹方程是(
2
2
2
2
2
2
2

2
A.36 + 20 = 1( ≠ 0) B.20 + 36 = 1( ≠ 0) C. 6 + 20 = 1( ≠ 0) D.20 + 36 = 1
2
√6
A. 3
B.−
2
2
= 1有且只有一个交点,则的值是(
√6
3
C.±
2
33.直线 y=k(x﹣2)+1 与椭圆
16
A.相离
+
2
9
2
A.相交
2
4
= 1的位置关系是(
2
A. + 3 − 4 = 0
36.已知椭圆:
2
4
+
2
2
D.无法判断

C.相离
D.不确定
= 1交于点 A、B,线段的中点为(1,1),则直线 l 的方程为(
(2)焦点在轴上的椭圆上任意一点到两个焦点的距离的和为8, = √3.

椭圆专题(含答案)

椭圆专题(含答案)

椭圆专题(含答案)一、选择题(题型注释)1.椭圆)0(12222>>=+b a by a x 的中心、右焦点、右顶点、右准线与x 轴的交点依次为H A F O ,,,,则OHFA 的最大值为( )A .21 B .31 C .41 D .12.过抛物线24y x =的焦点作直线l 交抛物线于,A B 两点,若线段AB 中点的横坐标为3,则||AB =( )A .10B .8C .6D .43.方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .-16<m<25B .-16<m<29 C .29<m<25 D .m>29 4.已知点(1,1)A --.若曲线G 上存在两点,B C ,使ABC △为正三角形,则称G 为Γ型曲线.给定下列三条曲线:①3(03)y x x =-+≤≤;②0)y x =≤≤;③1(0)y x x=->.其中,Γ型曲线的个数是( )A .0B .1C .2D .35.过点()1,1M 的直线与椭圆22143x y +=交于,A B 两点, 且点M 平分弦AB ,则直线AB 的方程为( )A .4370x y +-=B .3470x y +-=C .3410x y -+=D .4310x y --=6.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能 7.与双曲线2222xy -=有共同的渐近线,且过点M (2,-2)的双曲线方程为 .8.已知焦点在x 轴上的椭圆的离心率为,且它的长轴长等于圆C:x 2+y 2-2x-15=0的半径,则椭圆的标准方程是( )(A)+=1 (B)+=1(C)+y 2=1 (D)+=19.已知直线l 交椭圆4x2+5y2=80于M ,N 两点,椭圆与y 轴的正半轴交于B 点,若△BMN 的重心恰好落在椭圆的右焦点上,则直线l 的方程是 ( ).A .6x -5y -28=0B .6x +5y -28=0C .5x +6y -28=0D .5x -6y -28=010.已知双曲线C :22145x y -=的左、右焦点分别为F 1,F 2,P 为C的右支上一点,且|PF 2|=|F 1F 2|,则12PF PF ⋅等于( )A .24B .48C .50D .5611.在平面坐标系xOy 中,抛物线22y px =的焦点F 与椭圆22162x y +=的左焦点重合,点A 在抛物线上,且||4AF =,若P 是抛物线准线上一动点,则||||PO PA +的最小值为( )A .6B .2+..4+12.已知点A 、F 分别是椭圆C :22221x y a b+=(0a b >>)的上顶点和左焦点,若AF 于圆O :224x y +=相切于点T ,且点T 是线段AF 靠近点A 的三等分点,则椭圆C 的标准方程为 . 13.已知双曲线422=-y x ,直线)1(:-=x k y l 与该双曲线只有一个公共点,则k = .(写出所有可能的取值) 14..给出下列四个命题:(1)方程01222=--+x y x 表示的是圆;(2)动点到两个定点的距离之和为定长,则动点的轨迹为椭圆; (3)点M 与点F(0,-2)的距离比它到直线03:=-y l 的距离小1的 轨迹方程是y x 82-= (4)若双曲线1422=+ky x 的离心率为e ,且21<<e ,则k 的取值范围是()120k ∈-,其中正确命题的序号是__________15.已知双曲线x 2-32y =1,过P(2,1)点作一直线交双曲线于A 、B 两点,并使P 为AB 的中点,则直线AB 的斜率为______ 16.过点(0,2)A 可作条直线与双曲线2214y x -=有且只有一个公共点17.点P 在双曲线上•,是这条双曲线的两个焦点,,且的三条边长成等差数列,则此双曲线的离心率是18.已知椭圆的焦点三角形具有“ 椭圆22221x y a b += (0a b >>)的左右焦点分别为12,F F ,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan2F PF S b γ∆=”;利用由类比推理得出的双曲线的焦点三角形具有的结论,求已 知12,F F 分别是双曲线22221x y a b -=(0,0a b >>)的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于,A B 两点.若2ABF 是等边三角形,且c =双曲线的焦点三角形的面积为12F BF S ∆ .19.若抛物线22y px =的焦点与椭圆22162x y +=的焦点重合,则p 的值为20.给出下列命题:①椭圆12322=+y x 的离心率35=e ,长轴长为32;②抛物线22y x =的准线方程为;81-=x ③双曲线1254922-=-x y 的渐近线方程为x y 75±=;④方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率.其中所有正确命题的序号是21.(理)已知方程x 4+y 2=1,给出下列结论:①它的图形关于x 轴对称;②它的图形关于y 轴对称;③它的图形是一条封闭的曲线,且面积小于π;④它的图形是一条封闭的曲线,且面积大于π.真命题的序号是 .22.已知O 为坐标原点,椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为21F F ,,右顶点为A ,上顶点为B , 若|||,||,|2AB OF OB 成等比数列,椭圆C 上的点到焦点2F 的最短距离为26-. (1)求椭圆C 的标准方程;(2)设T 为直线3-=x 上任意一点,过1F 的直线交椭圆C 于点Q P 、,且01=⋅TF ,求||||1PQ TF 的最小值.23.已知椭圆2222:1(0)x y C a b a b +=>>经过点(0,1),离心率为2.(1)求椭圆C 的方程;(2)设直线:1l x my =+与椭圆C 交于A B 、,点A 关于x 轴的对称点'A ('A 与B 不重合),则直线'A B 与x 轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由. 24.已知椭圆的中心在原点,焦点为F 1()022,-,F 2(0,22),且离心率e =223。

