2019年江苏省扬州市中考数学试题(word版,含答案)
2019年江苏省扬州市中考数学试卷甲卷附解析

2019年江苏省扬州市中考数学试卷甲卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )2.如图,是一水库大坝横断面的一部分,坝高h=6m ,迎水斜坡AB=10m ,斜坡的坡角为α,则tan α的值为( ) A .53 B .54 C .34 D .43 3.线段 PQ 的黄金分割点是R (PR>RQ ),则下列各式中正确的是( )A .PR RQPQ PQ=B .PR QRPQ PR= C .PQ RQPR PQ=D .PR PQPQ QR=4.在半径为 8 cm 的圆中有一条弧长为4πcm ,则这条弧所对的圆周角为( ) A .30° B .45°C .60°D .90°5.如图,在平行四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A=125°,则∠BCE=( ) A .55° B .35°C .25°D .30°6.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有( ) A .1种B .2种C . 4种D .无数种7.ab) A . a ,b 均为非负数 B .0a ≥且0b > C .0ab> D .0ab≥ 8.21a +2b −2b ≥12−2(1)x −中,二次根式的个数是( ) A .2 个 B .3 个 C .4 D .5 个 9.若等腰三角形底角为72°,则顶角为( )A .108°B .72°C .54°D .36°10.从图形的几何性质考虑,下列图形中,有一个与其他三个不同,它是( )①②A .B .C .D .11.已知方程组23421x y y x −=⎧⎨=−⎩,把②代入①,正确的是( )A .4y-2-3y=4B .2x-6x+1=4C .2x-6x-1=4D .2x-6x+3=4 D12.同时向空中掷两枚质地完全相同的硬币,则出现同时正面朝上的概率为( ) A .41 B .31 C .21D .113.解是12x y =⎧⎨=−⎩ 的方程组是( ) A .135x y x y +=⎧⎨−=⎩B . 135x y x y +=−⎧⎨−=−⎩C . 331x y x y +=⎧⎨+=⎩D . 2335x y x y +=−⎧⎨−=⎩14.已知||3x =,7y =,且0xy <,则x y +的值等于( ) A . 10B . 4C .10±D .4±二、填空题15.若α是锐角,且 tan α=1,则α= .16.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是 .17.袋中装有3个红球,1个白球它们除了颜色相同以外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后再随机摸出一球,两次都摸到红球的概率是______.18.如图,△ABC 是等边三角形,P 是三角形内任一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 周长为12,PD+PE+PF= .19.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的一个根是 x =____.20.一个几何体的三视图如图所示,则这个几何体是__________.(写出名称)21.一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积是 cm 2.22.回答下列时间时针和分针所成的角是多少度: (1)上午8:00是 ; (2)下午3:00是 ; (3)下午6:30是 .三、解答题23.在四边形ABCD中,∠A+∠C=180°,∠B:∠C:∠D=1:2:3,求这个四边形四个内角的度数.24.如图①,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN,MC交于点E,直线CN,MB交于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图②中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).25.某气象研究中心观测一场沙尘暴从发生到结束的全过程,开始时风速平均增加2 km/h,4 h后,沙尘暴经过开阔的荒漠地,风速平均增加4 km/h,一段时间风速保持不变.当沙尘暴遇到绿色植被区时,其风速平均减少l km/h,最终停止.结合风速与时间的图象(如图所示)回答下列问题:(1)在y轴括号内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少时间?(3)求出当x≥25时,风速y(km/h)与时间x(h)之间的函数解析式.26.小敏有红色、白色、黄色三件上衣,又有米色、白色的两条裤子,如果她最喜欢的搭配是白色上衣配米色裤子,那么黑暗中,她随机拿出一件上衣和一条裤子,正是她最喜欢的搭配,请你用列表或画树状图,求出这样的巧合发生的概率是多大?27.如图,在△ABC 中,AB=AC,∠A =30°,BD是△ABC 的高,求∠CBD 的度数.28.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:5,4,12,10,1,5,2,15−+++−+−+(1)人民大街总长不小于__________千米;(2)将最后一名乘客送往目的地时,小李距离下午出车时的出发点多远?(3)若出租车耗油量为每千米a升,这天下午小李共耗油多少升?29.解方程4316 0.205x x+−−=−.30.当 x= -2 时,代数式 x(2-m)+4 的值等于18,求当 x=3 时这个代数式的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.B4.B5.B6.D7.D8.B9.D10.C11.12.A13.D14.D二、填空题15.45°16.117.2918.16419.20.圆柱21.622.(1)120°(2)90°(3)15°三、解答题23.90°,45°,90°,135°24.(1)证△CAN≌△MCB;(2)证△ECN≌△FCB;(3)(1)的结论成立,(2)的结论不成立25.(1)8,32;(2)57 h;(3)y=-x+57(25≤x≤57)26.列表如下:衣配米色子的是 1 种,概率率是1.627.15°28.(1)人民大街总长不小于43千米;(2)向东38千米;(3)54a升29.x=−将原方程分母化为 1,得5(4)2(3)16+−−=−,解得14x x30.-17。
2019年江苏省扬州市中考数学试题(,含答案)

2019江苏省徐州市中考数学满分:140分时间:120分钟一.选择题(本题共8个小题,每小题3分,共24分)1.-2的倒数是()A.21 B.21 C.2 D.-22.下列计算正确的是()A.422aaaB.222)(bab a C.933)(aa D.623aaa3.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,104.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12005.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40.该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,386.下图均由正六边形与两条对角线组成,其中不是轴对称图形的是()7.若),(11y x A 、),(22y x B 都在函数xy2019的图象上,且21x x ,则()A.21y yB.21y yC.21y yD.21y y 8.如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系,M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是()A.5×106B.107C.5×107D.108二.填空题(本大题共有10小题,每小题3分,共30分)9.8的立方根是.10.要使1x 有意义的x 的取值范围是.11.方程042x的解为.12.若2b a ,则代数式222b ab a的值为.13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN=4,则AC 的长为.14.如图,A 、B 、C 、D 为一个外角为40°的正多边形的顶点.若O 为正多边形的中心,则∠OAD=°15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆半径r=2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为cm.16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C 处的俯角为17°,若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.已知二次函数的图像经过点P (2,2),顶点为O (0,0),将该图像向右平移,当它再次经过点P 时,所得抛物线的函数表达式为18.函数y=x+1的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上。
2019年江苏省扬州市中考数学试题及答案(word版)

