人教版六年级下册数学用正比例解决问题(附答案)
六年级下册数学一课一练-4.2.1正比例 人教版(含答案)

六年级下册数学一课一练-4.2.1正比例一、单选题1.有一堆煤,烧掉的质量和剩余的质量()。
A. 成反比例B. 成正比例C. 不成比例2.《数学学习报》的单价一定,订阅份数与总价()A. 成正比例B. 成反比例C. 不成比例3.若甲和乙成正比例,乙和丙成反比例,则甲和丙()。
A. 成反比例B. 成正比例C. 不成比例4.成正比例的两种量在变化时的规律:是它们的()一定。
A. 和B. 积C. 商5.题中的两个量()圆的半径和周长.A. 成正比例B. 成反比例C. 不成比例二、判断题6.汽车的速度一定,所行路程和时间成正比例.7.如果=5,那么a和b成正比例。
8.圆的半径和面积成正比例.9.如果a与b成反比例,b与c也成反比例,那么a与c成正比例.三、填空题10.如果a×b=2,那么a和b成________比例。
11.修一段路,已经修的与未修的________12.如果=y,那么x与y成________比例,如果=y,那么x和y成________比例.13.在同一时间,同一地点,物体的高度和影长成________比例。
14.如果,那么,m和n成________比例关系。
四、解答题15.一辆汽车的行驶路程和耗油量如下表:路程/千米 18 36 54 72 90(1)请在表中选择4个相应的数据写出表示汽车的行驶路程和耗油量所成的比例。
(2)如果这辆汽车出发时油表上显示有油60升,到达某地时油表上显示有油40升,这时它行驶了多少千米?(3)这辆汽车出发时里程表上显示里程15700千米,到达目的地时里程表上显示里程16150千米,在这段路程中,汽车耗油多少升?16.速度一定时,路程和时间成正比例.说出在这三种量中,在什么条件下哪两种量还成正比例关系?五、综合题17.判断下面各题中的两种量是否成比例,成什么比例,填在横线上。
(1)打字员打字速度一定,打字时间与打字总数。
________(2)正方形的面积和它的边长。
【★★】六年级下册数学人教版课时练第4单元《4-2正比例和反比例》(含答案)

课时练4.2 正比例和反比例一、单选题1.在等式a×b=c(a、b、c均不等于0)中,当c一定时,a和b()。
A. 成正比例B. 成反比例C. 不成比例D. 无法确定2.下面两种量成反比例的是()。
A. 圆锥的体积一定,它的底面积和高B. 长方形的周长一定,它的长和宽C. 利率一定,存款的本金和利息D. 折扣一定,商品的原价和折后价3.下列几句话中,正确的有()句。
①小华和小明玩“石头、剪刀、布”的游戏,他们获胜的可能性是一样的。
②2100年不是闰年。
③三角形面积一定,它的底和高成反比例。
④把一个长方形框架拉成一个平行四边形,周长不变,面积变大了。
A. 1B. 2C. 3D.44.零件的总个数一定,每小时做的零件数和做的时间()。
A. 成反比例B. 成正比例C. 不成比例5.梯形的面积一定,它的上底和下底()。
A. 成正比例B. 成反比例C. 既不成正比例也不成反比例6.()中的两种量不成比例。
A. 妈妈从家步行到单位,已走的路程和剩下的路程B. 从上海到广州,列车行驶的平均速度和所需时间C. 香蕉的单价一定,购买香蕉的数量和总价二、判断题7.小明应完成的作业量一定,他已完成的作业量和未完成的作业量成反比例。
()8.(1)圆锥的体积一定,它的底面积和高成反比例关系。
()(2)把一个长4cm、宽3cm的长方形按3:1放大,得到的图形的面积为36 。
()(3)如果3x−5y=0;(x,y不等于0),那么x和y成正比例关系。
()(4)如果A和B成正比例关系,那么2A和B也成正比例关系。
()三、填空题9.如果y=3x,那么y和x成________比例;如果=y,那么y和x成________比例。
10.分子一定,分母和分数值成________比例。
分母一定,分子和分数值成________比例。
分数值一定,分子和分母成________比例。
11.用一批纸装订练习本,每本25页,可以装订400本。
如果要装订500本,每本有X页。
人教版六年级下册《42_正比例和反比例的意义》小学数学-有答案-同步练习卷(2)

人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1. 直接写出得数。
2. 判断下列各题中,两种量是否成正比例关系,请说明理由。
(1)订阅《中国少年报》的金额和份数。
________(2)人的年龄和体重。
________3. 李师傅要加工一批零件,如表是他每天加工零件的数量与相应可以完成工作时间。
(1)把表格填完整。
(2)李师傅每天加工零件数量与完成工作时间成反比例吗?为什么?填空题.如果用字母x、y表示两种相关联的量,用k表示积(一定),反比例的关系式是________.一个自然数(0除外)与它的倒数成________比例。
x和y的积是12,那么x、y成________比例,它们的关系式是________.判断下面各题中的两个量是否成反比例,并说明理由。
(1)订《少先队员》的份数和总价钱。
________(2)三角形的面积一定,底和高。
________(3)总人数一定,行数和每行人数。
________(4)总价一定,单价与数量。
________已知x和y是反比例关系,根据表中的条件,填写下表。
全年级总人数一定,每班人数与班数成________比例。
=y(x不为0),那么x和y成________比例。
如果24x每块砖的面积一定,铺地的面积和所需砖的块数成________比例。
判断题。
(对的在括号中画“√”,错的画“×”)被除数一定,商和除数成反比例。