椭圆练习题带答案,知识点总结(基础版)

椭圆练习题带答案,知识点总结(基础版)

椭圆练习题带答案,知识点总结(基础版)椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (其中2a>F1F2)的点的轨迹。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

当椭圆焦点在x轴上时,标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。

当椭圆焦点在y轴上时,标准方程为x^2/b^2+y^2/a^2=1(a>b>0)。

椭圆的范围为-a≤x≤a,-b≤y≤b。

椭圆有x轴和y轴两条对称轴,对称中心为坐标原点O(0,0)。

椭圆的长轴长为2a,短轴长为2b。

椭圆的顶点坐标为(±a,0),(0,±b)。

椭圆的焦点坐标为(±c,0),其中c^2=a^2-b^2.椭圆的离心率为e=c/a(其中0<e<1)。

a、b、c、e的几何意义:a叫做长半轴长;b叫做短半轴长;c叫做半焦距;a、b、c之间满足a^2=b^2+c^2.e叫做椭圆的离心率,e可以刻画椭圆的扁平程度,e越大,椭圆越扁,e 越小,椭圆越圆。

对于椭圆上任一点P和椭圆的一个焦点F,PF_max=a+c,PF_min=a-c。

当点P在短轴端点位置时,∠F1PF2取最大值(余弦定理)。

椭圆方程常用三角换元为x=acosθ,y=bsinθ。

弦长公式为:设直线y=kx+b交椭圆于P1(x1,y1),P2(x2,y2),则|P1P2|=√(1+k^2(x1-x2)^2)或|P1P2|=√(1+(y1-y2)^2/k^2)(k≠0)。

判断点P(x,y)是否在椭圆内,当且仅当x^2/a^2+y^2/b^21.若椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为c/a,短轴长为4√2,则它的长轴长为2a=6.1.在椭圆$x^2/a^2+y^2=1$的内部,点$A(a,1)$,则$a$的取值范围是$-2<a<2$。

