历年江苏省扬州市中考数学试卷
2022年江苏省扬州市中考数学真题试卷附解析

2022年江苏省扬州市中考数学真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为若太阳光与地面成40°角,一棵树的影长为10㎝,则树高 h 所满足的范围是( )A .h>15B . 10<h<15C . 5<h<10D . 3<h<5 2.圆的半径为13cm ,两弦AB CD ∥,24cm AB =,10cm CD =,则两弦AB CD ,的距离是( )A .7cmB .17cmC .12cmD .7cm 或17cm 3.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m 、n 的值是( ) A .4,13B .-4,19C .-4,13D .4,19 4.在对50个数进行整理的频数分布表中,各组的频数之和与频率之和分别等于 ( ) A .50,1B . 50,50C .1,50D .1,1 5.如图,a ∥b ,若∠1=120°,则∠2 的度数是( ) A .l20° B .70° C .60° D . 506. 如图,下列条件中不能判断直线1l ∥2l 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°7.下列长度的三条线段,能组成三角形的是( )A . 1,2,3B .1,3,5C . 2,2,4D .2,3,48.如果22(3)9x x kx -=++,那么k 的值等于( ) A .3 B .-3 C .6 D .-69.已知甲数的3倍等于乙数的4倍,且甲数比乙数大8,则甲数等于( )A .16B .24C .32D .44 10.某商店一次同时卖出两套童装,每件都以135元售出,其中一套盈利25%,另一套亏本25%,则在这次买卖中,该商店( )A .不赚不赔B .赚9元C .赔18元D .赚 18元11.下列各式能用加法运算律简化的是( )A .113(5)23+-B .214253++C .(-7)+(-8.2)+(-3)+(+-6. 2)D .13114()(2)(7)3725+-+-+- 二、填空题12.如图,正方形ABCD 内切圆的面积为π81,则正方形的周长为 .13.如图,一束光线照在坡度为1:3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是 度.14.反比例函数xm y 12--=(m 为常数)的图像如图所示,则m 的取值范围是________. 15.在中国地理地图册上,连结上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示.飞机从台湾直飞上海的距离约为1286千米,那么飞机从台湾绕道香港再到上海的飞行距离约为 千米.16.某班有48位同学。
最新江苏省扬州市中考数学经典试题附解析

江苏省扬州市中考数学经典试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D . 100°2.如图所示的两同心圆中,大圆的半径 OA 、OB 、OC 、OD 分别交小圆于E 、F 、G 、H , ∠AOB =∠GOH ,则下列结论错误的是( )A .EF=GHB .⌒EF = ⌒GHC .∠AOG=∠BOD D . ⌒AB =⌒GH 3.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是( ) A .1∶2∶3∶4B .1∶2∶2∶1C .2∶2∶1∶1D .2∶1∶2∶1 4.下列方程中是一元二次方程的是( )A .2x +1=0B .y 2+x=1C .x 2+1=0D .112=+x x 5.下面的图形中,不是轴对称图形的是( )A .有两个角相等的三角形B .有一个内角是40°,另一个内角是l00°的三角形C .三个内角的度数比是2:3:4的三角形D .三个内角的度数比是l :1:2的三角形6.在平面直角坐标系中,点(1,3)位于( )A . 第一象限B .第二象限C .第三象限D . 第四象限 7.已知长方形ABCD 对角线的交点在坐标原点,且AD ∥x 轴,若A 点坐标为(-1,2),则D 点坐标为( )A .(2,-l )B .(2,1)C .(1,2)D .(-1,2)8.下列图形中,不是正方体的表面展开图的是( )9.下列各语句中,正确的是( )A .两个全等三角形一定关于某直线对称B .关于某直线对称的两个三角形不一定是全等三角形C .关于某直线对称的两个三角形对应点连接的线段平行于对称轴D .关于某直线对称的两个三角形一定是全等三角形10.如图,将四边形AEFG 变换到四边形ABCD ,其中E ,G 分别是AB ,AD 的中点,下列叙述不正确的是 ( )A .这种变换是相似变换B .对应边扩大到原来的2倍C .各对应角度数不变D .面积扩大到原来的2倍 11.化简22416m m m --的结果是( ) A .4m m +B .- 4m m +C . 4m m -D . 4m m- 12.如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件,不能说明ΔABD ≌ΔACE 的是( )A .∠B=∠CB .AD=AEC .∠BDC=∠CEBD .BD=CE 13.用代入解方程组52231x y x y -=⎧⎨-=⎩时,下列代入方法正确的是( ) A .231x x -= B .21531x x -+= C .23(52)1x x --= D . 21561x x --=14.如图是超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价模糊不清,请你根据标签上的数据算一算该洗发水的原价是( )A .22元B .23元C .26元D .24元15.下列等式中,正确的是( )A .2325a a a +=B .321a a -=C .325a a a --=D .32a a a -+=- 二、填空题 16.若将二次函数245y x x =-+,配方成为2()y x k h =++的形式(其中k h ,为常数),则y = .17.如图,点 M 是⊙O 外一点,MC 、MD 分别交⊙O 于点B 、C 、A 、D ,弦AC 、BD 交于点 P ,且∠DAC=40°, ∠ADB=10°,那么∠DBC= 度,∠ACB= 度,∠CMD= 度.18. 抛物线2221y x x =--与x 轴的交点坐标是 ;与 y 轴的交点坐标是 .19.如图,在菱形ABCD ,AB=BD=2,则AC= .20.四边形ABCD 中,AC 、BD 交于点O ,且OA=OC ,OB=•OD ,•∠ABC=•80•°,•则∠ADC=_____.21.图中1l 反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)分别写出1l 与2l 的函数解析式:1l : ,2l : ;(2)当销售量 件时,该公司开始盈利(销售收入大于销售成本).22.已知a ,b 是方程2(2)10x m x +++=的两根,且a b =,则m = .23.实数a 、b 在数轴上的位置如图所示,选择适当的不等号填空:(1)a b ;(2)||a ||b ;(3)b a - 0;(4)()a b -+ 0.24.一个正方体骰子的六个面上分别标注 1~6这六个数字,任意投掷骰子,掷得 2的倍数的可能性与掷得 3的倍数的可能性谁大了? .25. 某种植大户计划安排10个劳动力来耕地,可以种蔬菜也可以种水稻,种这些作物所需劳动力及预计产值如下表:每亩所需劳动力(个) 每亩预计产值(元) 蔬菜 12 3000水稻 14 700为了使所有土地都种上作物,全部劳动力都有工作,应安排种蔬菜的劳动力为人,这时预计产值为 元.26.9的平方根是 ,64-的立方根是 .三、解答题27.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数);(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?28.一个二次函数,其图象由抛物线212y x =向右平移 1 个单位,再向上平移k (k>0)个单位得到,平移后图象过点(2,1),求k 的值.29.化简,求值()()()()22222a b a b a ab b a b -÷++-+÷-,其中12a =,b=-2.30.如图所示,A ,B 两地之间有一条小河,现在想在河岸搭一座桥(桥与河岸垂直),搭在什么地方才能使A 点过桥到B 点的路程最短?请你在图中画出示意图.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.C5.C6.A7.C8.C9.D10.D11.B12.D13.C14.D15.D二、填空题16.()221y x =-+ 17.40,10,30 18.(2,0)、(12,0),(0,一1) 19.20.80°21.(1)y=100x ,y=50x+200;(2)422.0或-423.(1)>;(2)>;(3)<;(4)<24.掷得 2的倍数的可能性大25.5,4400026.三、解答题27.(1)()P 偶数23= (2)能组成的两位数为:86,76,87,67,68,78 恰好为“68”的概率为16. 28. ∵抛物线12y x =向右平移 1 个单位,再向上平移k 个单位,, ∴2(1)y x k =--+,又∵过点(2,1),∴21(21)12k -+=,解得12k = 29. 原式=()25a b -=30.略。
历年江苏省扬州市中考数学试卷(含答案)

2017年江苏省扬州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.42.(3分)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a3.(3分)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.(3分)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差5.(3分)经过圆锥顶点的截面的形状可能是()A.B. C.D.6.(3分)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.127.(3分)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.98.(3分)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为立方米.10.(3分)若=2,=6,则=.11.(3分)因式分解:3x2﹣27=.12.(3分)在平行四边形ABCD中,∠B+∠D=200°,则∠A=.13.(3分)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为分.14.(3分)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.15.(3分)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=°.16.(3分)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P 处,且DP⊥BC,若BP=4cm,则EC=cm.17.(3分)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为.18.(3分)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m 的所有取值的和为.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).20.(8分)解不等式组,并求出它的所有整数解.21.(8分)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是,扇形统计图中“蟹黄包”部分的圆心角为°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?22.(8分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.(10分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.24.(10分)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB 的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.25.(10分)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O 于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.26.(10分)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=,OC△OA=;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.27.