2019年江苏省扬州市中考数学试卷一、选择题(本大题共有8题,每题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号涂在答题纸相应的表格中.........) 1、下列图案中,是中心对称图形的是( )2、下列各数中,小于-2的是( )A. -5B.-3C.-2D.-13、分式x-31可变形为( ) A.x 31+ B.-x 31+ C.3-x 1 D.-3-x 14、一组数据3,2,4,5,2则这组数据的众数是( )A.2B.3C.3.2D.4 5、如图所示物体的左视图是( )6、若点P 在一次函数y=-x+4的图像上,则点P 一定不在( )A. 第一象限B.第二象限C.第三象限D.第四象限7、已知n 是正整数,若一个三角形的三边长分别是n+2,n+8,3n ,则满足条件的n 的值有( )A.4个B.5个C.6个D.7个 8、若反比例函数xy 2-=的图象上有两个不同的点关于y 轴的对称点都在一次函数y=-x+m 的图象上,则m 的取值范围是( )A. 22>mB.22-<mB. 22>m 或22-<m D.2222<<-m二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全长约1790000米,数据1790000用科学记数法表示为_______ 10. 分解因式:9ab -b a 3=__________11. 扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是______(精确到0.01) 12. 一元二次方程2)2(-=-x x x 的根是___________13. 计算:20192018252-5)()(+的结果是_________15.如图,AC 是☉O 的内接正六边形的一遍,点B 在弧AC 上,且BC 是☉O 的内接正十边形的一边,若AB 是☉O 的内接正n 边形的一边,则n=16.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=17.如图,讲四边形ABCD绕顶点A顺时针转45°至AB’C’D’的位置,若AB=16cm,则图中的阴影部分面积为cm2三.解答题(本大题共有10小题,解答时应写出必要得文字说明,证明过程或演算步骤) 19. 计算或化简(本题满分8分)(1)0045cos 4--3-8)(π (2)20.(本题满分8分)解不等式组⎪⎩⎪⎨⎧-<-+≤+38413714x x x x )(,并写出它的所有负整数解。
2019年江苏省扬州市中考数学试卷-答案

江苏省扬州市2019学中考试卷数学答案解析一、选择题1.【答案】D【解析】中心对称图形绕某一点旋转180°与图形能够完全重合【考点】中心对称图形2.【答案】A【解析】根据二次根式的定义确定四个选项与2-的大小关系,可得比2-小【考点】数的比较大小,无理数3.【答案】D【解析】分式的分母整体提取负号,则每一个都要变号【考点】分式的化简4.【答案】A【解析】众数是出现次数最多的数据【考点】统计,数据的集中趋势与离散程度5.【答案】B【解析】三视图的左视图从物体的左边看【考点】三视图6.【答案】C【解析】坐标系中,一次函数4y x =-+经过第一、二、四象限,所以不经过第三象限【考点】一次函数的图像7.【答案】D【解析】当8n +最大时238283224483n n n n n n n n n n n +++⎧⎧⎪+-+⇒⇒⎨⎨⎩⎪+⎩>><<<<>,3n ∴=当3n 最大时28338241038n n n n n n n n n +++⎧⎪--+⇒≤⎨⎪≥+⎩><<,456789n ∴=,,,,,综上:n 总共有7个【考点】正整数,三角形三边关系8.【答案】C 【解析】反比例函数2y x=-上两个不同的点关于y 轴对称的点 在一次函数y x m =-+图像上∴是反比例函数2y x=与一次函数y x m =-+有两个不同的交点联立两个函数解方程22220y x m x mx x x y x m ⎧=⎪⇒=-+⇒-+=⎨⎪=-+⎩ 有两个不同的交点220x mx +∴-=有两个不等的根280m ∆=->根据二次函数图像得出不等式解集220x mx -+=所以mm ->< 【考点】函数图像,方程,数形结合二、填空题9.【答案】617910.⨯【解析】数据1 790.000用科学计数法表示为617910.⨯【考点】科学计数法10.【答案】()()33ab a a +-【解析】先提取公因式,再使用平方差公式因式分解【考点】因式分解11.【答案】0.92【解析】频率接近于一个数,精确到0.01【考点】频率与频数12.【答案】12=1 2.x x =,【解析】()22x x x -=-()22x x x ∴-=-121 2.x x ∴==,【考点】解方程13.2【解析】))20182222⎡⎤=⎣⎦ 【考点】根式的计算,积的乘方14.【答案】128【解析】延长DC 到F矩形纸条折叠ACB BCF ∴∠=∠AB CD ∥26ABC BCF ∴∠=∠=︒52ACF ∴∠=︒180ACF ACD ∠+∠=︒128ACD ∴∠=︒【考点】矩形的性质,折叠问题,等腰三角形,平行线,平角15.【答案】15【解析】AC 是O 的内接正六边形的一边360660AOC ∴∠=︒÷=︒BC 是O 的内接正十边形的一边3601036BOC ∴∠=︒÷=︒603624AOB ∴∠=︒-︒=︒即3602415n n ︒÷=︒∴=【考点】圆心角,圆内正多边形16.【答案】132【解析】连接FC M N ,、分别是DC DF 、的中点2FC MN ∴=75AB BE ==,且ABCD ,EFGB 是正方形∴132MN ∴=【考点】正方形,中位线,勾股定理17.【答案】32π【解析】阴影部分面积=扇形'BB A 的面积+ABCD 的面积-''''A B C D 的面积∴阴影部分面积=扇形'BB A 的面积=2451632360︒=︒ππ【考点】扇形的面积,阴影部分面积18.【答案】40 380【解析】1111,D E AB D F AC ∥∥11111D E CD D F BD AB CB AC BC ∴==,54AB AC ==,1111154D E CD D F BDCB BC ∴==,11111154D E D F CD BD BCCB BC BC ∴+=+==114520D E D F ∴+=有2019组,即20192040380⨯=【考点】相似三角形,比例性质三、解答题19.【答案】(1)1-(2)1a +【解析】(1)142=1-⨯-原式(2)211=1a a a +--=原式【考点】有理数的计算,因式分解,分式化简,三角函数20.【答案】321---,,解:44713393323128242x x x x x x x x x +≤+≥-≥-⎧⎧⎧⇒⇒⇒-≤⎨⎨⎨--⎩⎩⎩<<<<∴负整数解为321---,, 【考点】一元一次不等式组,取整数,不等式的解集21.【答案】(1)1200.1a b ==,(2)(3)600【解析】(1)360.3120÷=(人)总共120人,120a ∴=121200.1b ÷==(2)如图0.412048⨯=(人)(3)12000.40.1600⨯+=()(人) 答:该校学生每天阅读时间超过1小时的人数为600人.【考点】数据的收集与整理,统计图的运用22.【答案】(1)14 (2)13【解析】总共有四个,7有一个,所以概率就是114=4÷根据题意得:∴抽到两个素数之和等于30的概率是1412=3÷【考点】概率,素数的定义23.【答案】900米【解析】解设甲工程队每天整治河道m x ,则乙工程队每天整治1500m x -() 由题意得:360024009001500x x x=⇒=- 经检验的900x =是该方程的解答:甲工程队每天整治河道900米。
2019年江苏省扬州市中考数学试题附解析

2019年江苏省扬州市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知∠BAC=45°,一动点O 在射线AB 上运动,设OA=x ,如果半径为1的⊙O 与射线AC 有公共点,那么x 的取值范围是( ) A .20≤≤x B .21≤x < C .21<x ≤ D .2>x2.已知△ABC 的周长为1,连结△ABC 的三边中点构成第2个三角形,再连结第2•个三角形的三边中点构成第3个三角形,依此类推,第2006个三角形的周长是( ) A .12005B .12006C .200512 D .2006123.用反证法证明“在同一平面内,若a ⊥b ,b ⊥c ,则a ∥c ”时,应假设( ) A .a 不垂直于cB .a ,c 都不垂直bC .a ⊥cD .a 与c 相交4.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m A .v =2m 一2 B .v =m 2一1C .v =3m 一3D .v =m 十1 5.不等式组31027x x +>⎧⎨<⎩的整数解的个数为( ) A .1个 B .2个 C . 3个 D . 4个 6.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为( ) A .60°B .120°C .60°或l50°D .60°或l20°7.如图,M 是AB 的中点,∠C=∠D ,∠1=∠2,说明AC=BD 的理由.解: M 是AB 的中点, ∴ AM =在BMD AMC ∆∆和中∴≌( ) ∴AC=BD( ) 8.下列计算正确的是( )A .23(31)3a a a a −−=−−B .222()a b a b −=−C .2(23)(23)94a a a −−−=−D .235()a a =)(21M DCBA ()()________________________________________________________AM ⎧=⎪⎪=⎨⎪=⎪⎩9.下列计算正确的是( ) A .112333()a b a b +=+B .22222()y y x x=C .0a aa b b a−=−− D .220()()a aa b b a −=−− 10.图甲、乙所示分别是我国l997~2000年全国初中在校生人数和全国初中学校数统计图,由图可知,从l997年到2000年,我国初中在校生人数和学校数分别( ) A .逐年增加,逐年增加B .逐年增加,逐年减少C .逐年减少,逐年减少D .逐年减少,逐年增加二、填空题11.太阳光线所形成的投影称为 .12.定理“在一个三角形中,等角对等边”,它的逆定理是 . 13.判断线段相等的定理(写出2个)如: .14.在1:1000000的地图上,A ,B 两地相距10cm ,则A ,B 两地的实际距离是_____千米. 15.(12a 3-8a 2+25a )÷4a= . 16.