________(判断对错)人的体重和年龄成正比例。
________(判断对错)糖水的含糖率一定,糖和水成反比例。
________(判断对错)正方形面积与边长成反比例。
________(判断对错)一批大米的总质量一定,每袋质量与袋数成反比例。
________(判断对错)铺地面积一定,每块砖的面积和块数成反比例。
________.参考答案与试题解析人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1.分数除法分数乘法【解析】根据分数加减乘除法的计算方法求解即可。
六年级下册数学试题-小升初复习讲练:比例尺应用题(含答案)sc

比例尺应用题(综合)典题探究例1.在比例尺是1:500的图纸上,量得一个正方形草坪的边长是4厘米.这个草坪的实际面积是.例2.培正小学的操场长80米,宽50米,如果用的比例尺画出操场的平面图,图上面积是.例3.地图上1.5厘米的距离表示实际距离120千米,这幅地图的比例尺是.如果该地图上,甲乙两地之间的图上距离是2厘米,那么实际距离是千米.例4.在比例尺是1:4000000的地图上,量得甲、乙两港的距离是9厘米,一艘货轮于上午6时以每小时24千米的速度从甲港开往乙港,到达乙港的时间是时.演练方阵A档(巩固专练)1.一张图纸长30厘米、宽20厘米,把长50米、宽38米的一块长方形菜的画在这张图纸上,选用适当的比例尺是()A.1:200 B.1:400 C.1:100 D.200:12.一个三角形中,三个内角的度数比是1:1:3,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形3.在比例尺是1:8的图纸上,甲、乙两个圆的直径比是2:3,那么甲、乙两个圆的实际的直径比是()A.1:8 B.4:9 C.2:3 D.8:14.学校实验园地是一个长60m,宽40m的长方形,用比例尺1﹕1000画平面图,长应画()A.4cm B.6cm C.6dm D.6m5.北京到上海的实际距离大约是300千米,画在一幅比例尺是的地图上,应该画()厘米.A.3B.2C.66.在一幅比例尺是1:30000000的地图上,量的甲乙两地的距离是5厘米,那么甲地到乙地的实际距离是()千米.A.150 B.6000 C.15007.一个直角三角形的两条直角边分别是3厘米、2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24 C.48 D.968.在比例尺是1:500000的地图上,量得A、B两地间的距离是11厘米,A、B两地间的实际距离是()千米.A.55 B.5500000 C.55009.长江是中国第一大河,全长6300千米,在比例尺是1:100000000的地图上的长度为.()A.6.3cm B.63dm C.63cm10.一种精密零件长5毫米,把它画在图纸上,图上零件长6厘米,这张图纸的比例尺是()A.1:12 B.5:6 C.6:5 D.12:1B档(提升精练)1.在比例尺是1:100000的地图上,量得甲、乙两地的距离是3厘米,甲、乙两地的实际距离是()A.300千米B.3千米C.30千米D.0.3千米2.学校操场扩建后的平面图如图,扩建后面积比原来增加25%,操场原来的面积是()平方米.A.480 B.4800 C.6000 D.75003.(新光小学的操场是一个长方形,画在比例尺是1:4 000的平面图上,长3厘米,宽2厘米.操场的实际面积是()A.240平方米B.96平方米C.2.4平方米D.9 600平方米4.在比例尺是1:20的图纸上画出一种机械配件平面图的角是40度.这个角实际是()度.A.2B.40 C.8005.在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()A.15点B.17点C.21点6.比例尺表示.A.图上距离是实际距离的B.实际距离是图上距离的800000倍C.实际距离与图上距离的比为1:8000007.在比例尺是1:3000000的地图上,量得A、B两港距离为12cm,一艘货轮于上午7时出发,以每小时24km的速度从A港开向B港,到达B港的时间是()A.22时B.23时C.21时8.在比例尺是1:30,000,000的地图上量得甲、乙两地相距5.5厘米,一辆汽车按3:2分两天行完全程,那么第二天行的路程是()A.6.6千米B.66千米C.660千米D.6600千米9.在比例尺是1:3000000的地图上,量得A、B两港距离为12厘米,一艘货轮于上午7时以每小时24千米的速度从A港开向B港,到达B港的时间是()A.16点B.18点C.20点D.22点10.一个正方形的面积是100平方厘米,把它按10:1的比放大.放大后图形的面积是多少平方厘米?()A.1000平方厘米B.2000平方厘米C.10000平方厘米C档(跨越导练)1.在比例尺是1:1000的图纸上,量得一块正方形地的边长是5厘米,则这块地的实际面积是()A.250000平方厘米B.2500平方厘米C.2500平方米D.250平方米2.在比例尺是1:6000000的地图上,量得广州到北京的距离是30厘米,广州到北京的实际距离约是()千米.A.1600 B.2000 C.18003.地图上的线段比例尺如图,表示这副地图的数值比例尺是()A.B.C.D.4.在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是()A.300km B.600km C.900km D.1500km5.在比例尺是1:2000000的地图上,量得两地距离是28厘米,这两地的实际距离是千米,若一辆货车以70千米每小时的速度由贵阳往晴隆行驶,则需要小时.6.在比例尺是1:10000000的地图上,量得甲地到乙地的距离是10.2厘米,一辆汽车按3:2的比例分两天跑完全程,两天跑的路程的差是千米.7.树人小学新建一幢教学楼,地基是长50米、宽28米的长方形.画在图纸上,长是2.5厘米,宽是1.4厘米,这幅图的比例尺是.8.