(12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)28.(12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G 在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.2017年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•扬州)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.4【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.2.(3分)(2017•扬州)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a【分析】利用有关幂的运算性质直接运算后即可确定正确的选项.【解答】解:A、a4•a=a5,不符合题意;B、(a2)2=a4,符合题意;C、a3+a3=2a3,不符合题意;D、a4÷a=a3,不符合题意,故选B.【点评】本题考查了幂的有关运算性质,解题的关键是能够正确的运用有关性质,属于基础运算,比较简单.3.(3分)(2017•扬州)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(3分)(2017•扬州)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差【分析】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【解答】解:由于方差和标准差反映数据的波动情况.故选D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(3分)(2017•扬州)经过圆锥顶点的截面的形状可能是()A.B. C.D.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.【点评】本题考查的是用一个平面去截一个几何体,掌握圆锥的特点是解题的关键.6.(3分)(2017•扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7.(3分)(2017•扬州)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2017÷6=336…1,所以a2017=a1=3.故选B.【点评】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.8.(3分)(2017•扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2【分析】对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点.【解答】解:抛物线y=x2+bx+1与y轴的交点为(0,1)∵C(2,1),∴对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,∴b≥﹣2,故选:C.【点评】本题考查了二次函数图象与系数的关系.解题时,利用了二次函数图象上点的坐标特征来求b的取值范围.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)(2017•扬州)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为 1.6×104立方米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•扬州)若=2,=6,则=12.【分析】由=2,=6得a=2b,c=,代入即可求得结果.【解答】解:∵=2,=6,∴a=2b,c=,∴=12,故答案为12.【点评】本题考查了有理数的除法,求得a=2b,c=是解题的关键.11.(3分)(2017•扬州)因式分解:3x2﹣27=3(x+3)(x﹣3).【分析】先提取公因式3,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式=3(x2﹣9)=3(x+3)(x﹣3),故答案为3(x+3)(x﹣3).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(3分)(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A=80°.【分析】利用平行四边形的对角相等、邻角互补可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°,故答案为:80°.【点评】本题主要考查平行四边形的性质,掌握平行四边形的对角相等、邻角互补是解题的关键.13.(3分)(2017•扬州)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为135分.【分析】根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.【解答】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.【点评】本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•扬州)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.【点评】本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.(3分)(2017•扬州)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=50°.【分析】连接CO,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC的度数.【解答】解:连接CO,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=(180°﹣80°)÷2=50°.故答案为:50.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(3分)(2017•扬州)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=(2+2)cm.【分析】根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC﹣BP=(4+4)cm,∵∠EPC=180°﹣90°﹣60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.【点评】本题考查了翻折变换﹣折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.17.(3分)(2017•扬州)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为y=.【分析】设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,得到AC=n,OC=﹣m,根据全等三角形的性质得到AC=OD=n,CO=BD=﹣m,于是得到结论.【解答】解:∵点A是反比例函数y=﹣的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为y=,故答案为:y=.【点评】本题考查了坐标与图形变化﹣旋转,反比例函数图形上点的坐标特征,待定系数法求反比例函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.18.(3分)(2017•扬州)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为15.【分析】由题意m=,令y=,则x=2017﹣y2,可得m==,由m是正整数,y≥0,推出y=1时,m=12,y=2时,m=3,由此即可解决问题.【解答】解:由题意m=,令y=,则x=2017﹣y2,∴m==,∵m是正整数,y≥0,∴y=1时,m=12,y=2时,m=3,∴正整数m的所有取值的和为15,故答案为15.【点评】本题考查无理方程、换元法、正整数等知识,解题的关键是学会利用换元法解决问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)(2017•扬州)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).【分析】(1)根据零指数幂的意原式=义以及特殊角锐角三角函数即可求出答案;(2)根据平方差公式以及单项式乘以多项式的法则即可求出答案.【解答】解:(1)原式=﹣4+1﹣2×+﹣1=﹣3﹣+﹣1=﹣4(2)原式=3a﹣2a2+2(a2﹣1)=3a﹣2a2+2a2﹣2=3a﹣2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•扬州)解不等式组,并求出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3≥0,得:x≥﹣1.5,解不等式5﹣x>0,得:x<3,则不等式组的解集为﹣1.5≤x<3,∴不等式组的整数解为﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•扬州)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?【分析】(1)由喜欢“其他”的人数除以所占的百分比即可求出调查的总人数;由喜欢“汤包”所占的百分比乘以总人数求出“汤包”的人数;由喜欢“蟹黄包”的人数除以调查的总人数即可得到所占的百分比,再乘以360即可求出结果;(2)用顾客中喜欢“汤包”所占的百分比,乘以1000即可得到结果.【解答】解:(1)8÷5%=160(人),160×30%=48(人),32÷160×360°=0.2×360°=72°.故条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)30%×1000=300(人).故估计富春茶社1000名顾客中喜欢“汤包”的有300人.故答案为:48人,72.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(8分)(2017•扬州)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.23.(10分)(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【解答】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【点评】此题主要考查了分式方程的应用,掌握行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间是解题的关键.24.(10分)(2017•扬州)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.【分析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC'A'是菱形.(2)通过解直角△ABC得到AC、BC的长度,由(1)中菱形ACC'A'的性质推知AC=AA′,由平移的性质得到四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′﹣BC.【解答】解:(1)四边形ACC'A'是菱形.理由如下:由平移的性质得到:AC∥A′C′,且AC=A′C′,则四边形ACC'A'是平行四边形.∴∠ACC′=∠AA′C′,又∵CD平分∠ACB的外角,即CD平分∠ACC′,∴CD也平分∠AA′C′,∴四边形ACC'A'是菱形.(2)∵在△ABC中,∠B=90°,AB=24,cos∠BAC=,∴cos∠BAC==,即=,∴AC=26.∴由勾股定理知:BC===10.又由(1)知,四边形ACC'A'是菱形,∴AC=AA′=26.由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′﹣BC=26﹣10=16.【点评】本题考查了四边形综合题,需要掌握平移的性质,解直角三角形,勾股定理以及菱形的判定与性质等知识点.解答(1)题时,往往误认为四边形ACC'A'是平行四边形,岂不知还要根据已知条件继续证得该四边形是菱形,属于易错题.25.(10分)(2017•扬州)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.【分析】(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;(2)①只要证明△OCF是等边三角形即可解决问题;②求出EC、EF、弧长CF即可解决问题.【解答】解:(1)结论:DE是⊙O的切线.理由:∵四边形OABC是平行四边形,又∵OA=OC,∴四边形OABC是菱形,∴OA=OB=AB=OC=BC,∴△ABO,△BCO都是等边三角形,∴∠AOB=∠BOC=∠COF=60°,∵OB=OF,∴OG⊥BF,∵AF是直径,CD⊥AD,∴∠ABF=∠DBG=∠D=∠BGC=90°,∴四边形BDCG是矩形,∴∠OCD=90°,∴DE是⊙O的切线.