计算:(1)72()()b b −÷−;(2)52(5)(5)−÷−;(3)232()()a b a b ÷; (4)32()()x y y x −÷−;(5)844a a a ÷⋅ 解答题17.根据图形,把下列语句填写完整. (1)直线a 、b 相交于 ; (2)直线c 由 两点所确定;(3)点D 在直线 外,点E 在直线 上.18.多项式22358ab a b M −++的结果是27a ab −,则M=________________.226108a ab b −−19.( )2= 16, ( )3 = 64.三、解答题20.某同学在电脑上玩扫雷游戏,如图所示的区域内 5处有雷. (即 5 个方格有雷) (1)这位同学第一次点击区域内任一小方块,触雷的可能性有多大? (2)若他已扫完了30 个小方块发现均无雷,再一次点击下一个未知的小方块,触雷的可能性有多大?21.如图,在△ABC 中,BC 的中垂线交 BC 于点D ,交 AC 于点E ,△ABD 为等边三角形,BE 交 AD 于点F ,试说明: (1)△FDB ∽△ABC ;(2)AF=FD.22.如图,∠A=30°,BC =12 cm ,求⊙O 的半径.23.不画图象,说出抛物线24y x =−和214y x =的对称轴、顶点坐标和开口方向.24.如图,△ABC 中D ,E 分别是AC ,AB 上的点,BD 与CE 交于点0,给出下列四个条件:①∠EB0=∠DCO ;②∠BE0=∠CDO ;③BE=CD ;④OB=OC .(1)上述四个条件中,哪两个条件可判定AB=AC(用序号写出所有情形)?(2)选择第(1)小题的一种情形.证明AB=AC.25.推理填空,如图.∵∠B= ,∴AB∥CD( ).∵∠DGF= ,∴CD∥EF( ).26.在如图的网格上,找出4个格点(小方格的顶点),使每一个格点与A、B两点构造等腰三角形,并画出这4个等腰三角形.27.已知:如图,在△ABC中,AB=BC,∠ABC=90°.F为 AB延长线上一点,点E在BC 上,BB=BF,连接AB、EF和 CF.求证:AE =CF.28.如图,AD平分∠BAC,AB=AC,则BD=CD,试说明理由.29.如图所示,下面两个图形是旋转变换所得的图形,它们分剐可绕自身图形中的哪一点至少旋转多少度后与它本身重合?30.出租车司机小李某天下午运全是在东西向的人民大道上进行的.如果规定向东为正,他这天下午行车里程 (单位:km)如下:+15,-2,+5, -1,+10,-3,-2,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李行车里程一共是多少?(2)若汽车耗油量为 0.2 L/km,这天下午小李共耗油多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.D4.B5.D6.D7.BM,∠C,∠D,已知,∠1,∠2,已知,BM,ΔAMC,ΔBMD,AAS,全等三角形的对应边相等.8.C9.D10.B二、填空题 11. 平行投影12.在一个三角形中,等边对等角13.略14.10015.85232+−a a 16. (1)5b −;(2)-125;(3)42a b ;(4)x y −;(5)8a17.(1)E (2)C 、D (3)a ,a 或b18.19.4±,4三、解答题 20.(1)518016P ==;(2)515010P == 21.(1) ∵△ABD 为等边三角形,∠ABD=∠ADB. ∵ED 垂直平分BC ,∴△EBC 为等腰三角形. ∴∠EBC=∠C ,∴△FDB ∽△AEC.(2)∵△FDB ∽△AEC,△ABD 为等边三角形,∴AD=BD=CD , ∴∠C=∠DAC=12∠ADB= 30°,∴∠BAC=∠DFB=90°,∴FB 平分∠ABD ,∴BF 平分AD ,∴AF=FD.22.⊙O 的半径为 12 cm.23.24y x =−的对称抽是 y 轴,顶点坐标(0,0),开口方向向下.214y x =的对称轴是y 轴,顶点坐标(0,0),开口方向向上. 24. (1)①③,①④,②③,②④;(2)略25.略26.略27.在△ABE 和△CBF 中,因为 AB=BC ,∠ABE ∠CBF=90°,BE =BF ,所以△ABE ≌△CBF ,所以AE =CF.28.△ABD ≌△ACD (SAS ),则BD=CD .29.①绕正方形对角线交点,逆时针旋转90°;②绕整个图形对角线的交点,旋转l80°30.(1)65km (2)13 L。
2019年江苏扬州中考数学试题(解析版)

{来源}2019年扬州中考数学{适用范围:3.九年级}{标题}扬州市二〇一九年初中学业水平考试考试时间:120分钟满分:150分{题型:1-选择题}一、选择题:本大题共 8 小题,每小题 3 分,合计24分.{题目}1.(2019年杨州)下列图案中,是中心对称图形的是()A. B. C. D.{答案}D{解析}图形绕某一点旋转180°与自己能够完全重合叫中心对称图形.{分值}3{章节:[1-23-2-2]中心对称图形}{考点:中心对称图形}{类别:常考题}{难度:1-最简单}{{答案}A{解析}根据实数比较大小确定四个选项与-2{分值}3{章节:[1-6-3]实数}{考点:实数的大小比较}{类别:常考题}{难度:1-最简单}{题目}3.(A.{答案}D{解析}分式的分母整体提取负号,则分母变成相反数,再根据分式的基本性质负号前置.{分值}3{章节:[1-15-1]分式}{考点:相反数的定义}{考点:分式的基本性质}{类别:常考题}{难度:1-最简单}{题目}4.(2019年杨州)一组数据3、2、4、5、2,则这组数据的众数是()A.2 B.3 C.3.2 D.4{答案}A{解析}根据众数的定义即可求出这组数据的众数,在这组数据中2出现了2次,出现的次数最多,则这组数据的众数是2.{分值}3{章节:[1-20-1-2]中位数和众数}{考点:众数}{类别:常考题}{难度:2-简单}{题目}5. (2019年杨州)如图所示物体的左视图是( )A .B .C .D .{答案}B{解析}根据左视图是从左边看得到的图形,从左边看是一个矩形,中间有二条水平的实线.{分值}3{章节:[1-29-2]三视图}{考点:简单组合体的三视图}{类别:易错题}{难度:3-中等难度}{题目}6. (2019年杨州)若点P 在一次函数的图像上,则点P 一定不在( )4+-=x y A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限{答案}C{解析}结合一次函数图象与系数的关系即可得出一次函数y =-x +4的图象经过第一、二、四象限,此题得解解:∵-1<0,4>0,∴一次函数y =-x +4的图象经过第一、二、四象限,即不经过第三象限.∵点P 在一次函数y =-x +4的图象上,∴点P 一定不在第三象限.故选:C .{分值}3{章节:[1-19-2-2]一次函数}{考点:函数图象上的点}{考点:一次函数的图象}{类别:易错题}{难度:3-中等难度}{题目}7. (2019年杨州)已知n 正整数,若一个三角形的三边长分别是n +2、n +8、3n ,则满足条件的n 的值有( )A .4个B . 5个C . 6个D . 7个{答案}D{解析} 分两种情况讨论:分别依据三角形三边关系进行求解:①若n +2<n +8≤3n ,则 n +2+n +8>3n ,n +8≤3n ,解得4≤n <10,∴正整数n 有6个:4,5,6,7,8,9;②若n +2<3n ≤n +8,则n +2+3n >n +8 ,3n ≤n +8 ,解得2<n ≤4,∴正整数n 有2个:3和4;综上所述,满足条件的n 的值有7个,故选:D .{分值}4{章节:[1-11-1]与三角形有关的线段}{类别:高度原创}{考点:几何选择压轴}{考点:三角形三边关系}{考点:一元一次不等式组的整数解}{难度:5-高难度}{题目}8. (2019年杨州)若反比例函数的图像上有两个不同的点关于y 轴对称点都在xy 2-=一次函数y =-x +m 的图像上,则m 的取值范围是( )A .B .22>m 22<-mC .D . 2222<-或>m m 2222<<-m {答案}C{解析} ∵反比例函数上两个不同的点关于y 轴对称的点xy 2-=在一次函数y =-x +m 图像上∴是反比例函数与一次函数y =-x +m 有两个不同的交点xy 2=两个函数联立解方程02222=+-⇒+-=⇒⎪⎩⎪⎨⎧+-==mx x m x x m x y x y ∵有两个不同的交点∴有两个不等的根△=m 2-8>0022=+-mx x 根据二次函数图像得出不等式解集所以.2222<-或>m m {分值}4{章节:[1-26-1]反比例函数的图像和性质}{类别:高度原创}{类别:易错题}{考点:平方根的定义}{考点:最简二次根式}{考点:代入消元法}{考点:分式方程的解}{考点:根的判别式}{考点:反比例函数与一次函数的综合}{考点:代数选择压轴}{难度:5-高难度}{题型:2-填空题}二、填空题:本大题共10小题,每小题3分,合计30分.{题目}9. (2019年杨州)2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全场约1790000米,数据1790000用科学记数法表示为 .{答案}1.79×106{解析}本题考查了科学记数法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.因此先将1790000根据科学记数法的要求表示为1.79×106.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}10. (2019{答案} ab (3-x )(3+x {解析}先提取公因式,在使用平方差公式因式分解.{分值}3{章节:[1-14-3]因式分解}{考点:因式分解-提公因式法}{考点:因式分解-平方差}{类别:常考题}{难度:1-最简单}{题目}11. (2019年杨州)扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下抽取的毛绒玩具数n2050100200500100015002000优等品的频数m19479118446292113791846优等品的频率nm 0.9500.9400.9100.9240.9240.9210.9190.