在一副比例尺为1:4000000的地图上,量得平阳至杭州的公路长时10.5cm,两地实际相距千米,如果一辆汽车每小时100千米的速度与上午10时40分从平阳开出,那么将在下午时分到达杭州.9.在比例尺是1:60000000的地图上,量得甲乙两地的航线距离是2.5厘米,上午8时30分有一架飞机从甲地飞往乙地,上午11时到达.这架飞机平均每小时飞行千米.10.在比例尺是1:60000000的地图上,量得甲乙两地的距2.5厘米,上午8点30分有一架飞机从甲地飞往乙地,上午9点45分到达,这架飞机每小时行千米.比例尺应用题参考答案典题探究例1.在比例尺是1:500的图纸上,量得一个正方形草坪的边长是4厘米.这个草坪的实际面积是400平方米.考点:比例尺应用题.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出这个正方形草地的边长,进而利用正方形的面积S=a2,就能求出这个草坪的实际面积.解答:解:4÷=2000(厘米)=20(米),20×20=400(平方米);答:这个草坪的实际面积是400平方米.故答案为:400平方米.点评:此题主要考查正方形的面积的计算方法依据图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.例2.培正小学的操场长80米,宽50米,如果用的比例尺画出操场的平面图,图上面积是160平方厘米.考点:比例尺应用题.分析:实际距离和比例尺已知,依据“图上距离=实际距离×比例尺”即可分别求出操场长和宽的图上距离,进而利用长方形的面积公式就可以求出操场的图上面积.解答:解:80米=8000厘米,50米=5000厘米,8000×=16(厘米),5000×=10(厘米),16×10=160(平方厘米);答:这个操场的图上面积是160平方厘米.故答案为:160平方厘米.点评:此题主要考查图上距离、实际距离和比例尺的关系在实际中的应用,以及长方形的面积的计算方法.例3.地图上1.5厘米的距离表示实际距离120千米,这幅地图的比例尺是1:8000000.如果该地图上,甲乙两地之间的图上距离是2厘米,那么实际距离是160千米.考点:比例尺应用题.专题:比和比例应用题.分析:(1)根据比例尺的意义作答,即图上距离与实际距离的比就是比例尺;(2)先求出1厘米的线段表示实际距离的千米数,由此求出2厘米所表示的实际距离的千米数.解答:解:(1)1.5厘米:120千米,=1.5厘米:12000000厘米,=15:120000000,=1:8000000;(2)120÷1.5×2,=80×2,=160(千米),故答案为:1:8000000;160.点评:本题主要灵活利用:比例尺=图上距离:实际距离这一关系解决问题.例4.在比例尺是1:4000000的地图上,量得甲、乙两港的距离是9厘米,一艘货轮于上午6时以每小时24千米的速度从甲港开往乙港,到达乙港的时间是晚上9或21时.考点:比例尺应用题;简单的行程问题.专题:比和比例应用题;行程问题.分析:先依据“实际距离=图上距离÷比例尺”求出两地的实际距离,再据“路程÷速度=时间”求出货轮从甲港到乙港需要的时间,进而可以求出到达乙港的时刻.解答:解:9÷=36000000(厘米)=360(千米),360÷24=15(小时),6+15=21(时);答:货轮到达乙港的时间是晚上9时或21时.故答案为:晚上9或21.点评:此题主要考查图上距离、实际距离和比例尺的关系以及基本的数量关系“路程÷速度=时间”.演练方阵A档(巩固专练)1.一张图纸长30厘米、宽20厘米,把长50米、宽38米的一块长方形菜的画在这张图纸上,选用适当的比例尺是()A.1:200 B.1:400 C.1:100 D.200:1考点:比例尺应用题.专题:比和比例应用题.分析:本题的实际长度是长50米、宽38米.而图上距离是:长30厘米、宽20厘米,要想画在这样的图纸上,必须是缩小的,所以D答案不能选,既能画下来,还能画的合适,这就是比例尺的问题了,应根据:图上距离:实际距离=比例尺来计算.解答:解:因为:50米=5000厘米38米=3800厘米,而图纸长30厘米、宽20厘米,比例尺为;30:5000≈1:167,20:3800=1:190,综合长和宽的比例尺选1:200比较合适.故选:A.点评:此题主要考查比例尺、图上距离、实际距离三者之间的数量关系:比例尺=图上距离÷实际距离,灵活变形列式解决问题.2.一个三角形中,三个内角的度数比是1:1:3,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形考点:比例尺应用题;三角形的分类;三角形的内角和.专题:比和比例应用题;平面图形的认识与计算.分析:因为三角形的内角度数和是180°,它的最大角占内角度数和的,根据一个数乘分数的意义,求出最大角,进而判断即可.解答:解:1+1+3=5,最大角度数:180°×=108°,所以,这个三角形是钝角三角形.故选:A.点评:解决此题关键是掌握三角形的内角度数和是180°,运用按比例分配的方法解决问题.3.在比例尺是1:8的图纸上,甲、乙两个圆的直径比是2:3,那么甲、乙两个圆的实际的直径比是()A.1:8 B.4:9 C.2:3 D.8:1考点:比例尺应用题.分析:根据比例尺的意义,令甲乙两圆的图上直径为2d,3d,根据比例尺可得实际圆的直径分别是16d,24d,由此利用比例尺进行计算,即可选择正确答案.解答:解:令甲乙两圆的图上直径为2d,3d,根据比例尺可得实际甲乙两圆的直径分别是16d,24d,16d:24d=2:3.故选:C.点评:此题考查了利用比例尺解决实际问题的方法.4.学校实验园地是一个长60m,宽40m的长方形,用比例尺1﹕1000画平面图,长应画()A.4cm B.6cm C.6dm D.6m考点:比例尺应用题.专题:压轴题;比和比例应用题.分析:图上距离=实际距离×比例尺,实际距离是60米,比例尺是1:1000.