(2)①由(1)可知:∠COF=60°,OC=OF,∴△OCF是等边三角形,∴CF=OC.②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,∴OE=2OC=24,EC=12,∵OF=12,∴EF=12,∴的长==4π,∴阴影部分的周长为4π+12+12.【点评】本题考查切线的判定、平行四边形的性质、等边三角形的判定和性质、弧长公式,解直角三角形等知识,解题的关键是学会添加常用辅助线,证明三角形是等边三角形是解题的突破点,属于中考常考题型.26.(10分)(2017•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB 与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= 0,OC△OA=7;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC=BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD=AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD==4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD=AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD===2,∴BA△BC=BD2﹣CD2=24;(3)如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DN=AN=×OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3,∴S=BC×AO=6.△ABC【点评】此题是三角形综合题,主要考查了勾股定理,含30°的直角三角形的性质,勾股定理,等腰三角形的性质,解(1)的关键是求出OD,解(2)的关键是BD,解(3)的关键是用方程组的思想解决问题,是一道很好的新定义题目.27.(12分)(2017•扬州)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【解答】解:(1)假设p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=﹣30,b=1500,∴p=﹣30x+1500,检验:当x=35,p=450;当x=45,p=4150;当x=50,p=0,符合一次函数解析式,∴所求的函数关系为p=﹣30x+1500;(2)设日销售利润w=p(x﹣30)=(﹣30x+1500)(x﹣30)即w=﹣30x2+2400x﹣45000,∴当x=﹣=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)日获利w=p(x﹣30﹣a)=(﹣30x+1500)(x﹣30﹣a),即w=﹣30x2+(2400+30a)x﹣(1500a+45000),对称轴为x=﹣=40+a,①若a>10,则当x=45时,w有最大值,即w=2250﹣150a<2430(不合题意);②若a<10,则当x=40+a时,w有最大值,将x=40+a代入,可得w=30(a2﹣10a+100),当w=2430时,2430=30(a2﹣10a+100),解得a1=2,a2=38(舍去),综上所述,a的值为2.【点评】本题主要考查了二次函数的综合应用,解题时要利用图表中的信息,学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题.28.(12分)(2017•扬州)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x﹣x2=。
江苏省扬州市2019年中考:数学考试真题与答案解析

江苏省扬州市2020年中考:数学考试真题与答案解析一、 选择题本大题共有8小题,每小题3分,共24分. 在每小题给出的四个选项中,只有一顶是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上。
1. 实数3的相反数是( )A. ﹣3B.C. 3D. 133±2. 下列各式中,计算结果为的是( )6m A.B. C.D. 23m m ⋅33+m m 122m m ÷()32m3. 在平面直角坐标系中,点所在的象限是()()22,3P x +-A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限4. “致中和,天地位焉,万物育焉”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光. 在下列与扬州有关的标识或简图中,不是轴对称图形的是()A B. C. D.5. 某班级组织活动,为了了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )A. ①②③B.①③⑤C. ②③④D. ②④⑤6. 如图,小明从点A 出发沿着直线前进10米到达点B ,向左转45°后又沿直线前进10米到达点C ,再向左转45°后沿直线前进10米到达点D.........照这样走下去,小明第一次回到出发点A 时所走的路程为( )A. 100米B. 80米C. 60米D. 40米(第6题)(第7题)(第8题)7. 如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都各点上,以AB 为直径的圆经过点C 、D ,则sin ∠ACD 的值为( )A.B.C.D.23328. 小明同学利用计算机软件绘制函数(a ,b 为常数)的图像如图所示,由学习()2axy x b =+函数的经验,可以推断常数a 、b 的值满足( )A. a >0,b >0B. a >0,b<0C. a<0,b >0D. a<0,b<0二、 填空题本大题共有10小题,每小题3分,共30分. 不需写出解答过程,请把答案直接填写在答题卡相应位置上。
2013-2018年江苏省扬州市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年江苏省扬州市中考数学试题汇编(含参考答案与解析)1、2013年江苏省扬州市中考数学试题及参考答案与解析 (2)2、2014年江苏省扬州市中考数学试题及参考答案与解析 (26)3、2015年江苏省扬州市中考数学试题及参考答案与解析 (50)4、2016年江苏省扬州市中考数学试题及参考答案与解析 (72)5、2017年江苏省扬州市中考数学试题及参考答案与解析 (97)6、2018年江苏省扬州市中考数学试题及参考答案与解析 (118)2013年江苏省扬州市中考数学试题及参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一个选项是符合题目要求的.)1.﹣2的倒数是()A.12B.12C.﹣2 D.22.下列运算中,结果是a4的是()A.a2•a3B.a12÷a3C.(a2)3D.(﹣a)43.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°8.方程x 2+3x ﹣1=0的根可视为函数y=x+3的图象与函数1y x=的图象交点的横坐标,则方程x 3+2x ﹣1=0的实根x 0所在的范围是( )A .0104x <<B .01143x <<C .01132x <<D .0102x << 二、填空题(本大题共10小题,每小题3分,共30分,不需要写出解决过程)9.据了解,截止2013年5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 . 10.分解因式:a 3﹣4ab 2= .11.在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V=200时,p=50,则当p=25时,V= .12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有 条鱼.13.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC= .14.如图,在梯形ABCD 中,AD ∥BC ,AB=AD=CD ,BC=12,∠ABC=60°,则梯形ABCD 的周长为 .15.如图,在扇形OAB 中,∠AOB=110°,半径OA=18,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的长为 .16.已知关于x 的方程3221x nx +=+的解是负数,则n 的取值范围为 . 17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为 .18.如图,已知⊙O 的直径AB=6,E 、F 为AB 的三等分点,M 、N 为AB 上两点,且∠MEB=∠NFB=60°,则EM+FN= .三、解答题(本大题共10小题,共96分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(8分)(1)计算:212sin 602-⎛⎫-︒ ⎪⎝⎭(2)先化简,再求值:(x+1)(2x ﹣1)﹣(x ﹣3)2,其中x=﹣2. 20.(8分)已知关于x 、y 的方程组5211823128x y a x y a +=+⎧⎨-=-⎩的解满足x >0,y >0,求实数a 的取值范围.21.(8分)端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转装盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘. (1)该顾客最少可得 元购物券,最多可得 元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.(8分)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD 绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.(10分)某校九(1)、九(2)两班的班长交流了为四川安雅地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.(10分)如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=45,求DE的长.26.(10分)如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于x轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB 和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.(12分)如图1,在梯形ABCD 中,AB ∥CD ,∠B=90°,AB=2,CD=1,BC=m ,P 为线段BC 上的一动点,且和B 、C 不重合,连接PA ,过P 作PE ⊥PA 交CD 所在直线于E .设BP=x ,CE=y . (1)求y 与x 的函数关系式;(2)若点P 在线段BC 上运动时,点E 总在线段CD 上,求m 的取值范围; (3)如图2,若m=4,将△PEC 沿PE 翻折至△PEG 位置,∠BAG=90°,求BP 长.28.(12分)如果10b =n ,那么b 为n 的劳格数,记为b=d (n ),由定义可知:10b =n 与b=d (n )所表示的b 、n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)= ,d (10﹣2)= ;(2)劳格数有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),m d n ⎛⎫⎪⎝⎭=d (m )﹣d (n ). 根据运算性质,填空:()()3d a a a = (a 为正数),若d (2)=0.3010,则d (4)= ,d (5)= ,d (0.08)= ;(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一个选项是符合题目要求的.)1.﹣2的倒数是()A.12-B.12C.﹣2 D.2【知识考点】倒数.【思路分析】根据倒数的定义即可求解.【解答过程】解:﹣2的倒数是12 -.故选A.【总结归纳】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算中,结果是a4的是()A.a2•a3B.a12÷a3C.(a2)3D.(﹣a)4【知识考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据同底数的幂的乘法以及除法法则以及幂的乘方法则即可判断.【解答过程】解:A、a2•a3=a5,故选项错误;B、a12÷a3=a9,故选项错误;C、(a2)3=a6,选项错误;D、正确.故选D.【总结归纳】本题考查同底数幂的除法,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在16附近【知识考点】概率的意义.【思路分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答过程】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;。