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 .(精确到0.01){答案}0.92{解析}由表中数据可判断频率在0.92左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.92,故答案为0.92.{分值}3{章节:[1-25-3]用频率估计概率}{考点:利用频率估计概率}{类别:常考题}{难度:2-简单}{题目}12. (2019年杨州)一元二次方程的根是 .()22-=-x x x {答案}x 1=1,x 2=2.{解析}本题考查了灵活利用提公因式的方法解一元二次方程,解: x 1=1, x 2=2.()()021=--x x {分值}3{章节:[1-21-2-3] 因式分解法}{考点:解一元二次方程-因式分解法}{考点:灵活选用合适的方法解一元二次方程}{类别:易错题}{难度:2-简单}{题目}13. (2019年杨州)计算:的结果是 .()()201920182525+-{答案}.25+{解析}本题考查了根式的计算,记得乘方等,解.()()[]()252525252018+=++-{分值}3{章节:[1-16-2]二次根式的乘除}{考点:有理数乘方的定义}{考点:积的乘方}{考点:平方差公式}{考点:二次根式的乘法法则}{类别:思想方法}{类别:高度原创}{难度:3-中等难度}{题目}14.(2019年杨州)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD =.{答案}128°.{解析}本题考查了矩形的性质,轴对称性质,等腰三角形,平行线,平角等,因此本题解:延长DC到F∵矩形纸条折叠∴∠ACB=∠BCF∵AB∥CD∴∠ABC=∠BCF=26°∴∠ACF=52°∵∠ACF+∠ACD=180°∴∠ACD=128°{分值}3{章节:[1-18-2-1]矩形}{考点:两直线平行内错角相等}{考点:折叠问题}{考点:矩形的性质}{考点:角的计算}{类别:常考题}{难度:3-中等难度}{题目}15.(2019年杨州)如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=.{答案}15.{解析}本题考查了圆心角,圆内正多边形,因此解:∵AC是⊙O的内接正六边形的一边∴∠AOC=360°÷6=60°∵BC是⊙O的内接正十边形的一边∴∠BOC=360°÷10=36°∴∠AOB=60°-36°=24°即360°÷n=24°∴n=15{分值}3{章节:[1-24-3]正多边形和圆}{考点:正多边形和圆}{类别:高度原创}{类别:常考题}{难度:3-中等难度}{题目}16.(2019年杨州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=.13{答案}MN=.2{解析}本题考查了正方形,中位线,勾股定理,连接FC ,∵M 、N 分别是DC 、DF 的中点∴FC =2MN∵AB =7,BE =5且四ABCD ,四EFGB 是正方形∴FC ==1322GC FG +∴MN =213{分值}3{章节:[1-18-2-3] 正方形}{考点:勾股定理}{考点:与中点有关的辅助线}{考点:三角形中位线}{考点:正方形的性质}{类别:思想方法}{类别:常考题}{难度:4-较高难度}{题目}17. (2019年杨州)如图,将四边形ABCD 绕顶点A 顺时针旋转45°至AB ’C ’D ’的位置,若AB =16 cm ,则图中阴影部分的面积为 .{答案}32π.{解析}本题考查了扇形的面积,割补法求阴影面积,∵阴影部分面积=扇形BB ’A 的面积+四边形ABCD 的面积-四AB ’C ’D ’的面积∴阴影部分面积=扇形BB ’A 的面积=.π=︒π︒3236016452{分值}3{章节:[1-24-4]弧长和扇形面积}{考点:扇形的面积}{类别:高度原创}{难度:4-较高难度}{题目}18. (2019年杨州)如图,在△ABC 中,AB =5,AC =4,若进行一下操作,在边BC 上从左到右一次取点D 1、D 2、D 3、D 4…;过点D 1作AB 、AC 的平行线分别交于AC 、AB 与点E 1、F 1;过点D 2作AB 、AC 的平行线分别交于AC 、AB 于点E 2、F 2;过点D 3作AB 、AC 的平行线分别交于AC 、AB 于点E 3、F 3…,则4(D 1E 1+D 2E 2+…+D 2019E 2019)+5(D 1F 1+D 2F 2+…+D 2019F 2019)= .{答案}40380.{解析}本题考查了相似三角形性质,比例性质,∵D 1E 1∥AB D 1F 1∥AC ∴ CB CD AB E D 111=BCBD AC F D 111=∵AB =5 AC =4∴ CB CD E D 1115=BC BD F D 1114=∴145111111==+=+BCBC BC BD CB CD F D E D ∴4D 1E 1+5D 1F 1=20有2019组,即2019×20=40380{分值}3{章节:[1-27-1-2]相似三角形的性质}{考点:几何填空压轴}{考点:相似三角形的性质}{考点:相似基本图形}{考点:比例的性质}{考点:规律-数字变化类}{考点:规律-图形变化类}{类别:思想方法}{类别:高度原创}{类别:发现探究}{难度:5-高难度}{题型:4-解答题}三、解答题:本大题共10小题,合计96分.{题目}19. (2019年杨州)计算或化简:(1) (2)()︒π45cos 4380---aa a -+-1112{解析}本题考查了有理数的计算,因式分解,分式化简,特殊三角函数. {答案}(1)解:原式=2-1-4× (2) 解:原式 =222112--a a =-1 =a +1{分值}8{章节:[1-16-3]二次根式的加减}{考点:两个有理数相乘}{考点:因式分解-平方差}{考点:两个分式的加减}{考点:约分}{考点:通分}{考点:同类二次根式}{考点:二次根式的加减法}{考点:特殊角的三角函数值}{类别:常考题}{难度:3-中等难度}{题目}20. (2019年杨州)解不等式组,并写出它的所有负整数解()⎪⎩⎪⎨⎧--+≤+38413714x x x x <{解析}一元一次不等式组,取整数,不等式的解集.{答案}解:∴负整数解为-3,-2,-123234293812313744<<<<x -x -x x -x x x x x ≤⇒⎩⎨⎧≥⇒⎩⎨⎧≥⇒⎩⎨⎧--+≤+{分值}8{章节:[1-9-3]一元一次不等式组}{考点:解一元一次不等式组}{考点:一元一次不等式组的整数解}{类别:易错题}{难度:3-中等难度}{题目}21. (2019年杨州)扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.根据以上信息,请回答下列问题:(1)表中a = ,b = ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天阅读时间超过1小时的人数.{解析}(1)由0.5<t ≤1的频数与频率可得总人数a ,再用12除以总人数可得b 的值;(2)总人数乘以0.4得出第3组频数,从而补全图形;(3)利用样本估计总体思想可得.每天课外阅读时间t /h频数频率0<t ≤0.5240.5<t ≤1360.31<t ≤1.50.41.5<t ≤212b 合计a 1{答案}解:(1)a=36÷0.3=120,b=12÷120=0.1故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48补全图形如下:(3)1200×(0.4+0.1)=600人答:该校学生每天阅读时间超过1小时的人数为600人.{分值}8{章节:[1-10-2]直方图}{考点:频数与频率}{考点:用样本估计总体}{类别:常考题}{难度:3-中等难度}{题目}22.(2019年杨州)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数都表示为两个素数的和”.如20=3+17.(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是;(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.{解析}(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.{答案}解:(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7(2)树状图如图所示:共有12种可能,满足条件的有4种可能,所以抽到的两个素数之和等于30{分值}8{章节:[1-25-2]用列举法求概率}{考点:两步事件不放回}{考点:一步事件的概率}{类别:常考题}{难度:3-中等难度}{题目}23. (2019年杨州)“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等.甲工程队每天整治河道多少米?{解析}本题考查了分式方程的应用问题.直接利用甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等,得出等式求出答案.{答案}解设甲工程队每天整治河道x m ,则乙工程队每天整治(1500-x )m由题意得:900150024003600=⇒=x xx -经检验的x =900是该方程的解答:甲工程队每天整治河道900米.{分值}10{章节:[1-15-3]分式方程}{考点:解含两个分式的分式方程}{考点:其他分式方程的应用}{类别:常考题}{难度:3-中等难度}{题目}24. (2019年杨州)如图,在平行四边形ABCD 中,AE 平分∠DAB ,已知CE =6,BE =8,DE =10.(1)求证:∠BEC =90°;(2)求cos ∠DAE .{解析}(1)根据平行四边形的性质得出DC =AB ,AD =CB ,DC ∥AB ,推出∠DEA =∠EAB ,再根据角平分线性质得出∠DAE =∠DEA ,推出AD =DE =10,得出AB =CD =16,由勾股定理的逆定理即可得出结论;(2)由平行线得出∠ABE =∠BEC =90°,由勾股定理求出AE =,得5822=+AB BE出cos ∠DAE =cos ∠EAB ,即可得出结果.