代入数据进行解答.解答:解:60米=6000厘米,6000×=6(厘米).答:长应画6厘米.故选:B.点评:本题主要考查了学生对图上距离=实际距离×比例尺,这一数量关系的掌握情况.5.北京到上海的实际距离大约是300千米,画在一幅比例尺是的地图上,应该画()厘米.A.3B.2C.6考点:比例尺应用题.专题:比和比例应用题.分析:因为图上距离1厘米表示实际距离50千米,依据除法的意义,即可求出图上距离.解答:解:300÷50=6(厘米);答:应该画6厘米.故选:C.点评:此题主要考查线段比例尺的意义.6.在一幅比例尺是1:30000000的地图上,量的甲乙两地的距离是5厘米,那么甲地到乙地的实际距离是()千米.A.150 B.6000 C.1500考点:比例尺应用题.专题:压轴题;比和比例应用题.分析:图上距离与比例尺已知,求实际距离,用图上距离除以比例尺即可.解答:解:5÷=150000000(厘米),150000000厘米=1500千米;答:甲地到乙地的实际距离是1500千米.故选:C.点评:本题主要是灵活利用比例尺的意义解决问题,注意单位的换算.7.一个直角三角形的两条直角边分别是3厘米、2厘米,按4:1的比例放大后,面积是()平方厘米.A.6B.24 C.48 D.96考点:比例尺应用题.专题:压轴题.分析:先按4:1的比例尺分别求出放大后的两条直角边的长度,再依据三角形的面积公式即可求出放大后的面积.解答:解:放大后的直角边分别是:3×4=12(厘米),2×4=8(厘米);放大后的面积:12×8÷2=48(平方厘米);答:放大后的面积是48平方厘米.故选:C.点评:此题主要考查放大比例尺的应用及三角形的面积计算.8.在比例尺是1:500000的地图上,量得A、B两地间的距离是11厘米,A、B两地间的实际距离是()千米.A.55 B.5500000 C.5500考点:比例尺应用题.专题:比和比例应用题.分析:求实际距离,根据公式“图上距离÷比例尺=实际距离进行解答即可.解答:解:11÷=5500000(厘米),5500000厘米=55千米,答:A、B两地之间的实际距离是55千米;故选:A.点评:此类题做题的关键是弄清题意,根据图上距离、实际距离和比例尺三者之间的关系进行列式解答.9.长江是中国第一大河,全长6300千米,在比例尺是1:100000000的地图上的长度为.()A.6.3cm B.63dm C.63cm考点:比例尺应用题.专题:比和比例应用题.分析:根据比例尺=图上距离:实际距离,知道图上距离=比例尺×实际距离,代入数据解答即可.解答:解:6300千米=630000000厘米,630000000×=6.3(厘米),答:在比例尺是1:100000000的地图上的长度为6.3厘米.故选:A.点评:此题主要考查比例尺的意义及已知比例尺和实际距离求图上距离.注意单位的换算.10.一种精密零件长5毫米,把它画在图纸上,图上零件长6厘米,这张图纸的比例尺是()A.1:12 B.5:6 C.6:5 D.12:1考点:比例尺应用题.专题:比和比例应用题.分析:根据比例尺=图上距离:实际距离,把实际长度5毫米,图上长度6厘米代入求出这张图纸的比例尺.解答:解:6厘米:5毫米,=60毫米:5毫米,=60:5,=(60÷5):(5÷5),=12:1,答:这张图纸的比例尺是12:1.故选:D.点评:此题主要考查学生对比例尺这一知识点的理解和掌握,像这种求比例尺的题目单位一般不相同,因此首先要注意单位的统一.B档(提升精练)1.在比例尺是1:100000的地图上,量得甲、乙两地的距离是3厘米,甲、乙两地的实际距离是()A.300千米B.3千米C.30千米D.0.3千米考点:比例尺应用题.专题:比和比例应用题.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出甲、乙两地的实际距离.解答:解:3÷=300000(厘米)=3(千米);故选:B.点评:此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.2.学校操场扩建后的平面图如图,扩建后面积比原来增加25%,操场原来的面积是()平方米.A.480 B.4800 C.6000 D.7500考点:比例尺应用题;应用比例尺画图.专题:压轴题;比和比例应用题.分析:先依据“图上距离÷比例尺=实际距离”求出扩建后的操场的长和宽的实际长度,再利用长方形的面积公式求出扩建后的面积,把原来的面积看作单位“1”,再据已知一个数的几分之几是多少,求这个数的方法,即可求解.解答:解:6=6000(厘米)=60(米),10÷=10000(厘米)=100(米),100×60÷(1+25%),=6000÷1.25,=4800(平方米);答:操场原来的面积是4800平方米.故选:B.点评:此题主要考查图上距离、实际距离和比例尺的关系,以及长方形的面积的计算方法在实际生活中的应用.3.新光小学的操场是一个长方形,画在比例尺是1:4 000的平面图上,长3厘米,宽2厘米.操场的实际面积是()A.240平方米B.96平方米C.2.4平方米D.9 600平方米考点:比例尺应用题.专题:比和比例应用题.分析:要求操场的实际面积,根据“图上距离÷比例尺=实际距离”,代入数值,分别计算出操场实际的长和宽,然后根据“长方形的面积=长×宽”,代入数值,计算即可.解答:解:3÷=12000(厘米)=120(米),2÷=8000(厘米)=80(米),面积:120×80=9600(平方米),答:操场的实际面积是9600平方米,故选:D.点评:解答此题用到的知识点:(1)图上距离、实际距离和比例尺三者之间的关系;(2)长方形的面积计算方法.4.在比例尺是1:20的图纸上画出一种机械配件平面图的角是40度.这个角实际是()度.A.2B.40 C.800考点:比例尺应用题.分析:比例尺=图上距离÷实际距离,是指长度尺寸按比例放大或缩小.