2022年江苏省扬州市中考数学真题(解析版)

扬州市2022年初中毕业、升学统一考试数学试题一、选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2的相反数是()A. 2B. -2C. ±2D. -12【答案】A【解析】【分析】根据相反数的定义直接解答即可.【详解】解:-2的相反数是2.故选:A.【点睛】本题考查相反数,相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2. 在平面直角坐标系中,点P(﹣3,a2+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵a2⩾0,∴a2+1⩾1,∴点P(−3,a2+1)所在的象限是第二象限.故选B.3. 《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题,如果设鸡有x只,兔有y只,那么可列方程组为()A.354494x yx y+=ìí+=îB.354294x yx y+=ìí+=îC.944435x yx y+=ìí+=îD.352494x yx y+=ìí+=î【答案】D【解析】【分析】一只鸡1个头2个足,一只兔1个头4个足,利用共35头,94足,列方程组即可【详解】一只鸡1个头2个足,一只兔1个头4个足设鸡有x只,兔有y只由35头,94足,得:352494x y x y +=ìí+=î故选:D【点睛】本题考查方程组的实际应用,注意结合实际情况,即一只鸡1个头2个足,一只兔1个头4个足,去列方程4. 下列成语所描述的事件属于不可能事件的是( )A. 水落石出B. 水涨船高C. 水滴石穿D. 水中捞月【答案】D【解析】【分析】根据不可能事件的定义:在一定条件下一定不会发生的事件是不可能事件,进行逐一判断即可【详解】解:A 、水落石出是必然事件,不符合题意;B 、水涨船高是必然事件,不符合题意;C 、水滴石穿是必然事件,不符合题意;D 、水中捞月是不可能事件,符合题意;故选D【点睛】本题主要考查了不可能事件,熟知不可能事件的定义是解题的关键.5. 如图是某一几何体的主视图、左视图、俯视图,该几何体是( )A. 四棱柱B. 四棱锥C. 三棱柱D. 三棱锥【答案】B【解析】【分析】根据各个几何体三视图的特点进行求解即可.【详解】解:∵该几何体的主视图与左视图都是三角形,俯视图是一个矩形,而且两条对角线是实线,∴该几何体是四棱锥,故选B .【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.6. 如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC D ,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A. ,,AB BC CAB. ,,AB BC B ÐC. ,,AB AC B ÐD. ,,ÐÐA B BC【答案】C【解析】【分析】根据SSS ,SAS ,ASA 逐一判定,其中SSA 不一定符合要求.【详解】A. ,,AB BC CA .根据SSS 一定符合要求;B. ,,AB BC B Ð.根据SAS 一定符合要求;C. ,,AB AC B Ð.不一定符合要求;D. ,,ÐÐA B BC .根据ASA 一定符合要求.故选:C .【点睛】本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS ,SAS ,ASA 三个判定定理.7. 如图,在ABC D 中,AB AC <,将ABC V 以点A 为中心逆时针旋转得到ADE V ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE Ð;③CDF BAD Ð=Ð,其中所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】D【解析】【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∵将ABC V 以点A 为中心逆时针旋转得到ADE V ,∴ADE ABC V V ≌,E C \Ð=Ð,AFE DFC Ð=ÐQ ,\AFE DFC △△,故①正确;Q ADE ABC V V ≌,AB AD \=,ABD ADB \Ð=Ð,ADE ABC Ð=ÐQ ,ADB ADE \Ð=Ð,\DA 平分BDE Ð,故②正确;Q ADE ABC V V ≌,BAC DAE \Ð=Ð,BAD CAE \Ð=Ð,Q AFE DFC △△,CAE CDF \Ð=Ð,CDF BAD Ð=Ð\,故③正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.8. 某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y 与该校参加竞赛人数x 的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )A. 甲B. 乙C. 丙D. 丁【答案】C【解析】【分析】根据反比例函数图像与性质求解即可得到结论.【详解】解:描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,设反比例函数表达式为k y x=,则令甲()11,x y 、乙()22,x y 、丙()33,x y 、丁()44,x y ,过甲点作y 轴平行线交反比例函数于()11,x y ¢,过丙点作y 轴平行线交反比例函数于()33,x y ¢,如图所示:由图可知1133,y y y y ¢¢><,\()11,x y ¢、乙()22,x y 、()33,x y ¢、丁()44,x y 在反比例函数k y x=图像上,根据题意可知xy =优秀人数,则①2244x y k x y ==,即乙、丁两所学校优秀人数相同;②1111x y x y k ¢<=,即甲学校优秀人数比乙、丁两所学校优秀人数少;③3333x y x y k ¢>=,即丙学校优秀人数比乙、丁两所学校优秀人数多;综上所述:甲学校优秀人数<乙学校优秀人数=丁学校优秀人数<丙学校优秀人数,\在这次党史知识竞赛中成绩优秀人数最多的是丙学校,故选:C .【点睛】本题考查反比例函数图像与性质的实际应用题,读懂题意,并熟练掌握反比例函数的图像与性质是解决问题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需要写解答过程,请把答案直接写在答题卡相应位置上)9. 扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是__.【答案】8℃.【解析】【详解】用最高温度减去最低温度即可得当天日温差:6-(-2)=6+2=8℃.10.在实数范围内有意义,则x 的取值范围是_______.【答案】1³x 【解析】【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解:在实数范围内有意义,∴x -1≥0,解得x ≥1.故答案为:x ≥1.【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.11. 分解因式233m -=_____.【答案】3(x-1)(x+1)【解析】【分析】注意将提取公因式与乘法公式综合应用,将整式提取公因式后再次利用公式分解.【详解】解:3m 2-3=3(m 2-1)=3(m -1)(m +1)故答案:3(m -1)(m +1).【点睛】本题考查的是提公因式法与公式法分解因式的综合运用.分解因式时,有公因式的,先提公因式,再考虑运用何种公式法来分解.12. 请填写一个常数,使得关于x 方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一)【解析】【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a ,∵要使原方程有两个不同的实数根,的为的∴()2=240a D -->,∴1a <,∴满足题意的常数可以为0,故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键.13. 如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为________.【答案】1x <-【解析】【分析】观察一次函数图像,可知当y >3时,x 的取值范围是1x <-,则3kx b +>的解集亦同.【详解】由一次函数图像得,当y >3时,1x <-,则y =kx+b >3的解集是1x <-.【点睛】本题考查了一次函数与不等式结合,深入理解函数与不等式的关系是解题的关键.14. 掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E 与震级n 的关系为1.510n E k =´(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【解析】【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量E 与震级n 的关系为 1.510n E k =´(其中k 为大于0的常数)可得到,当震级为8级的地震所释放的能量为: 1.58121010k k ´´=´,当震级为6级的地震所释放的能量为: 1.5691010k k ´´=´,12391010100010k k ´==´Q ,\震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.15. 某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为22S S 乙甲、,则2S 甲________2S 乙.(填“>”“<”或“=”)【答案】>【解析】【分析】分别求出平均数,再利用方差的计算公式计算甲、乙的方差,进行比较即可.【详解】根据折线统计图中数据,()51093857x =++++¸=甲,()8686757x =++++¸=乙,∴()()()()()222222157107973787 6.85s éù=´-+-+-+-+-=ëû甲,()()()()()222222187678767770.85s éù=´-+-+-+-+-=ëû乙,∴22s s >乙甲,故答案为:>.【点睛】本题主要考查平均数和方差的计算,掌握方差的计算公式是解答本题的关键.16. 将一副直角三角板如图放置,已知60E Ð=°,45C Ð=°,EF BC ∥,则BND Ð=________°.【答案】105【解析】【分析】根据平行线的性质可得45FAN B Ð=Ð=°,根据三角形内角和定理以及对顶角相等即可求解.【详解】45B C аÐ==Q ,EF BC ∥,\45FAN B Ð=Ð=°,∵∠E =60°,∴∠F =30°,180105BND ANF F BAF \Ð=Ð=°-Ð-Ð=°故答案为:105【点睛】本题考查了平行线的性质,三角形内角和定理,掌握平行线的性质是解题的关键.17. “做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC ,第1次折叠使点B 落在BC 边上的点B ¢处,折痕AD 交BC 于点D ;第2次折叠使点A 落在点D 处,折痕MN 交AB ¢于点P .若12BC =,则MP MN +=_____________.【答案】6【解析】【分析】根据第一次折叠的性质求得12BD DB BB ¢¢==和AD BC ^,由第二次折叠得到AM DM =,MN AD ^,进而得到MN BC P ,易得MN 是ADC V 的中位线,最后由三角形的中位线求解.【详解】解:∵已知三角形纸片ABC ,第1次折叠使点B 落在BC 边上的点B ¢处,折痕AD 交BC 于点D ,∴12BD DB BB ¢¢==,AD BC ^.∵第2次折叠使点A 落在点D 处,折痕MN 交AB ¢于点P ,∴AM DM =,AN ND =,∴MN AD ^,∴MN BC P .∵AM DM =,∴MN 是ADC V 的中位线,∴12MP DB ¢=,12MN DC =.∵12BC =,2BD DC CB BD BC +=+¢=,∴()111162222MP MN DB DC DB DB B C BC +=+=+=¢+¢¢=¢.故答案为:6.【点睛】本题主要考查了折叠的性质和三角形中位线的性质,理解折叠的性质,三角形的中位线性质是解答关键.18. 在ABC D 中,90C Ð=°,a b c 、、分别为A B C ÐÐÐ、、的对边,若2b ac =,则sin A 的值为__________.【解析】【详解】解:如图所示:在Rt ABC V 中,由勾股定理可知:222+=a b c ,2ac b =Q ,22a ac c \+=,0a >Q , 0b >,0c >,2222a ac c c c +\=,即:21a a c cæö+=ç÷èø,求出a c =或a c =,\在Rt ABC V 中:in s a c A ==,【点睛】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt ABC V 中,sin A A Ð=的对边斜边 ,cos A A Ð=的邻边斜边,tan A A A Ð=Ð的对边的邻边.