{答案}(1)证明:∵四ABCD 是平行四边形∴AD ∥BC ∴∠AED =∠EAB∵AE 平分∠DAB ∴∠DAE =∠EAB∴∠AED =∠DAE∴AD =DE =10∴BC =10∵BE =8 CE =6 ∴BE 2+CE 2=BC 2∴△BEC 为直角三角形∴∠BEC =90°(2)解:∵ DE =10 CE =6∴AB =16∵∠BEC =90°∴AE =5822=+AB BE ∴cos ∠EAB =5525816=∵∠DAE =∠EAB ∴cos ∠DAE =552{分值}10{章节:[1-28-1-2]解直角三角形}{考点:二次根式的混合运算}{考点:两直线平行内错角相等}{考点:角平分线的定义}{考点:等角对等边}{考点:勾股定理逆定理}{考点:平行四边形边的性质}{考点:勾股定理}{考点:余弦}{类别:高度原创}{类别:常考题}{难度:4-较高难度}{题目}25. (2019年杨州)如图,AB 是⊙O 的弦,过点O 作OC ⊥OA ,OC 交于AB 于P ,且CP=CB .(1)求证:BC 是⊙O 的切线;(2)已知∠BAO =25°,点Q 是弧AmB 上的一点.①求∠AQB 的度数;②若OA =18,求弧AmB 的长.{解析}(1)连接OB,根据等腰三角形的性质得到∠OAB=∠OBA,∠CPB=∠PBC,等量代换得到∠APO=∠CBP,根据三角形的内角和得到∠CBO=90°,于是得到结论;(2)①根据等腰三角形和直角三角形的性质得到∠ABO=25°,∠APO=65°,根据三角形外角的性质得到∠POB=∠APO-∠ABO=40°,根据圆周角定理即可得到结论;②根据弧长公式即可得到结论.{答案}(1)解:连接OB∵CP=CB∴∠CPB=∠CBP∵OA⊥OC∴∠AOC=90°∵OA=OB∴∠OAB=∠OBA∵∠PAO+∠APO=90°∴∠ABO+∠CBP=90°∴∠OBC=90°∴BC是⊙O的切线(2)解:①∵∠BAO=25° OA=OB∴∠BAO=∠OBA=25°∴∠AOB=130°∴∠AQB=65°②∵∠AOB=130° OB=18∴l弧AmB=(360°-130°)π×18÷180=23π{分值}10{章节:[1-24-4]弧长和扇形面积}{考点:几何综合}{考点:弧长的计算}{考点:切线的判定}{考点:圆周角定理}{考点:圆的认识}{考点:等边对等角}{考点:垂线定义}{考点:三角形内角和定理}{考点:几何综合}{考点:圆的其它综合题}{类别:高度原创}{类别:常考题}{难度:4-较高难度}{题目}26.(2019年杨州)如图,平面内的两条直线l1、l2,点A、B在直线l1上,过点A、B两点分别作直线l2的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C请依据上述定义解决如下问题(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=;(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AB,AC)=2,T(BC,AB)=6,求T(BC,CD).{解析}本题考查通过阅读新定义,利用新定义解决问题.(1)直接利用新定义和正投影问题就能得出结果;(2)用新定义求出AB,再用射影定理求出高就能解决;(3)用新定义求出AC等,点到直线的距离,含30°的直角三角形就能解决.{答案}解:(1)过C作CE⊥AB,垂足为E∴由T(AC,AB)=3投影可知AE=3∴BE=2即T(BC,AB)=2(2)过点C作CF⊥AB于F∵∠ACB =90°CF ⊥AB ∴△ACF ∽△CBF ∴CF 2=AF ·BF∵T (AC ,AB )=4,T (BC ,AB )=9∴AF =4 BF =9即CF =6∴S △ABC =(AB ·CF )÷2=13×6÷2=39(3)过C 作CM ⊥AB 于M ,过B 作BN ⊥CD 于N∵∠A =60°∠ACD =90°∴∠CDA =30°∵T (AB ,AC )=2,T (BC ,AB )=6∴AC =2 BM =6∵∠A =60° CM ⊥AB ∴AM =1 CM =3∵∠CDA =30°∴MD =3 BD =3∵∠BDN =∠CDA =30°∴DN =323∵T (BC ,CD )=CN ∴CN =CD +DN =+=3323327{分值}10{章节:[1-29-1]投影}{考点:几何综合}{考点:新定义}{考点:正投影}{考点:特殊角的三角函数值}{考点:射影定理}{考点:相似三角形的判定(两角相等)}{考点:含30度角的直角三角形}{类别:思想方法}{类别:高度原创}{类别:新定义}{难度:5-高难度}{题目}27. (2019年杨州)如图,四边形ABCD 是矩形,AB =20,BC =10,以CD 为一边向矩形外部作等腰直角△GDC ,∠G =90°,点M 在线段AB 上,且AM =a ,点P 沿折线AD -DG 运动,点Q 沿折线BC -CG 运动(与点G 不重合),在运动过程中始终保持线段PQ ∥AB .设PQ 与AB 之间的距离为x .(1)若a =12.①如图1,当点P 在线段AD 上时,若四边形AMQP 的面积为48,则x 的值为________; ②在运动过程中,求四边形AMQP 的最大面积;(2)如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取(图1)(图2)(图3){解析}(1)①P 在线段AD 上,PQ =AB =20,AP =x ,AM =12,由梯形面积公式得出方程,解方程即可;②当P ,在AD 上运动时,P 到D 点时四边形AMQP 面积最大,为直角梯形,得出0<x≤10时,四边形AMQP 面积的最大值=(12+20)10=160,当P 在DG 上运动,10<x ≤2120,四边形AMQP 为不规则梯形,作PH ⊥AB 于M ,交CD 于N ,作GE ⊥CD 于E ,交AB 于F ,则PM =x ,PN =x -10,EF =BC =10,由等腰直角三角形的性质得出GE =CD =10,得21出GF =GE +EF =20,GH =20-x ,证明△GPQ ∽△GDC ,得出比例式,得出PQ =40-2x ,求出梯形AMQP 的面积=(12+40-2x )x =-(x -13)2+169,由二次函数的性质21即可得出结果;(2)P 在DG 上,则10≤x ≤20,AM =a ,PQ =40-2x ,梯形AMQP 的面积S =(a +40-212x )x =-x 2+x ,对称轴x =10+,得出10≤10+≤15,对称轴在10和15之间,440a +4a 4a 得出10≤x ≤20,二次函数图象开口向下,当x =20时,S 最小,得出-202+×20≥50,440a +a ≥5;即可得出答案5≤a ≤20.{答案}(1)①由题意得:PQ =20 AM =a =12S 四AMQP = 解得x =3()()48212202=+=+x x AM PQ ②当P 在AD 上时,即0≤x ≤10,S 四AMQP =()2x AM PQ +S 四AMQP =()()x x x AM PQ 16212202=+=+当x =10时,S 四AMQP 最大值=160当P 在DG 上,即10≤x ≤20,S 四AMQP =()2x AM PQ +QP =40-2x ,S 四AMQP ==-x 2+26x ()()2122402+=+x -x AM PQ 当x =13时,S 四AMQP 最大值=169综上:x =13时,S 四AMQP 最大值=169(2)由上知:PQ =40-2xS 四AMQP =()()()240224022xa x x a x -x AM PQ ++-=+=+(图1)(备用图)(图2)对称轴为:x = 开口向下440a +∴离对称轴越远取值越小当≤15时,440a +S 四AMQP 最小值=10a ≥50 得a ≥5∴5≤a ≤20当>15时440a +S 四AMQP 最小值=40+a ≥50 得a ≥20,综上所述:5≤a ≤20{分值}12{章节:[1-22-1-4]二次函数y=ax2+bx +c 的图象和性质}{考点:代数综合}{考点:几何图形最大面积问题}{考点:其他二次函数综合题}{考点:由平行判定相似}{考点:等腰直角三角形}{考点:相似三角形的性质}{类别:思想方法}{类别:高度原创}{难度:5-高难度}{题目}28. (2019年杨州)如图,已知等边△ABC 的边长为8,点P 事AB 边上的一个动点(与点A 、B 不重合),直线l 是经过点P 的一条直线,把△ABC 沿直线l 折叠,点B 的对应 点是点B ’.(1)如图1,当PB =4时,若点B ’恰好在AC 边上,则AB ’的长度为______;(2)如图2,当PB =5时,若直线l ∥AC ,则BB ’的长度为 ;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,△ACB ’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB =6时,在直线l 变化过程中,求△ACB ’面积的最大值.{解析}(1)证明△APB’是等边三角形即可解决问题.(2)如图2中,设直线l交BC于点E.连接BB’交PE于O.证明△PEB是等边三角形,求出OB 即可解决问题.(3)如图3中,结论:面积不变.证明BB’∥AC即可.(4)如图4中,当B’P⊥AC时,△ACB’的面积最大,设直线PB′交AC于E,求出B’E即可解决问题.{答案}解:(1)∵折叠∴PB=PB’=4∵△ABC为等边三角形∴∠A=60°∴△APB’是等边三角形即∠B’PA=60°∴AB’=AP=4(2)∵l∥AC∴∠BPB’=120°∴∠PBB’=30°∵PB=5∴BB’=53(3)过B作BF⊥AC,垂足为F,过B’作B’E⊥AC,垂足为E∵B与B’关于l对称∴B’E=BF=43∴S△ACB’=31623482'=⨯=∙EBAC△ACB’面积不变(4)由题意得:l变化中,B’的运动路径为以P为圆心,PB长为半径的圆(图1)(图2)(图3)(备用图)过P作B’P⊥AC,交AC于H,此时B’H最长AP=2,A H=1∴P H=3∴B’H=B’P+P H=6+333∴S△ACB’最大值=(6+)×8÷2=24+4 {分值}12{章节:[1-24-1-2]垂直于弦的直径}{考点:等边三角形的性质}{考点:折叠问题}{考点:特殊角的三角函数值}{考点:等角对等边}{考点:等边三角形的判定}{考点:两直线平行同位角相等}{考点:几何综合}{类别:思想方法}{类别:高度原创}{难度:5-高难度}。