解答:解:根据比例尺是1:20的图纸,知道图上距离是1厘米,实际距离是20厘米,是长度尺寸是按比例缩小,角的大小与边的长度无关,只与两边叉开的程度有关,所以角度是不会变的;故选:B.点评:此题主要考查了比例尺的意义以及角的意义.5.在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()A.15点B.17点C.21点考点:比例尺应用题.分析:先依据“实际距离=图上距离÷比例尺”求出两地的实际距离,再据“路程÷速度=时间”求出货轮从A地到B地需要的时间,进而可以求出到达B地的时刻.解答:解:9÷=36000000(厘米)=360(千米),360÷24=15(小时),6+15=21(时);答:货轮到达B港的时间是21时.故选:C.点评:此题主要考查图上距离、实际距离和比例尺的关系以及基本的数量关系“路程÷速度=时间”.6.比例尺表示.A.图上距离是实际距离的B.实际距离是图上距离的800000倍C.实际距离与图上距离的比为1:800000考点:比例尺应用题.分析:在图上附有一条注有数目的线段,用它来表示和地面上相对应的实际距离,这就叫做线段比例尺.图中比例尺1厘米表示实际距离8千米,用比表示为1:800000.解答:解:8千米=800000厘米,所以此线段比例尺表示为:1:800000,它可以表示图上距离是实际距离的,也可以表示实际距离是图上距离的800000倍,也表示图上距离与实际距离的比是1:800000.所以在ABC答案中,只有B答案正确.故选:B.点评:此题考查了线段比例尺的意义.7.在比例尺是1:3000000的地图上,量得A、B两港距离为12cm,一艘货轮于上午7时出发,以每小时24km的速度从A港开向B港,到达B港的时间是()A.22时B.23时C.21时考点:比例尺应用题.专题:压轴题;比和比例应用题.分析:先根据图上距离÷比例尺=实际距离,再根据路程÷速度=时间,进而解出答案.解答:解:12÷=36000000(厘米)=360(千米),360÷24=15(小时),上午7时过15小时是晚上的22时,故选:A.点评:此题主要考查图上距离、实际距离和比例尺的关系,以及行程问题中的基本数量关系“路程÷速度=时间”.8.在比例尺是1:30,000,000的地图上量得甲、乙两地相距5.5厘米,一辆汽车按3:2分两天行完全程,那么第二天行的路程是()A.6.6千米B.66千米C.660千米D.6600千米考点:比例尺应用题.分析:先根据比例尺求出实际的全程,再把全程按照3:2的比例分配即可.解答:解:30000000×5.5=165000000(厘米);165000000厘米=1650(千米);3+2=5,1650÷5×2=660(千米);故答案选:C.点评:本题先利用比例尺求出实际的全程,再把全程按比列分配;注意1千米=100000厘米.9.在比例尺是1:3000000的地图上,量得A、B两港距离为12厘米,一艘货轮于上午7时以每小时24千米的速度从A港开向B港,到达B港的时间是()A.16点B.18点C.20点D.22点分析:先根据图上距离÷比例尺=实际距离,再根据路程÷速度=时间,进而解出答案.解答:解:12÷=36000000(厘米)=360(千米),360÷24=15(小时),上午7时过15小时是晚上的22时,故选:D.点评:解答此题用了比例尺和行程方面的知识解答.10.一个正方形的面积是100平方厘米,把它按10:1的比放大.放大后图形的面积是多少平方厘米?()A.1000平方厘米B.2000平方厘米C.10000平方厘米考点:比例尺应用题.分析:一个正方形的面积是100平方厘米,它的边长是10厘米,把它按10:1的比放大,就是把这个正方形的边长扩大到原来的10倍,据此可求出放大后图形的面积.解答:解:10×10=100(厘米),100×100=10000(平方厘米);故选:C.点评:本题是考查图形的放大与缩小,图形放大与缩小的倍数是指图形边长放大与缩小的倍数.C档(跨越导练)1.在比例尺是1:1000的图纸上,量得一块正方形地的边长是5厘米,则这块地的实际面积是()A.250000平方厘米B.2500平方厘米C.2500平方米D.250平方米考点:比例尺应用题;长方形、正方形的面积.专题:平面图形的认识与计算.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出正方形的边长的实际长度,进而利用正方形的面积公式即可求解.解答:解:5÷=5000(厘米)=50(米),50×50=2500(平方米);答:这块地的实际面积是2500平方米.故选:C.点评:此题主要考查依据图上距离、实际距离和比例尺之间的关系解决实际问题,解答时要注意单位的换算.2.在比例尺是1:6000000的地图上,量得广州到北京的距离是30厘米,广州到北京的实际距离约是()千米.A.1600 B.2000 C.1800考点:比例尺应用题.分析:图上距离和比例尺已知,依据“实际距离=图上距离÷比例尺”即可求出广州到北京的实际距离.解答:解:30÷=180000000(厘米)=1800(千米);答:广州到北京的实际距离是1800千米.故选:C.点评:此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意单位的换算.3.地图上的线段比例尺如图,表示这副地图的数值比例尺是()A.B.C.D.考点:比例尺应用题;长度的单位换算.分析:依据比例尺的意义,即“图上距离与实际距离的比即为比例尺”即可将线段比例尺化成数字比例尺.解答:解:由题意可知:图上1厘米代表实际60千米,又因60千米=6000000厘米,所以1厘米:6000000厘米=1:6000000;故选:C.点评:此题主要考查比例尺的意义,解答时要注意单位的换算.4.