2.已知椭圆方程$x^2/16+y^2/8=1$,焦点为$F_1,F_2$,点$P$在椭圆上且$\angle F_1PF_2=\pi/3$。

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案训练指要熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题.椭圆中心在坐标原点,对称轴为坐标轴,离心率为,长、短轴之和为,则椭圆方程为.16410022=+y x .11006422=+y x .1100641641002222=+=+y x y x 或 .110818102222=+=+y x y x 或 .若方程+=,表示焦点在轴上的椭圆,那么实数的取值范围是 .(,+∞) .(,) .(,+∞) .(,).已知圆+=,又(3,),为圆上任一点,则的中垂线与之交点轨迹为(为原点) .直线.圆.椭圆.双曲线二、填空题.设椭圆1204522=+y x 的两个焦点为、,为椭圆上一点,且⊥,则-=. .(年全国高考题)椭圆的一个焦点是(,),那么. 三、解答题.椭圆2222by a x +(>>)()、′()()为椭圆的右焦点,若直线⊥′,求椭圆的离心率..在面积为的△中,21,建立适当的坐标系,求以、为焦点且过点的椭圆方程..如图,从椭圆2222by a x +=(>>)上一点向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点及短轴的端点的连线∥.()求椭圆的离心率;()设是椭圆上任意一点,是右焦点,求∠的取值范围;()设是椭圆上一点,当⊥时,延长与椭圆交于另一点,若△的面积为3,求此时椭圆的方程.参考答案一、 二、5,40||||100)2(||||562|||:|212222121=⋅⇒⎪⎭⎪⎬⎫==+==+PF PF c PF PF a PF PF 提示 ∴(-)-×. -5. 三、.215- .以所在直线为轴,线段的中垂线为轴建立坐标系,可得椭圆方程为.1315422=+y x .()22 ()[,2π] ()1255022=+y x 提示:()∵⊥轴,∴-,代入椭圆方程求得a b 2,∴-,,2ab k ac b AB -= ∵∥,∴-c b abac b =⇒-=2 从而22. ()设,∠θ,则2a 1F 2c.由余弦定理,得θ212222124r r c r r -+1242)(21221221221-=--+=r r a r r c r r r r≥,01)2(2212=-+r r a 当且仅当时,上式取等号.∴≤θ≤,θ∈[,2π]. ()椭圆方程可化为122222=+cy c x ,又⊥,∴-.21==bak AB2(-)代入椭圆方程,得-2c .求得,526c 到的距离为,362c ∴.25320||2121=⇒=⋅=∆c d PQ S PQ F ∴椭圆方程为.1255022=+y x椭圆训练题:1. 椭圆19822=++y m x 的离心率21=e ,则2. 椭圆的准线方程是3. 已知、为椭圆192522=+y x 的两个焦点,、为过的直线与椭圆的两个交点,则△的周长是 4. 椭圆12222=+by a x ()0>>b a 上有一点到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,则点的坐标是5. 椭圆12222=+b y a x 焦点为、,是椭圆上的任一点,为 的中点,若 的长为,那么的长等于6. 过椭圆1273622=+y x 的一个焦点作与椭圆轴不垂直的弦,的垂直平分线交于,交轴于,则FN :AB7. 已知椭圆的对称轴是坐标轴,离心率32=e ,长轴长是,则椭圆的方程是 8. 方程1162522=++-my m x 表示焦点在轴上的椭圆,则的值是 9. 椭圆的两焦点把准线间的距离三等分,则这椭圆的离心率是10. 椭圆142222=+by b x 上一点到右焦点的距离为,则点到左准线的距离是11. 椭圆⎪⎭⎫⎝⎛∈=+2,4,1csc sec 2222ππt t y t x ,这个椭圆的焦点坐标是 12. 曲线()023122=+--+m my y m x 表示椭圆,那么的取值是13. 椭圆13422=+y x 上的一点()11,y x A ,点到左焦点的距离为25,则 14. 椭圆()()19216122=-+-y x 的两个焦点坐标是15. 椭圆中心在原点,焦点在轴上,两准线的距离是5518,焦距为52,其方程为 16. 椭圆上一点与两个焦点、所成的∆1F 中,βα=∠=∠1221,F PF F PF ,则它的离心率17. 方程142sin 322=⎪⎭⎫ ⎝⎛+-παy x 表示椭圆,则α的取值是18. 若()()065562222=--+-λλλλy x 表示焦点在轴上的椭圆,则λ的值是19. 椭圆192522=+y x 上不同的三点()()2211,,59,4,,y x C B y x A ⎪⎭⎫ ⎝⎛与焦点()0,4F 的距离成等差数列,则=+21x x20. 是椭圆192522=+y x 上一点,它到左焦点的距离是它到右焦点的距离的倍,则点的坐标是21. 中心在原点,对称轴在坐标轴上,长轴为短轴的倍,且过()6,2-的椭圆方程是 22. 