2021年全国统一高考数学试卷(理科)(新课标ⅰ)(原卷版)
2021年高考全国卷一理科数学(含答案)

2021年高考全国卷一理科数学(含答案)绝密★启用前2021年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)此卷只装订不密封班级 姓名 准考证号 考场号 座位号1.设,则()A.0 B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5 B.6 C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3 C.D.4 12.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2021年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2()3()46z z z z i ++-=+,则z =()A.12i -B.12i +C.1i +D.1i -答案:C 解析:设z a bi =+,则z a bi =-,2()3()4646z z z z a bi i ++-=+=+,所以1a =,1b =,所以1z i =+.2.已知集合{|21,}S s s n n Z ==+∈,{|41,}T t t n n Z ==+∈,则S T = ()A.∅B.SC.TD.Z 答案:C 解析:21s n =+,n Z ∈;当2n k =,k Z ∈时,{|41,}S s s k k Z ==+∈;当21n k =+,k Z ∈时,{|43,}S s s k k Z ==+∈.所以T S Ü,S T T = .故选C.3.已知命题:p x R ∃∈﹐sin 1x <;命题||:,1x q x R e∈∀≥,则下列命题中为真命题的是()A.p q∧B.p q ⌝∧C.p q∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,故x R ∃∈,sin 1x <,p 为真命题,而函数||x y y e ==为偶函数,且0x ≥时,||1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.,则q 也为真命题,所以p q ∧为真,选A.4.设函数1()1xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x -==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.5.在正方体1111ABCD ABC D -中,P 为11BD 的中点,则直线PB 与1A D 所成的角为()A.2πB.3πC.4πD.6π答案:D 解析:如图,1P B C ∠为直线PB 与1A D 所成角的平面角.易知11AB C ∆为正三角形,又P 为11AC 中点,所以16PBC π∠=.6.将5名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种答案:C 解析:所求分配方案数为2454240C A =.7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin()4y x π=-的图像,则)(f x =()A.7sin()212x π-B.sin()212x π+C.7sin(212x π-D.sin(212x π+答案:B解析:逆向:231sin()sin(sin() 412212 y x y x y xππππ=-−−−→=+−−−−−−−→=+左移横坐标变为原来的倍.故选B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.7 9B.23 32C.9 32D.2 9答案:B解析:由题意记(0,1)x∈,(1,2)y∈,题目即求74x y+>的概率,绘图如下所示.故113311123224411132 ABCDAM ANSPS==⨯-⋅-⨯⨯==⨯阴正.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点,,E H G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”.GC与EH的差称为“表目距的差”,则海岛的高AB =()A.⨯+表高表距表高表目距的差B.⨯-表高表距表高表目距的差C.⨯+表高表距表距表目距的差D.⨯-表高表距表距表目距的差答案:A 解析:连接DF 交AB 于M ,则AB AM BM =+.记BDM α∠=,BFM β∠=,则tan tan MB MBMF MD DF βα-=-=.而tan FG GC β=,tan EDEHα=.所以11(()tan tan tan tan MB MB GC EH GC EH MB MB MB FG ED ED βαβα--=-=⋅-=⋅.故ED DF MB GC EH ⋅⨯==-表高表距表目距的差,所以高AB ⨯=+表高表距表高表目距的差.10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:若0a >,其图像如图(1),此时,0a b <<;若0a <,时图像如图(2),此时,0b a <<.综上,2ab a <.11.设B 是椭圆C :22221(0)x y a b a b +=>>的上顶点,若C 上的任意一点P 都满足,2PB b ≤,则C 的离心率的取值范围是()A.[)2B.1[,1)2C.2D.1(0,2答案:C 解析:由题意,点(0,)B b ,设00(,)P x y ,则2222200002221(1)x y y x a a b b +=⇒=-,故22222222222000000022()(122y c PB x y b a y by b y by a b b b =+-=-+-+=--++,0[,]y b b ∈-.由题意,当0y b =-时,2PB 最大,则32b b c -≤-,22b c ≥,222a c c -≥,2c c a =≤,2(0,2c ∈.12.设2ln1.01a =,ln1.02b =,1c -,则()A.a b c <<B.b c a <<C.b a c <<D.c a b <<答案:B 解析:设()ln(1)1f x x =+,则(0.02)b c f -=,易得1()1f x x '==+当0x ≥时,1x +=≥()0f x '≤.所以()f x 在[0,)+∞上单调递减,所以(0.02)(0)0f f <=,故b c <.再设()2ln(1)1g x x =++,则(0.01)a c g -=,易得2()21g x x '==+当02x ≤<时,1x ≥=+,所以()g x '在[0.2)上0≥.故()g x 在[0.2)上单调递增,所以(0.01)(0)0g g >=,故a c >.综上,a c b >>.二、填空题13.已知双曲线C :221(0)x y m m-=>的一条渐近线为0my +=,则C 的焦距为.答案:4解析:易知双曲线渐近线方程为by x a=±,由题意得2a m =,21b =,且一条渐近线方程为y x m=-,则有0m =(舍去),3m =,故焦距为24c =.14.已知向量(1,3)a = ,(3,4)b = ,若()a b b λ-⊥,则λ=.答案:35解析:由题意得()0a b b λ-⋅= ,即15250λ-=,解得35λ=.15.记ABC ∆的内角A ,B,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:1sin24ABC S ac B ac ∆===4ac =,由余弦定理,222328b a c ac ac ac ac =+-=-==,所以b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y,样本方差分别己为21s 和22S .(1)求x ,y,21s ,22s :(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥,否则不认为有显著提高)。
2021年高考全国一卷理科数学答案及解析