在比例尺是1:30000000的地图上,量得甲地到乙地的距离是5厘米,一辆汽车按3:2的比例分两天行完全程,两天行的路程差是()A.300km B.600km C.900km D.1500km考点:比例尺应用题;按比例分配应用题.专题:比和比例应用题.分析:要求两天行的路程差是多少千米,先根据“图上距离÷比例尺=实际距离”,求出甲地到乙地的路程,然后根据两天行的路程比,得出第一天行了全程的第二天行了全程的,第一天比第二天多行全程的﹣,解答即可得出结论.解答:解:5÷×(﹣),=150000000×,=30000000(厘米);30000000厘米=300千米;故选:A.点评:此题应根据图上距离、比例尺和实际距离的关系,先求出全程,进而运用按比例知识进行解答即可.5.在比例尺是1:2000000的地图上,量得两地距离是28厘米,这两地的实际距离是560千米,若一辆货车以70千米每小时的速度由贵阳往晴隆行驶,则需要8小时.考点:比例尺应用题;简单的行程问题.专题:比和比例应用题;行程问题.分析:已知比例尺和图上距离求实际距离,求出实际距离,再根据路程÷速度=时间,列式解答.解答:解:(1)28=56000000(厘米),56000000厘米=560千米,(2)560÷70=8(小时),答:这两地的实际距离是560千米,需要8小时.故答案为:560,8.点评:此题主要考查比例尺的意义及已知比例尺和图上距离求实际距离.注意单位的换算.6.在比例尺是1:10000000的地图上,量得甲地到乙地的距离是10.2厘米,一辆汽车按3:2的比例分两天跑完全程,两天跑的路程的差是204千米.考点:比例尺应用题.专题:比和比例应用题.分析:首先实际距离=图上距离÷比例尺,求出甲、乙两地之间的路程,已知一辆汽车按3:2的比例分两天跑完全程,第一天跑的路程占全程的,第二天跑的路程占全程的,然后根据一个数乘分数的意义,用乘法解答.解答:解:10.2,=10.2×10000000,=102000000(厘米),102000000厘米=1020千米,1020×(),=1020×,=204(千米),答:两天跑的路程的差是204千米.故答案为:204.点评:此题解答关键是根据图上距离和比例尺求出实际距离,再把比转化成分数,根据一个数乘分数的意义解答即可.7.树人小学新建一幢教学楼,地基是长50米、宽28米的长方形.画在图纸上,长是2.5厘米,宽是1.4厘米,这幅图的比例尺是1:2000.考点:比例尺应用题;长度的单位换算.分析:这道题是已知实际距离、图上距离,求比例尺的问题,运用图上距离:实际距离=比例尺,即可解决问题.解答:解:50米=5000厘米,2.5:5000=1:2000;答:这幅图的比例尺是1:2000.故答案为:1:2000.点评:此题主要考查比例尺、图上距离、实际距离三者之间的数量关系:比例尺=图上距离÷实际距离,灵活变形列式解决问题.8.在一副比例尺为1:4000000的地图上,量得平阳至杭州的公路长时10.5cm,两地实际相距420千米,如果一辆汽车每小时100千米的速度与上午10时40分从平阳开出,那么将在下午2时52分到达杭州.考点:比例尺应用题;简单的行程问题.专题:压轴题;比和比例应用题;行程问题.分析:(1)图上距离和实际距离已知,依据“实际距离=图上距离÷比例尺”即可求出平阳至杭州的公路的实际长度;(2)依据“路程÷速度=时间”即可求出这辆汽车需要的时间,进而求出到达的时刻.解答:解:(1)10.5÷=42000000(厘米)=420(千米);答:两地实际相距420千米.(2)420÷100=4.2(小时)=4小时12分钟,所以10时40分+4小时12分=14时52分;答:这辆汽车将在下午2时52分到达杭州.故答案为:420、2、52.点评:此题主要考查图上距离、实际距离和比例尺的关系,以及行程问题中的基本数量关系“路程÷速度=时间”.9.在比例尺是1:60000000的地图上,量得甲乙两地的航线距离是2.5厘米,上午8时30分有一架飞机从甲地飞往乙地,上午11时到达.这架飞机平均每小时飞行600千米.考点:比例尺应用题.分析:已知比例尺和图上距离求实际距离,用图上距离÷比例尺=实际距离;上午8时30分有一架飞机从甲地飞往乙地,上午11时到达,飞行时间是2.5小时,再根据路程÷时间=速度,列式解答.解答:解:2.5÷=2.5×60000000=150000000(厘米);150000000厘米=1500千米;1500÷2.5=600(千米/时);答:这架飞机平均每小时飞行600千米.故答案为:600.。
人教版六年级数学下册 期中复习:正比例和反比例 (含答案))

正比例和反比例一、单选题(共8题;共16分)1.下面各题中的两个量能成正比例的是()。
A. 行驶的速度一定,路程和时间B. 一个人跑步的速度和他的体重C. 路程一定,已走的路程和剩下的路程2.下列说法中,错误的是()。
A. 半径的长短决定圆的大小。
B. 比例尺一定,图上距离与实际距离成正比例关系。
C. 一条线段长0.01m。
D. 用0,1,2三个数字组成三位数,可以组出6个。
3.下列等式中a与b成反比例的是()。
A. B. C.4.圆的半径与圆的面积关系是()。
A. 正比例关系B. 反比例关系C. 没有比例关系D. 既是正比例关系又是反比例关系5.下面各题中的两种量成反比例关系的是()A. 单价一定,总价与数量B. 圆柱的体积一定,圆柱的底面积与高C. 圆的面积与它的半径6.下面的说法正确的是()。
A. 一个比例的两个外项互为倒数,则两个内项的乘积为1B. 图上距离总比实际距离小C. 两个相关联的量,不成正比例就成反比例7.下列各题中的两种量,成正比例的是()。
A. 小东的身高和体重B. 修一条水渠,每天修的米数和天数C. 圆的半径和面积D. 订《中国少年报》的份数和总钱数8.下列各数量关系中,成正比例关系的是()A. 总价一定,买的数量与单价B. 全班人数一定,出勤人数与缺勤人数C. 圆的周长与它的半径D. 运送一批货物,平均每天运的吨数和需要的天数二、填空题(共10题;共17分)9.Y=6X,Y与X成________比例。