在面积为的△中,2tan ,21tan -==N M ,那么以、为焦点且过的椭圆方程是 23. 已知△,()()0,3,0,3-B A 且三边、、的长成等差数列,则顶点的轨迹方程是24. 椭圆1422=+y m x 的焦距为,则的值是 25. 椭圆14922=+y x 的焦点到准线的距离是 26. 椭圆()112222=-+m y m x 的准线平行于轴,则的值是 27. 中心在原点,准线方程为4±=x ,离心率为21的椭圆方程是 28. 椭圆的焦距等于长轴长与短轴长的比例中顶,则离心率等于29. 中心在原点,一焦点为()50,01F 的椭圆被直线23-=x y 截得的弦的中点横坐标为21,则此椭圆方程是 30. 椭圆的中心为()0,0,对称轴是坐标轴,短轴的一个端点与两个焦点构成面积为的三角形,两准线间的距离是225,则此椭圆方程是 31. 过点()2,3-且与椭圆369422=+y x 有相同焦点的椭圆方程是32. 将椭圆192522=+y x 绕其左焦点逆时针方向旋转︒,所得椭圆方程是 33. 椭圆192522=+y x 上一点到右准线的距离是,那么点右焦半径是34. 是椭圆14322=+y x 的长轴,是一个焦点,过的每一个十等分点作的垂线,交椭圆同一侧于点,,,⋅⋅⋅⋅⋅⋅,,则11912111BF F P F P F P AF ++⋅⋅⋅+++的值是 35. 中心在原点,一焦点为(,),长短轴长度比为,则此椭圆方程是 36. 若方程222x ky +=表示焦点在轴的椭圆,则的取值是37. 椭圆221123x y +=的焦点为、,点为椭圆上一点,若线段的中点在轴上,那么1PF :2PF38. 经过)()122,M M --两点的椭圆方程是39. 以椭圆的右焦点(为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于、,若直线是圆的切线,则椭圆的离心率是40. 椭圆的两个焦点、及中心将两准线间的距离四等分,则一焦点与短轴两个端点连线的夹角是41. 点(),0a 到椭圆2212x y +=上的点之间的最短距离是 42. 椭圆2214x y +=与圆()2221x y r -+=有公共点,则的取值是 43. 若k R ∈,直线1y kx =+与椭圆2215x y m+=总有公共点,则的值是 44. 设是椭圆上一点,两个焦点、,如果00211275,15PF F PF F ∠=∠=,则离心率等于45. 是椭圆22143x y +=上任一点,两个焦点、,那么12F PF ∠的最大值是 46. 椭圆2244x y +=长轴上一个顶点为,以为直角顶点作一个内接于椭圆的等腰直角三角形,则此直角三角形的面积是47. 椭圆长轴长为,焦距,过焦点作一倾角为α的直线交椭圆于、两点,当MN 等于短轴长时,α的值是48. 设椭圆22143x y +=的长轴两端点、,点在椭圆上,那么直线与的斜率之积是 49. 倾斜角为4π的直线与椭圆2214x y +=交于、两点,则线段的中点的轨迹方程是 50. 已知点(,)是椭圆上的一点,是椭圆上任一点,当弦长取最大值时,点的坐标是椭圆训练题答案. 544-或 . 1y =± . 20 . ()()0,0,b b -或 . 2sa - . 1:4 . 2222119559x y x y +=+=或 .9252m <<. 3.. (0, . ()1,+∞ . 1. ()()1,1.22194x y+= . cos2cos2αβαβ+- .()37,,88k k k Z ππππ⎛⎫++∈ ⎪⎝⎭.). 8. 1515,44⎛⎛ ⎝⎭⎝⎭或.222211148371352x y x y +=+=或 . 2241153x y += . 2213627x y += . 53或. . 102m m <≠且 . 22143x y +=. .2212575x y += . 222211259925x y x y +=+=或 .2211510x y += . ()()22441925x y +-+= . 6. 20.222221111x y t t t +=-- . ()0,1 . 7 . 221155x y +=.1 .2π. a a +. 3⎤⎥⎣⎦. ≥且≠.3 . ︒ . 1625 . 566ππ或 . 34-. 1,4y x x ⎛⎫⎛=-∈ ⎪⎝⎝⎭.13⎛⎫- ⎪ ⎪⎝⎭椭圆训练试卷一、选择题:本大题共小题,每小题分,共分.请将唯一正确结论的代号填入题后的括号内..椭圆3m 2y mx 222++=1的准线平行于轴,则实数的取值范围是 ( ).-1<<3 .-23<<且≠.-1<<3且≠.<-且≠. 、、、分别表示椭圆的半长轴、半短轴、半焦距、焦点到相应准线的距离,则它们的关系是 ( ).22a b.ba 2.ca 2.cb 2.短轴长为5,离心率为32的椭圆的两个焦点分别为、,过作直线交椭圆于、两点,则Δ的周长为 ( ). . . ..下列命题是真命题的是( ).到两定点距离之和为常数的点的轨迹是椭圆.到定直线ca 2和定(,)的距离之比为ac 的点的轨迹是椭圆.到定点(,)和定直线ca 2的距离之比为ac(>>)的点的轨迹 是左半个椭圆.到定直线ca 2和定点(,)的距离之比为ca (>>)的点的轨迹是椭圆.是椭圆4x 23y 2上任意一点,、是焦点,那么∠的最大值是( )..300...