2019年江苏省扬州市中考数学经典试题附解析

2019年江苏省扬州市中考数学经典试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在⊙O 内弦 AB 的弦心距 OD=12OA ,OA 是半径,且OA=2cm ,则图中阴影部分的面积为( )A .2(3)3π− cm 2 B .4(3)3π− cm 2 C .3()3π− cm 2 D .(23)π− cm 22.下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( ) x6.17 6.18 6.19 6.20 2y ax bx c =++ 0.03− 0.01− 0.02 0.04 C .6.18 6.19x << D .6.19 6.20x << 3.抛物线()2212y x =−+的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,2)D .(2,1) 4.二次函数22(1)4y x =−+−的最大值是( ) A .2− B .4C .1−D .-4 5. 在下图中,反比例函数y =k 2+1x的图象大致是( ) 6.小明3min 共投篮80次,进了50个球,则小明进球的频率是( )A .80B .50C .1.6D .0.625 7.如图,在等边△ABC 中,BD 、CE 分别是AC 、AB 上的高,它们相交于点0,则∠BOC 等于( )A .100°B .ll0°C .120°D .130°8.如图所示,下列说法中错误的是 ( )A .∠C 和∠3是同位角B .∠A 和∠3是内错角C .∠A 和∠B 是同旁内角D .∠l 和∠3是内错角9.如图,在△ABC 中,AD 垂直平分BC ,BC=6,AD=4,点E ,F 是线段AD 上的两点,则图中阴影部分的面积是 ( )A .6B .12C .24D .3010.结果为2a 的式子是( )A .63a a ÷B .24−⋅a aC .12()a −D .42a a −11.某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,y 名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程正确的是( )A .⎩⎨⎧=⨯=+y x y x 2416256B .⎩⎨⎧=⨯=+y x y x 1624256C .⎩⎨⎧==+y x y x 241628D .⎩⎨⎧==+yx y x 162456 12.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x 元,则得到方程( )A .15025%x =⨯B .25%150x ⋅=C .15025%x x −=D .15025%x −=13.某校对学生到校方式进行了一次抽样调查,如图4根据此次调查结果所绘制的尚未完成的扇形统计图,已知该校共有学生2560人,被调查的学生中骑车的有21 人,则下列四种说法中,错误的是( )A .被调查的学生有60人B .被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°14.下列条件中不能判定两个直角三角形全等的是()A.两条直角边对应相等B.直角边和斜边对应相等C.两个锐角对应相等D.斜边和锐角对应相等二、填空题15.如图,等边三角形ABC的内切圆的面积为π9,则⊿ABC的周长为.16.掷一枚质地均匀的小正方体,它的六个面上分别标有数宇 1、2、3、4、5、6,则朝上一面的数字是小于 6 的概率是.17.如图,⊙O的半径为4cm,直线l⊥OA,垂足为O,则直线l沿射线OA方向平移________cm时与⊙O相切.18.下图的几何体由若干个棱长为数1的正方体堆放而成,则这个几何体的体积为__________.19.如图,从左图到右图的变换是 .20.如图,在△ABC中,BI、CI分别平分∠ABC与∠ACB,若∠BIC=1100,∠A= .21.在括号里填上适当的代数式,使等式成立:(1)21664++=( )2;x x(2)21025−+=( )2;p p(3)22−+=( )2;9124a ab b(4)21 4t t−+=( )2;(5)2244ab a b++=( )2;(6)222()()m m m n m n+−+−=( )222.线段AB=4㎝,在线段AB上截取BC=1㎝,则AC= ㎝.23.在存折中有 3000 元,取出 2600 元,又存入500 元后,如果不考虑利息,存折中还有元.三、解答题24.如图,在△ABC 中,∠C= 90°,∠A = 30°,0 为AB 上一点,BO=m,⊙O的半径为1 2cm,当m在什么范围内取值,直线BC 与⊙O相离?相切?相交?25.填写下表:二次函数对称轴顶点坐标x 取何值是最大 (或最小)值22y x=2(3)y x=−−2(1)2y x=−+−244y x x=−+26.如图①,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)说明△ADC≌△CEB;(2)说明AD+BE=DE;(3)当直线MN绕点C旋转到图②的位置时,试问DE,AD,BE具有怎样的等量关系?请写出这个等量关系,并加以说明.27.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?28.利用计算器比较下列各数的大小,并用<”号连结: 3563734π 3334576π<29.如果一个正方体的体积扩大到原来的8 倍,那么棱长扩大到原来的几倍?P 30米 l30.未成年人思想道德建设越来越受到社会的关注.某青少年研究所随机调查了大连市某校100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成频数分布表和频数分布直方图(如图).某校l00名学生寒假花零花钱数的频数分布表分组(元)频数频率0.5~50.50.150.5~200.2100.5~150.5~200.5300.3200.5~250.5i00.1250.5~300.550.05合计100某校100名学生寒假花零花钱数的频数分布直方图(1)补全频数分布表;(2)在频数分布直方图中,第三组(从左边起)的频数是;这次调查的样本容量是人;(3)在频数分布直方图上画出频数分布折线图;(4)研究所认为,应对消费l50元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.D5.D6.D7.C8.B9.A10.B11.A12.C13.C14.C二、填空题15.318 16.5617. 418.619.轴对称变换20.40°21.(1)8x +;(2)5p −;(3)32a b −;(4)12t −;(5)2a b +;(6)2m n − 22.323.900三、解答题24.当m >m =0m <<. 25.26.略27.解:设乙同学的速度为x米/秒,则甲同学的速度为1.2x米/秒,根据题意,得60606501.2x x⎛⎫++=⎪⎝⎭,解得 2.5x=.经检验, 2.5x=是方程的解,且符合题意.∴甲同学所用的时间为:606261.2x+=(秒),乙同学所用的时间为:6024x=(秒).2624>,∴乙同学获胜.28.π<29.2 倍30.(1)略;(2)25,100;(3)略;(4)450人。
最新2019年江苏省扬州市中考数学试卷含答案

最新江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣5的倒数是()A.﹣ B.C.5 D.﹣52.(3分)使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列说法正确的是()A.一组数据2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D.某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是5℃5.(3分)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x16.(3分)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)7.(3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为.10.(3分)因式分解:18﹣2x2=.11.(3分)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是.12.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.13.(3分)用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.(3分)不等式组的解集为.15.(3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=.16.(3分)关于x的方程mx2﹣2x+3=0有两个不相等的实数根,那么m的取值范围是.17.(3分)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.(3分)如图,在等腰Rt△ABO,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简(1)()﹣1+||+tan60°(2)(2x+3)2﹣(2x+3)(2x﹣3)20.(8分)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.21.