10.非0自然数A和B,如果A= B,那么A、B的最大公因数是________,A和B成________比例。
11.如果3a=4b(a、b都不为0),那么a和b成________比例。
当b=0.6时,a=________。
12.下面的表格中,如果A和B成正比例,x=________,如果A和B成反比例,x=________。
A 2 8B 0.5 x13.加工一种零件的总个数一定,那么每小时加工的零件个数和加工时间成________比例。
小学数学六年级下册新人教版第四单元比例测试卷(答案解析)(1)

⼩学数学六年级下册新⼈教版第四单元⽐例测试卷(答案解析)(1)⼩学数学六年级下册新⼈教版第四单元⽐例测试卷(答案解析)(1)⼀、选择题1.下⾯能与5,7,10组成⽐例的是()。
A. 8B. 14C. 9D. 122.下列选项中,不能与0.6:0.36组成⽐例的是()A. :B. 3:5C. 1.25:0.753.8x=5y,x与y()A. 成正⽐例B. 成反⽐例C. 不成⽐例D. ⽆法判断4.下⾯⼏组相关联的量中,成正⽐例的是()。
A. 圆柱的体积⼀定,它的底⾯积和⾼B. ⼀本书,每天看的页数和看的天数C. 同⼀时间地点每棵树的⾼度和它影⼦的长度D. ⼀条路,已修的⽶数和未修的⽶数5.⼩李正在看⼀本故事书,已经看的页数和还没有看的页数,会是下⾯的()关系。
A.成正⽐例 B. 成反⽐例 C. 不成⽐例 D. ⽆法6.在⼀幅地图上⽤1cm长的线段表⽰40km的实际距离,这幅地图的⽐例尺是()。
A. 1:40B. 1:4000C. 1:4000000D. 400000:17.下列能与:组成⽐例的是()。
A. 2:3B. :C. 3:2D. :8.下⾯各选项中的两种量,成正⽐例关系的是()。
A. 当xy =8时,x和yB. 购买物品的总价和数量C. 正⽅形的周长和它的边长D. 圆锥的⾼⼀定,体积和底⾯半径9.下⾯根据A×B=1×8写出的⽐例中,正确的是()。
A. A∶8=B∶1B. A∶B=8∶1C. 8∶A=B∶1D. 8∶B=1∶A 10.下列式⼦中,是⽐例的是()。
A. 5:7=15:21B. 3.6:2.4=40:30C. :4=3:D. : = :11.下⾯两个⽐可以组成⽐例的是()。
A. 2:5和4:7B. :和2.5:1C. 0.8:0.3和8:3012.市政府要建⼀块长600⽶,宽600⽶的长⽅形⼴场,画在⼀张长20厘⽶,宽16厘⽶的长⽅形纸上,选⽤下⾯哪⼀种⽐例尺⽐较合适?()A. 1:2500B. 1:3000C. 1:4000D. 1:4000000⼆、填空题13.正⽅体的表⾯积与它的⼀个⾯的⾯积成________⽐例;汽车⾏驶的路程⼀定,汽车的速度与所⽤的时间成________⽐例。
六年级数学下册正比例和反比例(复习课)(19张PPT)人教版

4.2 正比例和反比例
复习课
学习目标
1.理解正、反比例的意义 2.会判断两种量是否成正、反比例关系 3.会利用正、反比例的关系解决实际问题
一、正比例
判断下面每组题中的两种量是否成正比例关系,并说出理由。
1.长方形的宽一定,它的面积和长。 ( 成正比例 )
长方形的面积 长方形的长
正比例和反比例的异同点
正比例
反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。
变 化 不规 同律 点 关 系 式
变化的方向相同,一种 量扩大(或缩小),另一 种量也扩大(或缩小)。
y k(一定) x
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。
xy k(一定)
针对训练
时,一共可以打字多少页?
工作总量
方法一
工作时间
=工作效率(一定) 方法二
解:设一共可以打字x页。
由题意得 x 36 64 6 6x 36 (6 4)
6x 360
解:设4小时可以打字x页。
由题意得 x 36 46
6x 36 4
6x 144
x 60
答:一共可以打字60页。
x 24
36+24=60(页) 答:一共可以打字60页。
正比例和反比例
找关系
设未知数
反比例 xy k(一定)
两种相关 联的量
相同点
概念
不同点
一种量变化另一 种量也随着变化
变化规律
列比例
判断方法
解比例 答
比值一定 成正比例
关系式
积一定 成反比例
家庭作业 一、选择 1.表示X和y成正比例关系的是( )。
六年级下册数学课件-课前预习:4.10用正比例关系解决问题 人教版(共11张PPT)

3.5×10=35(元) 本题中单价、数量、总 价存在比例关系,用比 例关系能解决这个问题 吗?继续看教材。
认真读这段话,找出本题的比例关系。
张大妈家的水费∶张大妈家的用水吨数=水的单价 李奶奶家的水费∶李奶奶家的用水吨数=水的单价
单价是 一样的
RJ 六年级下册
第四单元 比 例
第10课时 用正比例关系解决问题
课前预习
第一步 旧知回顾
判断下面的两个量是否成比例, 并说明理由。
速度一定,路程和时间
路程 时间
=速度,速度一定,
路程和时间成正比例。
第二步 新知引入
说说单价、数量、总价三者间的比例关系。
单价一定,总价和数量成正比例。 数量一定,总价和单价成正比例。 总价一定,数量和单价成反比例。
利用比例,能解决什么 问题呢?请看教材,开 始我们今天的学习。
第三步 精读教材
请仔细阅读课本第61页例5,划出重要信息。
张大妈家 水费总价
要求的是什么? 要求的是李奶奶家的水费总价。 求总价必须要知道什么 呢?继续看教材中“阅 读与理解”。
单价×数量=总价
用水 吨数
水的单 价是不
变的
算术法
先求每吨水多少元 总价÷数量=单价
第五步 小试牛刀
小明买4支圆珠笔用了6元。小刚想买3支 同样的圆珠笔,要用多少钱?