椭圆22b 4x 22b y 上一点到右准线的距离是3,则该点到椭圆左焦点的距离是( )..23.3 ..椭圆12x 23y 2的焦点为和,点在椭圆上,如果线段的中点在轴上,那么是的( ).倍.倍.倍.倍.设椭圆22ax 22b y (>>)的两个焦点是和,长轴是1A ,是椭圆上异于、的点,考虑如下四个命题: ①1F 1F ; ②<<;③若越接近于,则离心率越接近于; ④直线与的斜率之积等于22a b .其中正确的命题是 ( ) .①②④ .①②③ .②③④ .①④.过点M(-2,0)的直线与椭圆+=交于P1、P2两点,线段P1P2的中点为P,设直线的斜率为(≠),直线OP的斜率为,则的值为 ( ) .2.-2.21.-21 .已知椭圆22a x 22by (>>)的两顶点(,)、(,),右焦点为,且到直线的距离等于到原点的距离,则椭圆的离心率满足 ( ).<<22.22<<. <<2.2<<.设F1、F2是椭圆2222b y ax=1(>>)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是( ).2-3.3-1.23 .22.在椭圆4x 23y 2内有一点(,),为椭圆右焦点,在椭圆上有一点,使的值最小,则这一最小值是` ( ).25.27 . .二、填空题:本大题共小题,每小题分,共分.请将最简结果填入题中的横线上..椭圆3x 2ky 2的离心率是的根,则 ..如图,∠OFB=6π,SΔABF=2-3,则以OA为长半轴,OB 为短半轴,F为一个焦点的椭圆的标准方程为 ..过椭圆3y 2x 22+=1的下焦点,且与圆+-++23=相切的直线的斜率是 . .过椭圆9x25y 2的左焦点作一条长为12的弦,将椭圆绕其左准线旋转一周,则弦扫过的面积为 .三、解答题:本大题共小题,共分.解答题应写出必要的计算步骤或推理过程. .(本小题满分分)已知、为椭圆22a x 22a 9y 25上两点,为椭圆的右焦点,若58,中点到椭圆左准线的距离为23,求该椭圆方程. .(本小题满分分)设中心在原点,焦点在轴上的椭圆的离心率为23,并且椭圆与圆25交于、两点,若线段的长等于圆的直径. (1) 求直线的方程; (2) 求椭圆的方程. .(本小题满分分)已知9x 25y 2的焦点、,在直线:上找一点,求以、为焦点,通过点且长轴最短的椭圆方程..(本小题满分分)一条变动的直线与椭圆4x 22y 2交于、两点,是上的动点,满足关系·.若直线在变动过程中始终保持其斜率等于.求动点的轨迹方程,并说明曲线的形状. .(本小题满分分)设椭圆22a x 22by 的两焦点为、,长轴两端点为、.(1) 是椭圆上一点,且∠,求Δ的面积;(2) 若椭圆上存在一点,使∠,求椭圆离心率的取值范围..(本小题满分分)已知椭圆的一个顶点为A(0,-1),焦点在轴上,若右焦点到直线-+2=的距离为3. ()求椭圆的方程;()设椭圆与直线=+(≠)相交于不同的两点M、N,当|AM|=|AN|时,求的取值范围.椭圆训练试卷参考答案一、 D 二、.或49.12y 8x 22=+.5623±.π三、.解:设(,),(,),由焦点半径公式有58,∴21(∵54),即中点横坐标为41,又左准线方程为45,∴414523,即,∴椭圆方程为925..解:()直线的方程为21; ()所求椭圆的方程为12x 23y 2..解:由9x25y 2,得(,),(,),关于直线的对称点(,),连交于一点,即为所求的点,∴2a 5,∴5,又,∴,故所求椭圆方程为20x 216y 2..解:设动点(,),动直线:,并设(,),(,)是方程组⎩⎨⎧=-++=04y 2x ,m x y 22的解,消去,得2m 2,其Δ16m 2(2m 2)>,∴6<<6,3m4, 34m 22-,故2,2.由,得,也即(),于是有3mx434m 22-.∵,∴.由,得椭圆7x 27y 22夹在直线±6间两段弧,且不包含端点.由,得椭圆..解:()设,,则21F PF ∆21∠,由2a , 4c∠,得212PF F cos 1b 2∠+.代入面积公式,得 21F PF ∆2121PF F cos 1PF F sin ∠+∠∠2PF F 2133.()设∠α,∠β,点(,)(<<).θ(αβ)βα-β+αtg tg 1tg tg22020000y x a 1y x a y x a --++-220200a y x ay 2-+.∵220a x 220b y ,∴22b a .∴θ202220y b b a ay 2-- 022y c ab 2-3.∴≤3≤3, 即3c4a 2c-4a≥,∴≥,解之得≥32,∴36≤<为所求. .解:()用待定系数法.椭圆方程为22y 3x +=1.()设P为弦MN的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(+)++(-)=.由Δ>0,得<+ ①,∴=1k 3mk 32x x 2N M +-=+,从而,=+=1k 3m 2+.∴=km 31k 3m 2++-.由MN⊥AP,得 km 31k 3m 2++-=-k 1,即2m =+ ②.将②代入①,得2m >,解得0<<.由②得=31m 2->0.解得>21.故所求的取值范围为(21,2).。