2021年普通高等学招生全国统一考试〔全国一卷〕理科数学参考答案与解析一、选择题:此题有12小题,每题5分,共60分。
1、设z=,那么|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、集合A={x|x 2-x-2>0},那么A = A 、{x|-1<x<2} B 、{x|-1x 2} C 、{x|x<-1}∪{x|x>2} D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番,为更好地理解该地区农村的经济收入变化情况,统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:那么下面结论中不正确的选项是: A 、新农村建立后,种植收入减少。
B 、新农村建立后,其他收入增加了一倍以上。
C 、新农村建立后,养殖收入增加了一倍。
D 、新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建立后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,假设3S3=S2+S4,a1=2,那么a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f〔x〕=x3+(a-1)x2+ax,假设f〔x〕为奇函数,那么曲线y=f〔x〕在点〔0,0〕处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f〔x〕为奇函数,有f〔x〕+f〔-x〕=0整理得:f〔x〕+f〔-x〕=2*(a-1)x2=0 ∴a=1f〔x〕=x3+x求导f‘〔x〕=3x2+1f‘〔0〕=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,那么=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱外表上的点M 在正视图上的对应点为11A ,圆柱外表上的点N 在左视图上的对应点为B ,那么在此圆柱侧面上,从M 到N 的途径中,最短途径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2021年全国统一高考数学试卷(理科)(新课标Ⅰ)(原卷版)

绝密★启用前2022年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的=1i ,则|2–2|=( )A 0B 1C 2D 2 ={|2–4≤0},B ={|2a ≤0},且A ∩B ={|–2≤≤1},则a =( )A –4B –2C 2D 43埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 514-B 512- C 514+ D 512+ :y 2=2(,)(1,2,,20)i i x y i =y a bx=+2y a bx =+e x y a b =+ln y a b x =+43()2f x x x =-(1(1))f ,21y x =--21y x =-+23y x =-21y x =+()cos π()6f x x ω=+[π,π]-10π97π64π33π225()()x x y x y ++ π()0,α∈3cos28cos 5αα-=sin α=53231359,,A B C O 1O ABC 1O 4π1AB BC AC OO ===O 64π48π36π32π:222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A 210x y --=B 210x y +-=C 210x y -+=D 210x y ++=12若242log 42log a b a b +=+,则( )A 2a b >B 2a b <C 2a b >D 2a b <二、填空题:本题共4小题,每小题5分,共20分。
2021年高考真题-数学(理)(全国卷Ⅰ)(附答案)

绝密★启用前2021年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题)。
全卷总分值150分。
考试用时120分钟。
★祝考试顺利★本卷须知:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.假设z=1+i,那么|z2-2z|=A.0B.1C.2D.22.设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},那么a=A.-4B.-2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥。
以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,那么其侧面三角形底边上的高与底面正方形的边长的比值为A.514-B.512-C.514+D.512+ 4.为抛物线C :y 2=2px(p>0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,那么p =A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,电邮实验数(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A.y =a +bxB.y =a +bx 2C.y =a +be xD.y =a +blnx6.函数f(x)=x 4-2x 3的图像在点(1,f(1))处的切线方程为A.y =-2x -1B.y =-2x +1C.y =2x -3D.y =2x +17.设函数f(x)=cos(ωx +6π)在[-π,π]的图像大致如以下图,那么f(x)的最小正周期为A.109πB.76πC.43πD.32π 8.(x +2y x)(x +y)5的展开式中x 3y 3的系数为 A.5 B.10 C.15 D.209.a ∈(0,π),且3cos2α-8cos α=5,那么sin α=A.53B.23C.13D.5910.A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,假设⊙O 1的面积为4π,。
2021年高考理科数学全国新课标卷1(附答案)