请试着在书上 完成这个题目。
水,水费是28元。
张大妈 张大妈家的水费∶张大妈家的用水吨数 =王大爷家的水费∶王大爷家的用水吨数
28 = 42 8x
x=422×8 8
x=12
答:王大爷家上个月用了12 t水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版六年级下册数学用正比例解决问题
一.解比例。
51=25x x 2=5.311.2 32=15x x 5.2=4.01
二、填空
1.车轮直径一定,所行的路程和车轮的转数成( )比例。
2.因为每度电的价格一定,所以电费和用电的度数成( )比例。
3. 把下面的数量关系式补充完整
路程÷( )=时间 路程÷( )=速度
总价÷( )=数量 总价÷ ( )=单价 三、判断
1.两种相关联的量,不成正比例,就成反比例。
( )
2.图上距离和实际距离成正比例。
( )
3.X 和Y 表示两种变化的相关联的量,同时5X -7Y =0,X 和Y 不成比例。
( )
4.分数的大小一定,它的分子和分母成正比例。
( )
5.在一定的距离内,车轮周长和它转动的圈数成反比例。
( ) 四、解决问题 1.
2.小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元?
3.小明买9本练习本花了
4.5元,如果用20元钱买同样的练习本,可以买多少本?
4.运一批煤,18次运了90吨,照这样计算,14次可以运多少吨?
5.运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤?
6.用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨?
7.一种水管,40米重60千克。
现称得一捆水管重270千克,这捆水管共长多少米?
8.华南服装厂3天加工西装180套,照这样计算,要生产540套西装,需要多少天?
9.王师傅生产25个零件需要1.5小时,照这样计算,生产125个零件需要多少小时?
10.把一根3m长的标杆直立在地上,测得影长2.7m,同时测得旁边一棵树的影长比标杆影长多3.6m,这棵树高多少米?
11.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?
12.一个修路队,原计划每天修400m,15天可以修完。
结果12天就完成任务,实际每天修多少米?
参考答案:
人教版六年级下册数学用正比例解决问题
一.解比例。
51=25x x 2=5.311.2 32=15x x 5.2=4.01 解:X = 5 解:X = 30 解: X = 10 解:X = 1 二、填空
1.车轮直径一定,所行的路程和车轮的转数成( 正 )比例。
2.因为每度电的价格一定,所以电费和用电的度数成( 正 )比例。
3. 把下面的数量关系式补充完整
路程÷( 速度 )=时间 路程÷( 时间 )=速度
总价÷( 单价 )=数量 总价÷ ( 数量 )=单价 四、判断
1.两种相关联的量,不成正比例,就成反比例。
( × )
2.图上距离和实际距离成正比例。
( √ )
3.X 和Y 表示两种变化的相关联的量,同时5X -7Y =0,X 和Y 不成比例。
( × )
4.分数的大小一定,它的分子和分母成正比例。
( √ )
5.在一定的距离内,车轮周长和它转动的圈数成反比例。
( √ ) 四、解决问题
1. 解:我家用70千瓦时该付X 元
30:50 = x :70 或 30
50 = x 70
X = 42 X = 42
2.小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元?
解:如果买同样的练习本20本需要付多X 元 4.5:9 = x :20 或 4.5
9 = x 20
X = 10 X = 10 3.小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本?
解:如果买同样的练习本20元钱要要买X 本 4.5:9 =20:x 或 4.5
9 = 20X
X = 40 X = 40 4.运一批煤,18次运了90吨,照这样计算,14次可以运多少吨?
解:14次可以运X 吨。
90:18 = x :14 或 90
18 = x 14
X = 70 X = 70 5.运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤?
解:X次才能运完140吨 90:18 = 140:x或90
18
= 140
x
X = 28 X = 28
6.用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨?
解:每天可运货x吨。
128:8 = x:11 或128
8
= x
11
X = 176 X = 176
7.一种水管,40米重60千克。
现称得一捆水管重270千克,这捆水管共长多少米?
解:这捆水管共长x米。
60:40 = 270:x 或60
40
= 270
x
X = 180 X = 180
8.华南服装厂3天加工西装180套,照这样计算,要生产540套西装,需要多少天?
解:需要多x天 180:3 = 540:x 或180
3
= 540
x
X = 9 X = 9
9.王师傅生产25个零件需要1.5小时,照这样计算,生产125个零件需要多少小时?
解:需要x小时 25:1.5 =125:x 或25
1.5
= 125
x
X = 7.5 X = 7.5
10.把一根3m长的标杆直立在地上,测得影长2.7m,同时测得旁边一棵树的影长比标杆影长多3.6m,这棵树高多少米?
解:设这棵树高x米
3:2.7 = x:(2.7+3.6) 或
3
2.7
= x
2.7+
3.6
X = 7 X = 7
11.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?
解:需要行驶x小时
140:2 =400:x 或140
2
= 400
x
X = 40
7
X =
40
7
12.一个修路队,原计划每天修400m,15天可以修完。
结果12天就完成任务,实际每天修多少米?
解:实际每天修x米。
12X=400×15
X =500
500-400=100(米)。