高中椭圆基础练习题答案

高中椭圆基础练习题答案

、选择题:1•下列方程表示椭圆的是()2 26.如果x ^ ― 1表示焦点在x 轴上的椭圆,则实数 a 的取值范围为()a 2 a +2A.(-2, ::)B. -2,-1 一 2, ::C.(」:,-1)_. (2, ::)D.任意实数 R7. “m>n>0”是“方程 mx 2 • ny 2 =1表示焦点在y 轴上的椭圆的”() A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件38.椭圆的短轴长是 4,长轴长是短轴长的 倍,则椭圆的焦距是() 2A. .5B. 4C.6D. 2 59.关于曲线的对称性的论述正确的是()D .方程x 3_y 3=8的曲 2 2A. 方程x xy y =0的曲线关于X 轴对称 线关于原点对称B. 方程x 3 y 3 =0的曲线关于Y 轴对称2 2 2^2小B. -x -2y 8 2 xC.— 25 2 2D.(x-2) y =12.动点P 到两个定点F 1 (- 4 , 0) . F 2 (4, 0)的距离之和为 8,贝U P 点的轨迹为()A.椭圆B.线段F 1F 2C.直线F 1F 2 D .不能确定 23.已知椭圆的标准方程x 2±“,则椭圆的焦点坐标为()A. (_ 而0)B. (0, _ 而C.(0, _3)D. ( -3,0) 4椭圆 2 2 x_丄 a 2 b 2 2 2=1和-2 2 =1(a 2 b 2 k 2)的关系是 a …k b …k A •有相同的长 短轴B •有相同的离心率 C .有相同的准线D •有相同的焦点 2 25.已知椭圆'計1上一点P 到椭圆的一焦点的距离为3,则P到另一焦点的距离是() A. 2.5 -3B.2C.3D.6C.方程x2 - xy • y2 =10的曲线关于原点对称2 2x y22 =1( a > b > 0)表示的椭圆(a bA.有相同的离心率;B.有共同的焦点;C.有等长的短轴 长轴; D .有相同的顶点二填空题: (本大题共4小题,共20分.)2 2x y11. (6分)已知椭圆的方程为:1,则a=64 100___________ ,焦距等于 ______ ;若CD 为过左焦点 F1的弦,(如图)则? F 2CD 的周长为12. ( 6分)椭圆16x 2 25y 2二400的长轴长为 _______ ,短轴长为 ______ ,焦点坐标为四个顶点坐标分别为 ___________________ ,离心率为 ____ ;椭圆的左准线方程为 ___________ 13. ( 4分)比较下列每组中的椭圆:2 2(2 [①— y 1与②9x 2 • y 2 =36,哪一个更扁 ______________6 1014. (4分)若一个椭圆长轴的长度•短轴的长度和焦距成等差数列,则该椭圆的离心率是 三、解答题:本大题共 6小题,共80分•解答应写出文字说明,证明过程或演算步骤. 15. (30分)求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(0, -3) , (0,3),椭圆的短轴长为 8;(2)两个焦点的坐标分别为(-.5 ,0), (、- 5,0),并且椭圆经过点(2、2 -)3(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点R (J6,I )、第11题,b= ____ ,c= ___ ,焦点坐标为:(1 [① 9x 2 4y 2 =36 与②12 16,哪一个更圆 ______2 2x2y2、、、' 16. (12分)已知点M在椭圆1上,M P垂直于椭圆焦点所在的直线,垂直为P,25 9并且M为线段P p'的中点,求P点的轨迹方程17.(12分)设点A,B的坐标为(-a,0),( a,O)(a 0),直线AM,BM相交于点M,且它们的斜率之积为-k(k・0且k -1)求点M的轨迹方程,并讨论k值与焦点的关系.2 218.(12分)当m取何值时,直线I :科=x m与椭圆9x 16y =144相切,相交,相离?2 2x y19.(14分)椭圆1(0 :::m : 45)的焦点分别是F i和F2,已知椭圆的离心率e二45 m过中心O作直线与椭圆交于A, B两点,O为原点,若L ABF2的面积是20,求:(1)m的值(2)直线AB的方程参考答案1.选择题:题号 1 2 3 4 5 6 7 8 9 10 答案BBCDCBCDCA.填空题:三.解答题:15. (1)解:由题意,椭圆的焦点在 y 轴上,设椭圆的标准方程为由焦点坐标可得c=3,短轴长为8,即2b=8,b=4,所以a^ b 2 c^ 252 2椭圆的标准方程为- 125 162 2(2)由题意,椭圆的焦点在 x 轴上,设椭圆的标准方程为 笃 -y 2 =1(a b 0) a b2 2所以b 2 = a 2 - c 2 =9-5=4,所以椭圆的标准方程为 x y 19 4设椭圆的方程为mx 2 • ny 2 =1( m 0, n • 0),P (j6,1)、P 2(-73,-妁p(x, y), m 点的坐标为(X 0,y °),由题意可知2 2因为点m 在椭圆——=1上,所以有25 922 2 2X o-1 ②,把①代入②得 — --1,所以P 点的轨迹是焦点在 y 轴上,标25 925 3611 10,8, 6, (0, ±6) , 12, 40 1210, 8, ( _0 ),(-5,0) . ( 5,0) . ( 0, -4) (0,4),25X 二313142 2笃二=1(a - b - 0)a b(2、、2- . 5)2因为椭圆过解得1m =91 n =3所以椭圆的标准方程为: 16•解:设p 点的坐标为6 m ■ n = 1 3 m 2 n = 12 2①2 2准方程为x y 1的椭圆.25 3617. 解:设点M的坐标为(x, y),因为点A的坐标是(-a,0),所以,直线AM的斜率k AM二一-(x = -a),同理直线BM的斜率k BM二—(x = a) •由已知有x +a x — a2 2—y y k(x =二a )化简得点M的轨迹方程为笃与=1(x=二a)x a x - a a ka当0 ::: k :::1时,表示焦点在x轴上的椭圆;当k 1时,表示焦点在y轴上的椭圆{ y =x 4m ....................... ①18•解:L 9x216 y2=144 …②①代入②得9x2 16(x m)2=144化简得25x232mx 16m2-144 =02 2 2:=(32m) -4 25(16m -144^ -576m 14400当,;",即m = 5时,直线l与椭圆相切;当U,即-5 ::: m ::: 5时,直线与椭圆相交;当:: 0,即m ::: -5或m .5时,直线与椭圆相离•19.解:(1)由已知e=C 5, a =、、45=3、-5 ,得c = 5 ,a 3所以m = b2 = a2—c2二45 —25 二20(2)根据题意SABF^ "SFf B " 20,设B( X, y),则S F^B二2^F1F j|y ,2 2=2c=10,所以y = 14,把y = ±4代入椭圆的方程=1,得x = =3,所以45 204 4B点的坐标为(土3, 士4),所以直线AB的方程为y= — x或y =-一x3 3。