三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19. 计算:(1)(02cos 45p °+-(2)22221121m m m m +æö+¸ç÷--+èø【答案】(1)1(2)12m -【解析】【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可;(2)先合并括号里的分式,再对分子和分母分别因式分解即可化简;【小问1详解】解:原式=21+-=1-.【小问2详解】解:原式=()()21211121m m m m m --æö+×ç÷--+èø=()()211121m m m m -+×-+=12m -.【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.20. 解不等式组221213x x x x -£ìï+í-<ïî,并求出它的所有整数解的和.【答案】3【解析】【分析】先解每个不等式,求得不等式组的解集,然后找出所有整数解求和即可.【详解】解:221213x x x x -£ìïí+-<ïî①②解不等式①,得2x ³-,解不等式②,得4x <,∴不等式组的解集为24x -£<,∴不等式组的所有整数解为:2- ,1- ,0 ,1 ,2 ,3∴所有整数解的和为:()2101233-+-++++=.【点睛】本题考查了求不等式组的解集,正确地解每一个不等式是解题的关键.21. 某校初一年级有600名男生 ,为增强体质,拟在初一男生中开展引体向上达标测试活动.为制定合格标准,开展如下调查统计活动.(1)A 调查组从初一体育社团中随机抽取20名男生进行引体向上测试,B 调查组从初一所有男生中随机抽取20名男生进行引体向上测试,其中_________(填“A ”或“B ”),调查组收集的测试成绩数据能较好地反映该校初一男生引体向上的水平状况;(2)根据合理的调查方式收集到的测试成绩数据记录如下:成绩/个23457131415人数/人11185121这组测试成绩的平均数为_________个,中位数为__________个;(3)若以(2)中测试成绩的中位数作为该校初一男生引体向上的合格标准,请估计该校初一有多少名男生不能达到合格标准.【答案】(1)B (2)7;5(3)90名【解析】【分析】(1)根据随机调查要具有代表性考虑即可求解;(2)利用加权平均数公式计算,再根据中位数的概念确定这组测试成绩的中位数即可;(3)根据中位数确定样本中不合格的百分比,再乘以该校初一男生的总人数即可求解.【小问1详解】解:∵随机调查要具有代表性,∴从初一所有男生中随机抽取20名男生进行引体向上测试,能较好地反映该校初一男生引体向上的水平状况,故答案为:B;【小问2详解】解:23458751314215=720+++´+´++´+;这组数据排序后,中位数应该是第10,11两个人成绩的平均数,而第10,11两人的成绩都是5,∴这组测试成绩的中位数为55=5 2+,故答案为:7;5【小问3详解】解:以(2)中测试成绩的中位数5作为该校初一男生引体向上的合格标准,则这组测试成绩不合格的人数有3人,∴不合格率为3100%=15% 20´,∴该校初一男生不能达到合格标准的人数为60015%=90´(名).【点睛】本题考查了随机调查,中位数,众数以及利用样本估计总体,读懂题意,理解概念是解题关键.22. 某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图列出所有等可能出现的结果;的(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.【答案】(1)见解析(2)见解析【解析】【分析】(1)首先根据题意画出树状图,由树状图即可求得所有等可能的结果;(2)根据树状图找出颜色不同的两球和摸出颜色相同的两球的情况,即可得解.【小问1详解】解:画树状图如下:由树状图知共有6种情况;【小问2详解】解:由(1)知抽到颜色相同的两球共有2种情况,抽到颜色不同的两球共有4种情况,所以抽到颜色相同的两球对应一等奖,抽到颜色不同的两球对应二等奖.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23. 某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【解析】【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,根据题意,得3603603 34-=x x,解这个方程,得x=10,经检验,x=10是原方程的根,∴每个小组有学生10名.【点睛】此题考查了分式方程的应用,弄清题意是解本题的关键.24. 如图,在ABCD Y 中,BE 、D G 分别平分ABC ADC ÐÐ、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ^,垂足为F .若ABCD Y 的周长为56,6EF =,求ABC D 的面积.【答案】(1)见详解(2)84【解析】【分析】(1)由平行四边形的性质证()ABE CDG ASA D @D 即可求证;(2)作EQ BC ^,由ΔΔΔABC ABE EBC S S S =+即可求解;【小问1详解】证明:在ABCD Y 中,∵//AB CD ,∴BAE DCG Ð=Ð,∵BE 、D G 分别平分ABC ADC ÐÐ、,ABC ADC Ð=Ð,∴ABE CDG Ð=Ð,在ABE D 和CDG D 中,∵BAE DCG AB CDABE CDG Ð=Ðìï=íïÐ=Ðî∴()ABE CDG ASA D @D ,∴BE DG AEB CGD =Ð=Ð,,∴BE DG ∥.【小问2详解】如图,作EQ BC ^,∵ABCD Y 的周长为56,∴28AB BC +=,∵BE 平分ABC Ð,∴6EQ EF ==,∴()1138422ABC ABE EBC S S S EF AB EQ BC AB BC D D D =+=×+×=+=.【点睛】本题主要考查平行四边形的性质、三角形的全等、角平分线的性质,掌握相关知识并灵活应用是解题的关键.25. 如图,AB 为O e 的弦,OC OA ^交AB 于点P ,交过点B 的直线于点C ,且CB CP =.(1)试判断直线BC 与O e 的位置关系,并说明理由;(2)若sin 8A OA ==,求CB 的长.【答案】(1)相切,证明见详解(2)6【解析】【分析】(1)连接OB ,根据等腰三角形的性质得出A OBA Ð=Ð,CPB CBP Ð=Ð,从而求出90AOC OBC Ð=Ð=°,再根据切线的判定得出结论;(2)分别作OM AB ^交AB 于点M ,CN AB ^交AB 于N ,根据sin 8A OA ==求出OP ,AP 的长,利用垂径定理求出AB 的长,进而求出BP 的长,然后在等腰三角形CPB 中求解CB 即可.【小问1详解】证明:连接OB ,如图所示:CP CB OA OB ==Q ,,\A OBA Ð=Ð,CPB CBP Ð=Ð,APO CPB Ð=ÐQ ,APO CBP \Ð=Ð,OC OA ^Q ,即90AOP °=∠,90A APO OBA CBP OBC \Ð+Ð=°=Ð+Ð=Ð,OB BC \^,OB Q 为半径,经过点O ,\直线BC 与O e 的位置关系是相切.【小问2详解】分别作OM AB ^交AB 于点M ,CN AB ^交AB 于N ,如图所示:AM BM \=,CP CB AO CO =^Q ,,A APO PCN CPN \Ð+Ð=Ð+Ð,PN BN =,PCN BCNÐ=ÐA BCN\Ð==Ðsin A =Q ,8OA =,sin OM OP A OA AP \===4OM AM OP AP \====,2AB AM \==111()222PN BN PB AB AP \===-=´-=sin sin BN A BCN CB \=Ð==6CB \===.【点睛】本题考查了切线的证明,垂径定理的性质,等腰三角形,勾股定理,三角函数等知识点,熟练掌握相关知识并灵活应用是解决此题的关键,抓住直角三角形边的关系求解线段长度是解题的主线思路.26. 【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB ,请你用圆规和无刻度的直尺过圆心O 作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN ,请你用圆规和无刻度的直尺作一个以MN 为斜边的等腰直角三角形MNP ;【问题再解】如图3,已知扇形OAB ,请你用圆规和无刻度的直尺作一条以点O 为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【答案】见解析【解析】【分析】【初步尝试】如图1,作∠AOB的角平分线所在直线即为所求;【问题联想】如图2,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图3先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形OAB所交的圆弧即为所求.【详解】【初步尝试】如图所示,作∠AOB的角平分线所在直线OP即为所求;【问题联想】如图,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图,先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形OAB所交的圆弧CD即为所求.【点睛】本题考查了尺规作图,角平分线的性质,线段垂直平分线的性质,扇形的面积等知识,解决此类题目的关键是熟悉基本几何图形的性质,掌握基本作图方法.27. 如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且8AB =dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度8OC =dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 圆,请说明理由.【答案】(1)(296dm - ;(2)20dm ;(3)能切得半径为3dm 的圆.【解析】【分析】(1)先把二次函数解析式求出来,设正方形的边长为2m ,表示在二次函数上点的坐标,代入即可得到关于m 的方程进行求解;(2)如详解2中图所示,设矩形落在AB 上的边DE =2n ,利用函数解析式求解F点坐标,进而表示出矩的形的周长求最大值即可;(3)设半径为3dm 的圆与AB 相切,并与抛物线小脚,设交点为N ,求出交点N 的坐标,并计算点N 是M e 与抛物线在y 轴右侧的切点即可.【小问1详解】由题目可知A (-4,0),B (4,0),C (0,8)设二次函数解析式为y=ax ²+bx+c ,∵对称轴为y 轴,∴b =0,将A 、C 代入得,a =12-,c =8则二次函数解析式为2182y x =-+,如下图所示,正方形MNPQ 即为符合题意得正方形,设其边长为2m ,则P 点坐标可以表示为(m ,2m )代入二次函数解析式得,21822m m -+=,解得122,2m m =-=-(舍去),∴2m =4-,()()222496m ==-则正方形的面积为(296dm -;【小问2详解】如下如所示矩形DEFG ,设DE =2n ,则E (n ,0)将x =n 代入二次函数解析式,得2182y n =-+,则EF =2182n -+,矩形DEFG 的周长为:2(DE +EF )=2(2n +2182n -+)=22416(2)20n n n -++=--+,当n =2时,矩形的周长最大,最大周长为20dm ;【小问3详解】若能切成圆,能切得半径为3dm 的圆,理由如下:如图,N 为M e 上一点,也是抛物线上一点,过点N 作M e 的切线交y 轴于点Q ,连接MN ,过点N 作NP ⊥y 轴于P ,设21,82N m m æö-+ç÷èø,由勾股定理得:222PM PN MN +=,∴222218332m m æö+-+-=ç÷èø解得:1m =,2m =-(舍去),∴()4N ,∴431PM =-=∵1cos 3PM MN NMP MN QM Ð===∴39QM MN ==∴()0,12Q 设QN 的解析式为:y kx b=+∴124b =ìïí+=ïî∴12k b ì=-ïí=ïî∴QN的解析式为:12y =-+与抛物线联立为:218122x -+=-+21402x -+=(214402D =--´´=所以此时N 为M e 与抛物线在y 轴右侧的唯一公共点,所以若切割成圆,能够切成半径为3dm 的圆.【点睛】本题考查了二次函数与几何结合,熟练掌握各图形的性质,能灵活运用坐标与线段长度之间的转换是解题的关键.28. 如图1,在ABC D 中,90,60BAC C Ð=°Ð=°,点D 在BC 边上由点C 向点B 运动(不与点B C 、重合),过点D 作DE AD ^,交射线AB 于点E .(1)分别探索以下两种特殊情形时线段AE 与BE 的数量关系,并说明理由;①点E 在线段AB 的延长线上且BE BD =;②点E 在线段AB 上且EB ED =.(2)若6AB =.