(8分)江苏省第十九届运动会将于最新9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:(1)这次调查的样本容量是,a+b.(2)扇形统计图中“自行车”对应的扇形的圆心角为.(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.(8分)4张相同的卡片分别写着数字﹣1、﹣3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b中的k;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.23.(10分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h)24.(10分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是菱形;(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.25.(10分)如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是A的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.26.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.(12分)问题呈现如图1,在边长为1的正方形网格中,连接格点D,N和E,C,DN和EC相交于点P,求tan∠CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN的度数.28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.最新江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【解答】解:﹣5的倒数﹣.故选:A.2.【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:C.3.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.4.【解答】解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣2℃,则改日气温的极差是7﹣(﹣2)=9℃,故此选项错误;故选:B.5.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.6.【解答】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.7.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.8.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【解答】解:0.00077=7.7×10﹣4,故答案为:7.7×10﹣4.10.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)11.【解答】解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5;2,4,5,3种;故其概率为:.12.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=故答案为:13.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.14.【解答】解:解不等式3x+1≥5x,得:x≤,解不等式>﹣2,得:x>﹣3,则不等式组的解集为﹣3<x≤,故答案为:﹣3<x≤.15.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.16.【解答】解:∵一元二次方程mx2﹣2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4﹣12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.17.【解答】解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+(8﹣x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,=OD•DE=OE•DF,∵S△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)18.【解答】解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(﹣1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=﹣x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)()﹣1+||+tan60°=2+(2﹣)+=2+2﹣+=4(2)(2x+3)2﹣(2x+3)(2x﹣3)=(2x)2+12x+9﹣[(2x2)﹣9]=(2x)2+12x+9﹣(2x)2+9=12x+1820.【解答】解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.21.【解答】解:(1)样本容量是9÷18%=50,a+b=50﹣20﹣9﹣10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).22.【解答】解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率==.23.【解答】解:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据题意得:﹣=6,解得:x=121≈121.8.答:货车的速度约是121.8千米/小时.24.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CE,∴∠DAF=∠EBF,∵∠AFD=∠EFB,AF=FB,∴△AFD≌△BFE,∴AD=EB,∵AD∥EB,∴四边形AEBD是平行四边形,∵BD=AD,∴四边形AEBD是菱形.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=,AB∥CD,∴∠ABE=∠DCB,∴tan∠ABE=tan∠DCB=3,∵四边形AEBD是菱形,∴AB⊥DE,AF=FB,EF=DF,∴tan∠ABE==3,∵BF=,∴EF=,∴DE=3,∴S=•AB•DE=•3=15.菱形AEBD25.【解答】(1)证明:作OH⊥AC于H,如图,∵AB=AC,AO⊥BC于点O,∴AO平分∠BAC,∵OE⊥AB,OH⊥AC,∴OH=OE,∴AC是⊙O的切线;(2)解:∵点F是AO的中点,∴AO=2OF=3,而OE=3,∴∠OAE=30°,∠AOE=60°,∴AE=OE=3,∴图中阴影部分的面积=S△AOE ﹣S扇形EOF=×3×3﹣=;(3)解:作F点关于BC的对称点F′,连接EF′交BC于P,如图,∵PF=PF′,∴PE+PF=PE+PF′=EF′,此时EP+FP最小,∵OF′=OF=OE,∴∠F′=∠OEF′,而∠AOE=∠F′+∠OEF′=60°,∴∠F′=30°,∴∠F′=∠EAF′,∴EF′=EA=3,即PE+PF最小值为3,在Rt△OPF′中,OP=OF′=,在Rt△ABO中,OB=OA=×6=2,∴BP=2﹣=,即当PE+PF取最小值时,BP的长为.26.【解答】解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)•y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,=﹣10(46﹣50)2+4000=3840,∴x=46时,w大答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.27.【解答】解:(1)如图1中,∵EC∥MN,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=90°,∴tan∠CPN=tan∠DNM===2,故答案为2.(2)如图2中,取格点D,连接CD,DM.∵CD∥AN,∴∠CPN=∠DCM,∵△DCM是等腰直角三角形,∴∠DCM=∠D=45°,∴cos∠CPN=cos∠DCM=.(3)如图3中,如图取格点M,连接AN、MN.∵PC∥MN,∴∠CPN=∠ANM,∵AM=MN,∠AMN=90°,∴∠ANM=∠MAN=45°,∴∠CPN=45°.28.【解答】解:(1)如图1,∵点A的坐标为(3,0),∴OA=3,当t=2时,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴线段PQ的中点坐标为:(,),即(,2);故答案为:(,2);(2)如图1,∵当点P与点A重合时运动停止,且△PAQ可以构成三角形,∴0<t<3,∵四边形OABC是矩形,∴∠B=∠PAQ=90°∴当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,∴,4t2﹣15t+9=0,(t﹣3)(t﹣)=0,t1=3(舍),t2=,②当△PAQ∽△CBQ时,,∴,t2﹣9t+9=0,t=,∵>7,∴x=不符合题意,舍去,综上所述,当△CBQ与△PAQ相似时,t的值是或;(3)当t=1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线:y=x2﹣3x+2=(x﹣)2﹣,∴顶点k(,﹣),∵Q(3,2),M(0,2),∴MQ∥x轴,作抛物线对称轴,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如图2,∠MQD=∠MKQ=∠QKE,设DQ交y轴于H,∵∠HMQ=∠QEK=90°,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式为:y=﹣x+4,则,x2﹣3x+2=﹣x+4,解得:x1=3(舍),x2=﹣,∴D(﹣,);同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE,由对称性得:H(0,0),易得OQ的解析式:y=x,则,x2﹣3x+2=x,解得:x1=3(舍),x2=,∴D(,);综上所述,点D的坐标为:D(﹣,)或(,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年江苏省扬州市中考数学试卷一、选择题(本大题共有8题,每题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号涂在答题纸相应的表格中.........) 