(完整word版)椭圆基础训练题(含答案提示)(2),推荐文档

(完整word版)椭圆基础训练题(含答案提示)(2),推荐文档

椭圆基础训练题1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=12.椭圆5x 2+4y 2=1的两条准线间的距离是( )(A )52 (B )10 (C )15 (D )3503.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21(B )22(C )23(D )334.椭圆25x 2+9y 2=1上有一点P ,它到右准线的距离是49,那么P 点到左准线的距离是( )。

(A )59(B )516 (C )441 (D )5415.已知椭圆x 2+2y 2=m ,则下列与m 无关的是( )(A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率6.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( )(A )1 (B )1或2 (C )2 (D )21或17.椭圆的中心为O ,左焦点为F 1,P 是椭圆上一点,已知△PF 1O 为正三角形,则P 点到右准线的距离与长半轴的长之比是( )(A )3-1 (B )3-3 (C )3 (D )18.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值范围是 。

9.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是 。

10. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为354,求此椭圆的方程。

11.证明:椭圆上任意一点到中心的距离的平方与到两焦点距离的乘积之和为一定值。

12. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是( )。

(A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2=1(C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9y 2=113. 椭圆25x 2+16y 2=1的焦点坐标是( )。

(完整word版)椭圆综合测试题(含答案)(2)

(完整word版)椭圆综合测试题(含答案)(2)

y2 m
1(0
m
45) 的焦点分别是 F1 和 F2 ,已知椭圆的离心率 e
5 过中心 O 3
作直线与椭圆交于 A,B 两点, O 为原点,若 ABF2 的面积是 20,求:(1) m 的值(2)直线 AB
的方程
第3页共4页
(完整 word 版)椭圆综合测试题(含答案)(2)(word 版可编辑修改)
第5页共4页
(完整 word 版)椭圆综合测试题(含答案)(2)(word 版可编辑修改)
椭圆参考答案
1.选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B C C B C A B B C D D 8【命题意图】本试题主要考察椭圆的性质与第二定义。 【解析】设直线 l 为椭圆的有准线,e 为离心率,过 A,B 分别作 AA1,BB1 垂直于 l,A1,B 为垂
14 椭圆 x2 y2 1上一点 P 与椭圆两焦点 F1, F2 的连线的夹角为直角,则 Rt△PF1F2 的面积
49 24

.
15 (2010 全国卷 1 文数)(16)已知 F 是椭圆 C 的一个焦点, B 是短轴的一个端点,线段 BF 的
uur uur
延长线交 C 于点 D , 且 BF 2FD ,则 C 的离心率为
22
(12
分)已知椭圆
x2 a2
y2 b2
1(a>b>0)的离心率 e=
3 ,连接椭圆的四个顶点得到的菱形的 2
面积为 4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线 l 与椭圆相交于不同的两点 A、B,已知点 A 的坐标为(—a,0)。
(i)若| AB| = 4 2 ,求直线 l 的倾斜角; 5

高中椭圆测试题及答案

高中椭圆测试题及答案

高中椭圆测试题及答案一、选择题(每题3分,共15分)1. 椭圆的离心率e满足()A. 0 < e < 1B. 0 ≤ e < 1C. 0 ≤ e ≤ 1D. 0 < e ≤ 12. 若椭圆的长轴为2a,短轴为2b,焦距为2c,则下列关系式正确的是()A. a^2 = b^2 + c^2B. a^2 = b^2 - c^2C. b^2 = a^2 - c^2D. c^2 = a^2 - b^23. 已知椭圆的方程为 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,其中a > b > 0,下列说法正确的是()A. 椭圆的焦点在x轴上B. 椭圆的焦点在y轴上C. 椭圆的焦点在直线y = \frac{b}{a}x上D. 椭圆的焦点在直线y = -\frac{b}{a}x上4. 椭圆 \frac{x^2}{4} + \frac{y^2}{3} = 1 的离心率为()A. \frac{1}{2}B. \frac{\sqrt{3}}{2}C. \frac{\sqrt{5}}{4}D. \frac{1}{\sqrt{3}}5. 若椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的离心率为\frac{\sqrt{2}}{2},则a和b的关系为()A. a = \sqrt{2}bB. a = 2bC. b = \sqrt{2}aD. b = 2a二、填空题(每题4分,共20分)6. 椭圆 \frac{x^2}{9} + \frac{y^2}{4} = 1 的离心率为 ________。

7. 椭圆 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 的焦点坐标为(±c,0),其中c = ________。