①当DE AD =AE 的长;②直接写出运动过程中线段AE 长度的最小值.【答案】(1)①2AE BE =②2AE BE =(2)①215②4【解析】【分析】(1)①算出ABD △各个内角,发现其是等腰三角形即可推出;②算出ADE V 各内角发现其是30°的直角三角形即可推出;(2)①分别过点A ,E 作BC 的垂线,得到一线三垂直的相似,即EGD DHA ∽△△,设DE =,2AD a =,利用30°直角三角形的三边关系,分别表示出ED ,AD ,EG ,DH ,列式求解a 即可;②分别过点A ,E 作BC 的垂线,相交于点G ,H ,证明EHD DGA △△∽可得AG DG DH EH =,然后利用完全平方公式变形得出AE ≥3+E H ,求出AE 的取值范围即可.【小问1详解】①∵在ABC D 中,90BAC Ð=°,60C Ð=°∴30ABC Ð=°∵BE BD=∴1152BDE ABC Ð=Ð=°,90901575BDA BDE Ð=°-Ð=°-°=°在ABD △中,180180307575BAD ABD BDA Ð=°-Ð-Ð=°-°-°=°∴75BAD BDA Ð=Ð=°∴AB BD BE==∴2AE BE =;②如图:∵BE DE =∴30EBD EDB Ð=Ð=°,60AED Ð=°∴在Rt ADE △中,30EAD =∠°∴2AE ED=∴2AE BE =;【小问2详解】①分别过点A ,E 作BC 的垂线,相交于点H ,G ,则∠EGD =∠DHA =90°,∴∠GED +∠GDE =90°,∵∠HDA +∠GDE =90°,∴∠GED =∠HDA ,∴EGD DHA ∽△△,设DE =,2AD a =,则AE ==,6BE =,在Rt ABC V 中,30ABC Ð=°,AB =6则AC ==,2BC AC ==在Rt BEG △中,30EBG Ð=°,6BE =则32BE EG ==-在Rt AHC V 中,60C Ð=°,AC =∴3AH ==∴DH ==由EGD DHA ∽△△得ED EG AD DH =,=解得:1a=2a=-(舍)故215AE==;②分别过点A,E作BC的垂线,相交于点G,H,则∠EHD=∠AGD=90°,∵∠ADE=90°,∴∠EDH=90°-∠ADG=∠DAG,∵∠EHD=∠AGD=90°,∴EHD DGA△△∽,∴AG DGDH EH=,∴AG EH DH DG=g g,∵∠BAC=90°,∠C=60°,∴∠B=30°,∴111=36-)222AG AB BE AE==,E H=(,∴3DH DG EH=g,∴2222222AE AD DE AG DG DH EH=+=+++=2229DG DH EH+++,∵22DG DH+g≥2D GD H∴2292AE DG DH EH++g≥,∴22296AE EH EH++≥≥(3+E H),∵0,0AE DH>>,∴AE≥3+E H,∵16-)2AE=E H(,∴1(6)2AE AE-≥3+,∴4AE≥,故AE的最小值为4.【点睛】本题考查了直角三角形的性质,三角形相似的判定和性质,等腰三角形的性质,一线三垂直相似模型,垂线段最短,熟练掌握直角三角形的性质,一线三垂直模型,垂线段最短原理是解题的关键.。
【中考数学12年】江苏省扬州市2001-2012年中考数学试题分类 专题3 方程(组)和不等式(组)

江苏省扬州市2001-2012年中考数学试题分类 专题3 方程(组)和不等式(组)一、选择题1. (2004年江苏扬州3分)用换元法解方程212x 2x 3x x+-+=()(),则原方程可化为【 】 A .2y 2y 30+-= B .2y 2y 30-+= C .2y 2y 30--= D .2y 2y 30++=3. (2005年江苏扬州大纲卷3分)关于x 的方程2kx 3x 10+-=有实数根,则k 的取值范围是【 】.A .9k 4≤- B .9k k 04≥-≠且 C .49k -≥ D .0k 49k ≠->且 【答案】C 。
【考点】一元二次方程根的判别式,分类思想的应用。
4. (2005年江苏扬州大纲卷3分)若方程()()6m1x 1x 1x 1-=+--有增根,则它的增根是【 】.A .0B .1C .-1D .1和-15. (2007年江苏扬州3分)不等式组x 2x 1<⎧⎨>-⎩的解集为【 】A.x 1>-B.x 2<C.1x 2-<<D.x 1<-【答案】C 。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,不等式组x 2x 1<⎧⎨>-⎩的解集为1x 2-<<。
故选C 。
二、填空题1. (2003年江苏扬州3分)x=-2是方程2x k 1=0+-的根,则k= ▲3. (2005年江苏扬州大纲卷3分)用换元法解方程213(x )3x 60x x--+-=时,若设1x y x-=,则原方程变形为关于y 的方程是 ▲ 。
4. (2006年江苏扬州4分)方程2x 4x=0-的解为 ▲ . 【答案】12x =0x =4,。
【考点】因式分解法解一元二次方程。
【分析】应用因式分解解方程:()212x 4x=0x x 4=0x=0x 4=0x =0x =4-⇒-⇒-⇒,,。
2024年江苏省扬州市中考数学试卷及答案解析

2024年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.(3分)实数2的倒数是()A.﹣2B.2C.﹣D.2.(3分)“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识,其中的轴对称图形是()A.B.C.D.3.(3分)下列运算中正确的是()A.(a﹣b)2=a2﹣b2B.5a﹣2a=3a C.(a3)2=a5D.3a2•2a3=6a64.(3分)第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班45名同学视力检查数据如下表:视力 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0人数1447111053这45名同学视力检查数据的众数是()A.4.6B.4.7C.4.8D.4.95.(3分)在平面直角坐标系中,点P(1,2)关于坐标原点的对称点P′的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)6.(3分)如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体7.(3分)在平面直角坐标系中,函数y=的图象与坐标轴的交点个数是()A.0B.1C.2D.48.(3分)1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,…,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为()A.676B.674C.1348D.1350二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)近年来扬州经济稳步发展,2024年4月26日,扬州市统计局、国家统计局扬州调查队联合发布一季度全市实现地区生产总值约18700000万元,把18700000这个数用科学记数法表示为.10.(3分)分解因式2x2﹣4x+2=.11.(3分)数学兴趣小组做抛掷一枚瓶盖的实验后,整理的实验数据如下表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106157264527105615872650盖面朝上频率0.5600.5400.5300.5230.5280.5270.5280.5290.530根据以上实验数据可以估计出“盖面朝上”的概率约为.(精确到0.01)12.(3分)若二次根式有意义,则x的取值范围是.13.(3分)若用半径为10cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为cm.14.(3分)如图,已知一次函数y=kx+b(k≠0)的图象分别与x、y轴交于A、B两点,若OA=2,OB =1,则关于x的方程kx+b=0的解为.15.(3分)《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,书中第八章内容“方程”里记载了一个有趣的追及问题,可理解为:速度快的人每分钟走100米,速度慢的人每分钟走60米,现在速度慢的人先走100米,速度快的人去追他.问速度快的人追上他需要分钟.16.(3分)物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图象投影的方法.如图,燃烧的蜡烛(竖直放置)AB经小孔O在屏幕(竖直放置)上成像A′B′,设AB=36cm,A′B′=24cm,小孔O到AB的距离为30cm,则小孔O到A′B′的距离为cm.17.(3分)如图,在平面直角坐标系中,点A的坐标为(1,0),点B在反比例函数y=(x>0)的图象上,BC⊥x轴于点C,∠BAC=30°,将△ABC沿AB翻折,若点C的对应点D落在该反比例函数的图象上,则k的值为.18.(3分)如图,已知两条平行线l1、l2,点A是l1上的定点,AB⊥l2于点B,点C、D分别是l1,l2上的动点,且满足AC=BD,连接CD交线段AB于点E,BH⊥CD于点H,则当∠BAH最大时,sin∠BAH 的值为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)19.(8分)(1)计算:|π﹣3|+2sin30°﹣(﹣2)0;(2)化简:÷(x﹣2).20.(8分)解不等式组,并求出它的所有整数解的和.21.(8分)2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x(分)百分比A组x<605%B组60≤x<7015%C组70≤x<80aD组80≤x<9035%E组90≤x≤10025%根据所给信息,解答下列问题:(1)本次调查的成绩统计表中a=%,并补全条形统计图;(2)这200名学生成绩的中位数会落在组(填A、B、C、D或E);(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.22.(8分)2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A、B、C、D、E)参加公益讲解活动.(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是;(2)小明和小亮在C、D、E三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.23.(10分)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B型机器每天处理多少吨垃圾?24.(10分)如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形ABCD.(1)试判断四边形ABCD的形状,并说明理由;(2)已知矩形纸条宽度为2cm,将矩形纸条旋转至如图2位置时,四边形ABCD的面积为8cm2,求此时直线AD、CD所夹锐角∠1的度数.25.(10分)如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于A(﹣2,0),B(1,0)两点.(1)求b、c的值;(2)若点P在该二次函数的图象上,且△PAB的面积为6,求点P的坐标.26.(10分)如图,已知∠PAQ及AP边上一点C.(1)用无刻度直尺和圆规在射线AQ上求作点O,使得∠COQ=2∠CAQ;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O为圆心,以OA为半径的圆交射线AQ于点B,用无刻度直尺和圆规在射线CP上求作点M,使点M到点C的距离与点M到射线AQ的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若sin A=,CM=12,求BM的长.27.(12分)如图,点A、B、M、E、F依次在直线l上,点A、B固定不动,且AB=2,分别以AB、EF 为边在直线l同侧作正方形ABCD、正方形EFGH,∠PMN=90°,直角边MP恒过点C,直角边MN 恒过点H.(1)如图1,若BE=10,EF=12,求点M与点B之间的距离;(2)如图1,若BE=10,当点M在点B、E之间运动时,求HE的最大值;(3)如图2,若BF=22,当点E在点B、F之间运动时,点M随之运动,连接CH,点O是CH的中点,连接HB、MO,则2OM+HB的最小值为.28.(12分)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知△ABC,CA=CB,⊙O是△ABC的外接圆,点D在⊙O上(AD>BD),连接AD、BD、CD.【特殊化感知】(1)如图1,若∠ACB=60°,点D在AO延长线上,则AD﹣BD与CD的数量关系为;【一般化探究】(2)如图2,若∠ACB=60°,点C、D在AB同侧,判断AD﹣BD与CD的数量关系并说明理由;【拓展性延伸】(3)若∠ACB=α,直接写出AD、BD、CD满足的数量关系.(用含α的式子表示)2024年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.【分析】直接利用倒数的定义分析得出答案.