1、下列图案中,是中心对称图形的是( )答案:D2、下列各数中,小于-2的是( )A. -5B.-3C.-2D.-1 答案:A 3、分式x-31可变形为( ) A.x 31+ B.-x 31+ C.3-x 1 D.-3-x 1答案:D4、一组数据3,2,4,5,2则这组数据的众数是( )A.2B.3C.3.2D.4 答案:A5、如图所示物体的左视图是( )答案:B6、若点P 在一次函数y=-x+4的图像上,则点P 一定不在( )A. 第一象限B.第二象限C.第三象限D.第四象限答案:C7、已知n 是正整数,若一个三角形的三边长分别是n+2,n+8,3n ,则满足条件的n 的值有( )A.4个B.5个C.6个D.7个 答案:D8、若反比例函数xy 2-=的图象上有两个不同的点关于y 轴的对称点都在一次函数y=-x+m 的图象上,则m 的取值范围是( ) A. 22>m B.22-<mB. 22>m 或22-<m D.2222<<-m 答案:C二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全长约1790000米,数据1790000用科学记数法表示为_______ 答案:6101.79⨯10. 分解因式:9ab -b a 3=__________答案:)3)(3(-+a a ab11. 扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是______(精确到0.01)12. 一元二次方程2)2(-=-x x x 的根是___________ 答案:1或者213. 计算:20192018252-5)()(+的结果是_________ 答案:25+15.如图,AC 是☉O 的内接正六边形的一遍,点B 在弧AC 上,且BC 是☉O 的内接正十边形的一边,若AB 是☉O 的内接正n 边形的一边,则n=16.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=13答案:217.如图,讲四边形ABCD绕顶点A顺时针转45°至AB’C’D’的位置,若AB=16cm,则图中的阴影部分面积为 cm232答案:答案:40380三.解答题(本大题共有10小题,解答时应写出必要得文字说明,证明过程或演算步骤) 19. 计算或化简(本题满分8分)(1)0045cos 4--3-8)(π 答案:-1a-111-a a 2+(2)答案:a+120. (本题满分8分)解不等式组⎪⎩⎪⎨⎧-<-+≤+38413714x x x x )(,并写出它的所有负整数解。
答案:⎪⎩⎪⎨⎧-<-+≤+)()()(2384113714 x x x x 由(1)得3-≥x ,由(2)得2<x ,所以23-<≤x 又因为x 取负整数,所以x 取-1,-2,-321. (本题满分8分)扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图。
根据以上信息,回答下列问题:(1)表中a =___,b =___;(2)请补全频数分布直方图中空缺的部分;(3)若该校有学生1200人,请估计该校学生每天课外阅读时间超过1小时的人数。
(2)图略。
人的人数为485.11≤<t(3)(人))(6004.01.01200=+⨯22.(本题满分8分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如20=3+17.(1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是_______. (2)若从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数.请你利用画树状图或列表的方法,求抽到的两个素数之和等于30的概率. 答案:(1)(2)由树状图可知:所有可能的情况共有12种,符合题意的有4种,所以抽到两个素数之和等于30的概率P==24.(本题满分10分)如图,在平行四边形ABCD 中,AE 平分∠DAB ,已知CE=6, BE=8, DE=10 . (1)求证:∠BEC=90°; (2)求cos ∠DAE .(1)解:∵四边形ABCD 为平行四边形∴ BC=AD ,DC ∥AB 又∵AE 平分∠DAB ∴ ∠DAE=∠EAB 又∵∠DEA=∠EAB ∴ ∠DEA=∠DAE ∴DA=DE=BC=10 又∵CE=6 ,BE=8∵2226810+= ∴∠BEC=90°(2)解:∵∠DAE = ∠EAB ∴ cos ∠DAE = cos ∠EAB 又∵∠ABE = ∠CEB =90°∴ cos ∠EAB =AE AB =5525816=25.(本题满分10分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC上取一点P,使得PC=CB. (1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,点Q是弧AmB上的一点.①求∠AQB的度数;②若OA=18,求弧AmB的长.证明:(1)如图,连接OB∵OC⊥OA,∴∠APO+∠OAP=90°∵OA=OB∴∠OAB=∠OBA又∵CP=CB∴∠CBP=∠CPB ∵∠CPB=∠APO ∴∠CBP=∠APO ∴∠CBP+∠ABO=90° ∴∠CB0=90°所以BC 是⊙O 的切线。
(2)①∵∠BAO=25°∴∠APO=∠CPB=∠CBP=65° ∴∠C=50°又∵∠C+∠COB=90°, ∴∠COB=40°∴∠AOB=90°+40°=130°所以∠AQB=21∠AOB=65°② 由①得,∠AOB=130° 因为OA=18,所以弧AmB=πππ2318018)130-360(180r =︒⨯︒︒=︒n26、(本题满分10分)如图,平面内的两条直线l 1、l 2,点A 、B 在直线l 1上,点C 、D 在直线l 2上,过A 、B 两点分别作直线l 1的垂线,垂足分别为A 1、B 1,我们把线段A 1B 1叫做线段AB 在直线l 2上的正投影,其长度可记作T (AB ,CD )或T (AB ,l2),特别地,线段AC 在直线l 2上的正投影就是线段A 1C. 请依据上述定义解决下列问题:(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).解:(1)如图1,过C作CD⊥AB于D,因为T(AC,AB)=3,所以AD=3;又因为AB=5,所以BD=AB-AD=2,所以T(BC,AB)=2图1 图2(2)如图2,过C 作CD ⊥AB 于D ,因为T (AC ,AB )=4,T (BC ,AB )=9,所以AD=4,BD=9,易证△ACD ∽△CBD ,所以BDCD CD AD ,即CD 2=AD ·CD=36,AD=6,所以S △ABC =39 (3)如图3,过C 作CE ⊥AB 于E ,过B 作BF ⊥CD 的延长线于F∵T (AD ,AC )=2,T (BC ,AB )=6∴AC=2,BE=6又∵∠A=60°,∠ACD=∠CED=90°∴AE=1,AD=4,CD=32∴DE=AD-AE=3,∴BD=BE-DE=3又∴∠BDF=30°∴DF=323 ∴CF=CD+DF=327∴T (BC ,CD )=CF=327 图327.(本题满分12分),如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°。
点M在线段AB上,且AM=a,点P沿折线AD—DG运动,点Q沿折线BC—CG运动(与点G不重合),在运动过程中始终保持PQ∥AB。
设PQ与AB之间的距离为X。
(1)若a=12①如图1,当点P 在线段AD 上时,若四边形AMQP 的面积为48,则X 的值为②在运动过程中,求四边形AMQP 的最大面积;(2) 如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取值范围.解:(1)①P 在AD 上,PQ=20,AP=20,AM=12S=(12+20).X.21=48 X=3②当P 在AD 上运动,P 到D 点时最大0<X ≤10,S m ax =(12+20)×10×21=160 当P 在DG 上运动,10<X ≤20,四边形AMQP 为不规则梯形,作PH ⊥AB 交CD 于E ,QN ⊥AB 交CD 于FPH=X ,PE=X-10∵∠GDC=45°,∴等腰Rt △PED ,∴DE=x-10同理CF=x-10,∴PQ=20-2x (x-10)=40-2x ,∴S △MQP =(40-2x+12)x ÷2=-x 2+26x=-(x-13)2+169,当x=13时,S max =169;(2)P 在DG 上,则10≤x ≤20,AM=a ,PQ=40-2x ,S 梯=(40-2x+a )×x ÷2=-x 2+x a 240+ 对称轴x=410a +,∵0≤a ≤20∴10≤410a +≤15,对称轴在10和15之间 又∵10≤x ≤20,函数开口向下,∴当x=20时,S 最小,∴-202+20240⨯+a ≥50, a ≥5,综上5≤a ≤20∆的边长为8,点P是AB边上的一个动点(与28.(本题满分12分)如图,已知等边AB C∆沿直线l折叠,点B的对应点A、B不重合)。