8. 椭圆 \frac{x^2}{16} + \frac{y^2}{9} = 1 的长轴长度为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:
1.下列方程表示椭圆的是()
A.
22199
x y += B.22
28x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D .不能确定
3.已知椭圆的标准方程2
2
110
y x +=,则椭圆的焦点坐标为()
A.(
B.(0,
C.(0,3)±
D.(3,0)±
4.椭圆2222
222222
222
11()x y x y a b k a b a k b k
+=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线
D .有相同的焦点
5.已知椭圆22
159
x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是()
A.3
B.2
C.3
D.6
6.如果22
212
x y a a +
=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R 7.“m>n>0”是“方程2
2
1mx ny +=表示焦点在y 轴上的椭圆的”()
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件 8.椭圆的短轴长是4,长轴长是短轴长的
3
2
倍,则椭圆的焦距是()
B.4
C.6
D.9.关于曲线的对称性的论述正确的是() A.方程2
2
0x xy y ++=的曲线关于X 轴对称 B.方程3
3
0x y +=的曲线关于Y 轴对称 C.方程2
2
10x xy y -+=的曲线关于原点对称
D.方程33
8x y -=的曲线关于原点对称
第11题
10.方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22
221x y a b
+=(a >b >0)表示的椭圆( ). A.有相同的离心率;B.有共同的焦点;C.有等长的短轴.长轴; D.有相同的顶点. 二、填空题:(本大题共4小题,共20分.)
11.(6分)已知椭圆的方程为:
22
164100
x y +=,则a=___,b=____,c=____,焦点坐标为:___ __,焦距等于______;若CD 为过左焦点F1的弦,(如图)则∆2F CD 的周长为________.
12.(6分)椭圆2
2
1625400x y +=的长轴长为____,短轴长为____,焦点坐标为 四个顶点坐标分别为___ ,离心率为 ;椭圆的左准线方程为 13.(4分)比较下列每组中的椭圆:
(1)①2
2
9436x y += 与②
22
11216
x y += ,哪一个更圆 (2)①
22
1610
x y +=与②22936x y +=,哪一个更扁 14.(4分)若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(30分)求满足下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别为(0,-3),(0,3),椭圆的短轴长为8;
(2)两个焦点的坐标分别为(),),并且椭圆经过点2
)3
2
F C
c
D
1
F
(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点12P P 、
16.(12分)已知点M 在椭圆
22
1259
x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂直为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程
17.(12分)设点A ,B 的坐标为(,0),(,0)(0)a a a ->,直线AM,BM 相交于点M ,且它们的斜率之积为(01)k k k ->≠且求点M 的轨迹方程,并讨论k 值与焦点的关系.
18.(12分)当m 取何值时,直线l :y x m =+与椭圆2
2
916144x y +=相切,相交,相离?
19.(14分)椭圆
221(045)45x y m m
+=<<的焦点分别是1F 和2F ,已知椭圆的离心率3e =过中心O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF V 的面积是20, 求:(1)m 的值(2)直线AB 的方程
参考答案
1.选择题:
二.填空题:
11 10,8,6,(0,6±),12,40 12 10,8,(3,0
±),(-5,0).(5,0).(0,-4).
(0,4),3
5

25
3
x=-
13 ②,② 14
3
5
三.解答题:
15.(1)解:由题意,椭圆的焦点在y轴上,设椭圆的标准方程为22
22
1(
0)
y x
a b
a b
+=>>由焦点坐标可得3
c=,短轴长为8,即28,4
b b
==,所以22225
a b c
=+=
∴椭圆的标准方程为221
2516
y x
+=
(2)由题意,椭圆的焦点在x轴上,设椭圆的标准方程为
22
22
1(0)
x y
a b
a b
+=>>由焦点坐标可得c
=
2a==6 所以2b=22
a c
-=9-5=4,所以椭圆的标准方程为
22
1
94
x y
+=
(3)设椭圆的方程为221
mx ny
+=(0,0
m n
>>),因为椭圆过12
P P

61
321
m n
m n
+=
+=

∴⎨
⎩解得
1
9
1
3
m
n
=
=


⎩所以椭圆的标准方程为:
22
1
93
x y
+=
16.解:设p点的坐标为(,)
p x y,m点的坐标为
00
(,)
x y,由题意可知
02
2y
y
x x
x x
y y
=
=
=
=



⎨⎨
⎩⎩①因为点m在椭圆
22
1
259
x y
+=上,所以有
22001259x y += ② , 把①代入②得22
12536
x y +=,所以P 点的轨迹是焦点在y 轴上,标准方程为
22
12536
x y +=的椭圆. 17.解:设点M 的坐标为(,)x y ,因为点A 的坐标是(,0)a -,所以,直线AM 的斜率
()AM y k x a x a =
≠-+,同理直线BM 的斜率()BM y k x a x a
=≠-.由已知有(),y y k x a x a x a
=-≠±+-g 化简得点M 的轨迹方程为22221()x y x a a ka +=≠±
当01k <<时,表示焦点在x 轴上的椭圆;当1k >时,表示焦点在y 轴上的椭圆.
18.解:
{
22916144y x m x y =++=…… … … ①

①代入②得2
2
916()144x x m ++=化简得22
2532161440x mx m ++-=
222(32)425(16144)57614400m m m ∆=-⨯-=-+
当0,∆=即5m =±时,直线l 与椭圆相切; 当0∆>,即55m -<<时,直线与椭圆相交; 当0∆<,即5m <-或5m >时,直线与椭圆相离.
19.解:(1)由已知3
c e a =
=,a ==5c =, 所以2
2
2
452520m b a c ==-=-=
(2)根据题意
21220
ABF F F B S S ==V V ,设(,)B x y ,则12121
2
F F B S F F y =V g ,
12210F F c ==,所以4y =±,把4y =±代入椭圆的方程22
14520
x y +
=,得3x =±,所以B 点的坐标为34±±(,),所以直线AB 的方程为44
33
y x y x ==-或。

相关文档
最新文档