【解答】解:实数2的倒数是:.故选:D.【点评】此题主要考查了倒数以及实数的性质,正确把握倒数的定义是解题关键.2.【分析】根据轴对称图形的定义解答即可.【解答】解:由图可知,A、B、D不是轴对称图形;C是轴对称图形.故选:C.【点评】本题考查的是轴对称图形,熟知如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称是解题的关键.3.【分析】根据单项式乘单项式、合并同类项法则、完全平方公式、幂的乘方法则,逐项计算,即可得出正确答案.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故A选项错误;B、5a﹣2a=3a,故B选项正确;C、(a3)2=a6,故C选项错误;D、3a2•2a3=6a5,故D选项错误;故选:B.【点评】本题考查了整式的混合运算,掌握整式的运算法则并正确计算是解题的关键.4.【分析】根据众数的概念求解即可.【解答】解:根据列表可知视力4.7的人数最多为11人,即众数为4.7,故选:B.【点评】本题考查众数的概念,解题的关键是熟知相关概念,出现次数最多的数为众数.5.【分析】根据关于原点对称的点的坐标特点解答即可.【解答】解:∵点P(1,2),∴关于坐标原点的对称点P′的坐标为(﹣1,﹣2).故选:A.【点评】本题考查的是关于原点对称的点的坐标特点,熟知两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y)是解题的关键.6.【分析】利用三棱柱的展开图的通知解答即可.【解答】解:由几何体的表面展开后得到的平面图形可知:侧面为三个相同的长方形,上下底面为全等的三角形,符合三棱柱的特征,所以该几何体是三棱柱.故选:C.【点评】本题主要考查了几何体的展开图,熟练掌握三棱柱的展开图的特征是解题的关键.7.【分析】分别令x、y为零,代入函数解析式分析判断即可.【解答】解:当x=0时,y=2,故函数与y轴的交点坐标为(0,2),当y=0时,函数无意义.故函数与x轴没有交点,∴函数y=的图象与坐标轴的交点个数是1个.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握图象上点的坐标特征是关键.8.【分析】将这一列数继续写下去,发现这列数的变化规律即可解答.【解答】解:这列数为:1,1,2,3,5,8,13,21,34,⋯,可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数,∵2024÷3=674…2,即前2024个数共有674组,且余2个数,奇数有:674×2+2=1350(个),故选:D.【点评】本题考查的是规律型:数字的变化类,发现这列数的变化规律是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:18700000=1.87×107,故答案为:1.87×107.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.10.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.11.【分析】根据表格中的数据可知,盖面朝上频率在0.53左右波动,据此可得出结论.【解答】解:由题意可知,盖面朝上频率在0.53左右波动,∴根据以上实验数据可以估计出“盖面朝上”的概率约为0.53.故答案为:0.53.【点评】本题考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解题的关键.12.【分析】根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.【点评】本题考查二次根式的意义,只需使被开方数大于或等于0即可.13.【分析】根据圆的周长公式计算即可.【解答】解:由题意可知:圆锥的底面周长为10πcm,则圆锥底面圆的半径为=5(cm),故答案为:5.【点评】本题考查的是圆锥的计算,熟记圆锥的底面圆周长是扇形的弧长是解题的关键.14.【分析】利用函数图象,x=﹣2函数值为0,则于x的方程kx+b=0的解为x=﹣2.【解答】解:∵OA=2,∴一次函数y=kx+b(k≠0)的图象与x轴相交于点A(﹣2,0),∴关于x的方程kx+b=0的解为x=﹣2.故答案为:x=﹣2.【点评】本题考查了一次函数与一元一次方程,一次函数的性质,方程的解就是一次函数图象与x轴的交点的横坐标是解题的关键.15.【分析】根据题意,设速度快的人需要x分钟才能追上速度慢的人,可列:100+60x=100x,求解即可.【解答】解:设速度快的人需要x分钟才能追上速度慢的人,根据题意可列:100+60x=100x,解得:x=2.5,故答案为:2.5.【点评】本题考查的是一元一次方程的应用与数学常识,根据题意正确列出方程是解题的关键.16.【分析】利用已知得出:△ABO∽△A′B′O,进而利用相似三角形的性质求出即可.【解答】解:设小孔O到A′B′的距离为x cm,由题意可得:△ABO∽△A′B′O,则==,解得:x=20.故答案为:20.【点评】此题主要考查了相似三角形的应用,熟练掌握相似三角形的性质是解题关键.17.【分析】作DG⊥x轴,垂足为G,利用对称性质和解直角三角形解答即可得到结果.【解答】解:设点B坐标为(m,),则C(m,0),∵A(1,0),∴AC=m﹣1,由对称可知:AD=m﹣1,∠DAB=∠CAB=30°,∴∠DAC=60°,作DG⊥x轴,垂足为G,∴AG=,DG=,∴D(,),∵点D在反比例函数图象上,∴()•=k①,在Rt△ABC中,∵∠BAC=30°,∴BC=AC,即=(m﹣1)②,由①②解得k=2.故答案为:2.【点评】本题考查了反比例函数图象上点的坐标特征、坐标与图形变化、折叠问题,熟练掌握图象上点的坐标特征是关键.18.【分析】由题易得四边形ACBD是平行四边形,从而得到BE是定长,又由∠BHE=90°,得出直角对直角的隐圆模型,再根据最大张角问题(相切时)求解即可.【解答】解:∵AC∥BD,∴四边形ACBD是平行四边形,∴AE=BE=AB,∵A为定点,且AB⊥l2,∴AE为定值,∵BH⊥CD,∴∠BHE=90°,∴点H在以BE为直径的圆上运动(如图,O为圆心),此时OE=BE=OA,∵当AH与⊙O相切时∠BAH最大,∴sin∠BAH==.故答案为:.【点评】本题主要考查了切线的性质,熟练掌握切线的性质、圆周角定理是解题的关键,其中识别出隐圆模型至关重要.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)19.【分析】(1)先化简绝对值,三角函数,零指数幂,再按实数的运算法则进行计算;(2)按步骤依次化简分式.【解答】解:(1)|π﹣3|+2sin30°﹣(﹣2)0==π﹣3;(2)÷(x﹣2)==.【点评】本题主要考查了实数的运算,分式的化简,熟练掌握法则与性质是解题的关键.20.【分析】先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【解答】解:解不等式2x﹣6≤0,得:x≤3,解不等式x,得:x,则不等式组的解集为x≤3,所以整数解为1,2,3,整数解的和为6.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.【分析】(1)用200分别减去A,B,D,E组的人数,可得C组的人数,用C组的人数除以200再乘以100%可得a的值,最后补全条形统计图即可.(2)根据中位数的定义可得答案.(3)根据用样本估计总体,用1200乘以统计表中E组的百分比,即可得出答案.【解答】解:(1)由题意得,C组的人数为200﹣10﹣30﹣70﹣50=40(人),∴a=40÷200×100%=20%.故答案为:20.补全条形统计图如图所示.(2)将这200名学生成绩按照从小到大的顺序排列,排在第100和101名的学生成绩均在D组,∴这200名学生成绩的中位数会落在D组.故答案为:D.(3)1200×25%=300(人).∴估计该校1200名学生中成绩在90分以上(包括90分)的人数约300人.【点评】本题考查条形统计图、统计表、用样本估计总体、中位数,能够读懂统计图表,掌握用样本估计总体、中位数的定义是解答本题的关键.22.【分析】(1)由题意知,共有5种等可能的结果,其中选中东关街的结果有1种,利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及小明和小亮选到相同景区的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意知,共有5种等可能的结果,其中选中东关街的结果有1种,∴选中东关街的概率是.故答案为:.(2)列表如下:C D EC(C,C)(C,D)(C,E)D(D,C)(D,D)(D,E)E(E,C)(E,D)(E,E)共有9种等可能的结果,其中小明和小亮选到相同景区的结果有3种,∴小明和小亮选到相同景区的概率为=.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.23.【分析】设B型机器每天处理x吨垃圾,则A型机器每天处理(x+40)吨垃圾,利用工作时间=工作总量÷工作效率,结合A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等,可列出关于x的分式方程,解之经检验后,即可得出结论.【解答】解:设B型机器每天处理x吨垃圾,则A型机器每天处理(x+40)吨垃圾,根据题意得:=,解得:x=60,经检验,x=60是所列方程的解,且符合题意.答:B型机器每天处理60吨垃圾.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.【分析】(1)通过两组对边相互平行的四边形可得ABCD是平行四边形,再通过等宽即高相等和利用等面积证边相等即可;(2)利用面积公式把边长求出来,再根据锐角三角函数值或者含有30°的直角三角形的性质求解即可.【解答】(1)四边形ABCD是菱形,理由如下:如图作CH⊥AB,垂足为H,CG⊥AD,垂足为G,∵两个纸条为矩形,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵S▱ABCD=AB•CH=AD•CG,且CH=CG,∴AB=AD,∴四边形ABCD是菱形.(2)如图,作AM⊥CD,垂足为M,=CD•AM=8cm2,且AM=2cm,∵S菱形ABCD∴CD=4cm,∴AD=CD=4cm,再Rt△ADM中,sin∠1==,∴∠1=30°.【点评】本题主要考查了菱形判定与性质,熟练掌握菱形的性质和判定和矩形的性质以及含有30°的直角三角形的性质是解题关键.25.【分析】(1)把A(﹣2,0),B(1,0)代入y=﹣x2+bx+c,解方程组求出b,c的值;(2)由(1)得出抛物线解析式为y=﹣x2﹣x+2,设点P坐标为(m,﹣m2﹣m+2),根据三角形的面积列出关于m的方程,解方程即可.【解答】解:(1)把A(﹣2,0),B(1,0)代入y=﹣x2+bx+c得:,解得;(2)由(1)知,二次函数解析式为y=﹣x2﹣x+2,设点P坐标为(m,﹣m2﹣m+2),∵△PAB的面积为6,AB=1﹣(﹣2)=3,=AB•|y P|=×3×|﹣m2﹣m+2|=6,∴S△P AB∴|m2+m﹣2|=4,即m2+m﹣2=4或m2+m﹣2=﹣4,解得m=﹣3或m=2,∴P(﹣3,﹣4)或(2,﹣4).【点评】本题考查了抛物线与x轴的交点,二次函数的性质以及解一元二次方程,关键是求出抛物线解析式.26.【分析】(1)作AC的垂直平分线交AQ于点O.(2)作AC的垂直平分线交AQ于点O,以点O为圆心,OC为半径画圆交AQ于点B,作∠CBQ的角平分线交AP于点M,点M即为所求;(3)可以假设BC=3k,AB=5k,则AC=4k,证明△MBC≌△MBH(AAS),推出BC=BH=3k,推出AH=AB+BH=8k,推出MH=6k,构建方程求解.【解答】解:(1)如图点O即为所求;(2)如图,点B点M即为所求;(3)由作图可知OA=OC=OB,∴∠ACB=90°,∵sin A==,∴可以假设BC=3k,AB=5k,则AC=4k,∵BM平分∠CBQ,MC⊥CB,MH⊥BQ,∴∠MBC=∠MBH,∠MCB=∠BHM=90°,∵BM=BM,∴△MBC≌△MBH(AAS),∴BC=BH=3k,∴AH=AB+BH=8k,∵sin A==,∴AM=10k,MH=MC=6k,∴12=6k,∴k=2,∴BH=6,MH=12,∴BM===6.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质,角平分线的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.27.【分析】(1)易证△MCB∽△HME,再代入边长求解即可;(2)由△MCB∽△HME得出相似比,设未知数代入,得到关于HE的二次函数表达式,进而求最值即可;(3)先证CH=2OM,将2OM+HB转化为CH+HB的最小值,利用“将军饮马“模型做对称点求解即可.【解答】解:(1)由题易得∠CBM=∠CMH=∠HEM=90°,∵∠CMB+∠BCM=∠CMB+∠HME=90°,∴∠BCM=∠HME,∴△MCB∽△HME,∴,∵BC=AB=2,EH=EF=12,BE=10,∴,解得BM=4或6,∴点M与点B之间的距离是4或6.(2)由(1)知,设EH=y,BM=x,∵BE=10,∴EM=10﹣x,∴,∴y=﹣x2+5x=﹣(x﹣5)2+12.5,∵﹣<0,∴当x=5时,y max=12.5,即HE最大值为12.5.(3)∵∠CMH=90°,O是CH中点,∴CH=2OM,∴2OM+HB=CH+BH,∴求2OM+HB的最小值就是求CH+BH的最小值即可.如图,连接FH,则点H在∠EFG的角平分线上,作B关于FH的对称点B',连接B'C交FH为H',则H'即为所求H位置,B'C长度即为CH+HB最小值.过点C作CQ⊥B'F.∵∠BFH=∠B'FH=45°,∴B'在FG的延长线上,∵∠CBF=∠BFQ=∠FQC=90°,∴四边形CBFQ为矩形,∴FQ=BC=2,∵BF=B'F=22,∴B'Q=B'F﹣QF=20,在Rt△B'CQ中,B'C2==2,即CH+BH最小值为2,∴2OM+HB最小值为2.【点评】本题主要考查了四边形综合题,熟练掌握相似的判定和性质、二次函数求最值、轴对称等知识点是解题关键.28.【分析】(1)利用等边三角形的判定与性质和含30°角的直角三角形的性质解答即可;(2)延长BD至点E使DE=CD,连接CE,利用等边三角形的判定与性质,圆的内接四边形的性质,圆周角定理和全等三角形的判定与性质解答即可;(3)利用分类讨论的思想方法分两种情形讨论解答:①当点C、D在AB同侧时,延长BD至点E,连接CE,使CE=CD,过点C作CF⊥DE于点F,利用圆内接四边形的性质,等腰三角形的性质和直角三角形的边角关系定理得到DE=2DF=2CD•sin,再利用全等三角形的判定与性质得到AD=BE,则结论可得;②当点C、D在AB两侧时,延长DB至点E,使BE=AD,连接CE,过点C作CF ⊥DE于点F,利用①的方法解答即可.【解答】解:(1)∵CA=CB,∠ACB=60°,∴△ABC为等边三角形,∴∠BAC=60°,∵AD为⊙O的直径,∴∠ABD=∠ACD=90°,∠BAD=∠CAD=∠BAC=30°,∴CD=BD=AD,∴AD﹣BD=CD.故答案为:AD﹣BD=CD;(2)若∠ACB=60°,点C、D在AB向侧,AD﹣BD与CD的数量关系为:AD﹣BD=CD,理由:延长BD至点E使DE=CD,连接CE,如图,∵CA=CB,∠ACB=60°,∴△ABC为等边三角形,∴∠BAC=∠ACB=∠ABC=60°,∵四边形ABDC为圆的内接四边形,∴∠CDE=∠BAC=60°,∵DE=CD,∴△CDE为等边三角形,∴CE=CD,∠DCE=∠E=60°,∴∠ACD=∠ACB+∠BCD=60°+∠BCD,∵∠BCE=∠BCD+∠DCE=60°+∠BCD,∴∠ACD=∠BCE.∵∠ADC=∠ABC=60°,∴∠ADC∠E=60°.在△ACD和△BCE中,,∴△ACD≌△BCE(ASA),∴AD=BE,∵BE=BD+DE=BD+CD,∴AD=BD+CD,∴AD﹣BD=CD.(3)①当点C、D在AB同侧时,延长BD至点E,连接CE,使CE=CD,过点C作CF⊥DE于点F,如图,∵CA=CB,∠ACB=α,∴∠CAB=∠CBA=90°﹣,∵四边形ABDC为圆的内接四边形,∴∠CDE=∠BAC=90°﹣,∵CE=CD,∴∠CDE=∠E=90°﹣α,∠DCE=α.∵CF⊥DE,∴∠DCF=∠ECF=,DF=EF=CD•sin,∴DE=2DF=2CD•sin,∵∠ACD=∠ACB+∠BCD=α+∠BCD,∠BCE=∠BCD+∠DCE=α+∠BCD,∴∠ACD=∠BCE,∵∠ADC=∠ABC=90°﹣,∴∠ADC=∠E.在△ACD和△BCE中,,∴△ACD≌△BCE(ASA),∴AD=BE,∵BE=BD+DE=BD+2CD•sin,∴AD﹣BD=2CD•sin.②当点C、D在AB两侧时,延长DB至点E,使BE=AD,连接CE,过点C作CF⊥DE于点F,如图,∵CA=CB,∠ACB=α,∴∠CAB=∠CBA=90°﹣,∵四边形ABDC为圆的内接四边形,∴∠CBE=∠DAC,在△CAD和△CBE中,,∴△CAD≌△CBE(SAS),∴CD=CE,∠ADC=∠E,∵∠ADC=∠ABC=90°﹣,∴∠E=90°﹣,∵CF⊥DE,∴∠DCF=∠ECF=,DF=EF=CD•sin,∴DE=CD•sin,∴DE=2CD•sin,∵DE=BD+BE=AD+BD,∴AD+BD=2CD•sin.综上,若∠ACB=α,AD、BD、CD满足的数量关系为:当点C、D在AB同侧时AD﹣BD=2CD•sin;当点C、D在AB两侧时,AD+BD=2CD•sin.【点评】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,等边三角形的判定与性质,全等三角形的判定与性质,圆的内接四边形的性质,直角三角形的性质,直角三角形的边角关系定理,通过添加辅助线构造全等三角形是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.
28.如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.
(1)求这个二次函数的表达式;
(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;
(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;
(2)将条形统计图补充完整;
(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?
22.小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.
(1)小明和小刚都在本周日上午去游玩的概率为;
(2)根据完全平方公式和平方差公式化简,然后把a、b的值代入计算..
【解答】解:(1)(﹣ )﹣2﹣ +6cos30°
=9﹣2 +6×
=9﹣2 +2
=9;
(2)(a+b)(a﹣b)﹣(a﹣2b)2
=a2﹣b2﹣a2+4ab﹣4b2
=4ab﹣5b2,
当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.
2016年江苏省扬州市中考数学试卷
一、选择题(本大题共有8小题,每题3分,共24分)
1.与﹣2的乘积为1的数是()A.2B.﹣2C. D.﹣
2.函数y= 中,自变量x的取值范围是()A.x>1B.x≥1C.x<1D.x≤1
3.下列运算正确的是()A.3x2﹣x2=3B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6
16.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.
17.如图,点A在函数y= (x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为.
18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为.
A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁
7.已知M= a﹣1,N=a2﹣ a(a为任意实数),则M、N的大小关系为()
A.M<NB.M=NC.M>ND.不能确定
8.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()
(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中, 为常数,试确定k的值.
2016年江苏省扬州市中考数学试卷
5
2
2
1
则这12名队员年龄的众数、中位数分别是( )
A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁
故选D.
7.已知M= a﹣1,N=a2﹣ a(a为任意实数),则M、N的大小关系为( )
A.M<NB.M=NC.M>ND.不能确定
【解答】解:∵M= a﹣1,N=a2﹣ a(a为任意实数),
A.6B.3C.2.5D.2
二、填空题(本大题共有10小题,每题3分,共30分)
9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.
10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.
25.如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.
(1)求证: = ;
(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)= = ,如T(60°)=1.
①理解巩固:T(90°)=,T=,若α是等腰三角形的顶角,则T(α)的取值范围是;
∴OA2=AB2+OB2,
又∵AB•OB= •n=4,
∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,
∴AB+OB=2 ,或AB+OB=﹣2 (舍去).
∴C△ABO=AB+OB+OA=2 +4.
故答案为:2 +4.
18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a≤5.
11.当a=2016时,分式 的值是.
12.以方程组 的解为坐标的点(x,y)在第象限.
13.若多边形的每一个内角均为135°,则这个多边形的边数为.
14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.
15.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.
19.(1)计算:(﹣ )﹣2﹣ +6cos30°;
(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.
【考点】实数的运算;整式的混合运算—化简求值;负整数指数幂;特殊角的三角函数值.
【分析】(1)本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;
20.解不等式组 ,并写出该不等式组的最大整数解.
【考点】一元一次不等式组的整数解;解一元一次不等式组.
【分析】先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.
Байду номын сангаас【解答】解:
解不等式①得,x≥﹣2,解不等式②得,x<1,
∴ ,
∴N>M,即M<N.
故选A
8.如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )
A.6B.3C.2.5D.2
【考点】几何问题的最值.
【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,
4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是( )
A. B. C. D.
5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )
A. B. C. D.
6.某社区青年志愿者小分队年龄情况如下表所示:
年龄(岁)
18
19
20
21
22
人数
2
5
2
2
1
则这12名队员年龄的众数、中位数分别是()
三、解答题(共10小题,满分96分)
19.(1)计算:(﹣ )﹣2﹣ +6cos30°;
(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.
20.解不等式组 ,并写出该不等式组的最大整数解.
21.从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.
(2)求他们三人在同一个半天去游玩的概率.
23.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.
(1)求证:四边形AECF是平行四边形;
(2)若AB=6,AC=10,求四边形AECF的面积.
24.动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.
(1)试判断△ABC的形状,并说明理由;
(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣ ,求⊙O的半径和BF的长.
27.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.
(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;
【解答】解: ,
∵①﹣②得,3x+1=0,解得x=﹣ ,
把x的值代入②得,y=﹣ +1= ,
∴点(x,y)的坐标为:(﹣ , ),
∴此点在第二象限.
故答案为:二.
13.若多边形的每一个内角均为135°,则这个多边形的边数为8.
故答案为:8.
14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.
故选:D.
4.下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是( )
A. B. C. D.
故选A.
5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )
A. B. C. D.