2021年高考理科数学全国新课标卷1(附答案)2021年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2021课标全国Ⅰ,理1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B2.(2021课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).A.-4 B.?A.500π3866π3cm B.cm 3344 C.4 D. 557.(2021课标全国Ⅰ,理7)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( ).A.3 B.4 C.5 D.68.(2021课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).3.(2021课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样x2y254.(2021课标全国Ⅰ,理4)已知双曲线C:2?2=1(a>0,b>0)的离心率为,则C的渐近线方程为( ).ab211A.y=?x B.y=?x341C.y=?x D.y=±x25.(2021课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.16+8π B.8+8π C.16+16π D.8+16π+9.(2021课标全国Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m1展开式的二项式系数的最大值为b.若13a=7b,则m=( ).A.5 B.6 C.7 D.8x2y210.(2021课标全国Ⅰ,理10)已知椭圆E:2?2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两ab点.若AB的中点坐标为(1,-1),则E的方程为( ).x2y2x2y2?=1 B.?=1 A.45363627x2y2x2y2?=1 D.?=1 C.2718189A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]6.(2021课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).??x2?2x,x?0,11.(2021课标全国Ⅰ,理11)已知函数f(x)=?若|f(x)|≥ax,则a的取值范围是( ).?ln(x?1),x?0.A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]12.(2021课标全国Ⅰ,理12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,….若b1>c1,b1+c1=2a1,an+1=an,bn+1=A.{Sn}为递减数列cn?anb?an,cn+1=n,则( ). 22 第 1 页共 1 页B.{Sn}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2021课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b・c=0,则t=__________. 14.(2021课标全国Ⅰ,理14)若数列{an}的前n项和Sn?21an?,则{an}的通项公式是an=__________. 3315.(2021课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2021课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2021课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°.19.(2021课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质品相互独2(1)若PB=1,求PA; 2(2)若∠APB=150°,求tan∠PBA.18.(2021课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2021课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.第 2 页共 2 页21.(2021课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(2021课标全国Ⅰ,理22)(本小题满分10分)选修4―1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈???a1?,?时,f(x)≤g(x),求a的取值范围. ?22?(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.23.(2021课标全国Ⅰ,理23)(本小题满分10分)选修4―4:坐标系与参数方程?x?4?5cost,已知曲线C1的参数方程为?(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,y?5?5sint?曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2021课标全国Ⅰ,理24)(本小题满分10分)选修4―5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.第 3 页共 3 页感谢您的阅读,祝您生活愉快。
2021全国新高考1卷数学试卷(及答案)

18.(12 分) 某学校组织“一带一路”知识竞赛,有 A,B 两类问题.每位参加比赛的同学先在
两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若 回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛 结束.A 类问题中的每个问题回答正确得 20 分,否则得 0 分;B 类问题中的每个问题 回答正确得 80 分,否则得 0 分。
A.点 P 到直线 AB 的距离小于 10
B.点 P 到直线 AB 的距离大于 2
C.当 ∠PBA 最小时, | PB | = 3 2
D.当 ∠PBA 最大时, | PB | = 3 2
uuur uuur uuur 12.在 正三棱柱 ABC − A1B1C1 中 , A=B A= A1 1 ,点 P 满 足= BP λBC + μBB1 , 其中
每次取 1 个球.甲表示事件“第一次取出的球的数字是 1”,乙表示事件“第二次取
出的球的数字是 2”,丙表示事件“两次取出的球的数字之和是 8”,丁表示事件“两
次取出的球的数字之和是 7”,则
A.甲与丙相互独立
B.甲与丁相互独立
C.乙与丙相互独立
D.丙与丁相互独立
二、选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项
A. (0, π ) 2
B. ( π , π) 2
C. (π, 3π ) 2
D. (3π , 2π) 2
5.已知
F1
,
F2
是椭圆
C:x2 9
+
y2 4
= 1的两个焦点,点 M
在 C 上,则 | MF1 | ⋅ | MF2
| 的最
2021年全国新高考Ⅰ卷数学试题(解析版)

2021 年普通高等学校招生全国统一考试数学本试卷共 4 页,22 小题,满分 150 分.考试用时 120 分钟.注意事项:1. 答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用 2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4. 考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合 A = {x -2 < x < 4}, B = {2, 3, 4, 5} ,则 A B = ()A.{2}B. {2, 3}C. {3, 4}D. {2, 3, 4}【答案】B【解析】【分析】利用交集的定义可求A B .【详解】由题设有 A ⋂ B = {2, 3} ,故选:B .2. 已知 z = 2 - i ,则 z (A. 6 - 2i z + i ) = (B. 4 - 2i)C. 6 + 2iD. 4 + 2i【答案】C 【解析】【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为 z = 2 - i ,故 z = 2 + i ,故 z (z + i )= (2 - i )(2 + 2i ) = 6 + 2i故选:C.22 2 3. 已知圆锥的底面半径为 ,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2C. 4D. 4【答案】B【解析】【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则π l = 2π ⨯ ,解得l = 2 .故选:B.4. 下列区间中,函数 f (x ) = 7 sin ⎛x - π ⎫单调递增的区间是( )6 ⎪A. ⎛ 0, π ⎫ ⎝⎭B. ⎛ π , π ⎫C. ⎛π , 3π ⎫D.⎛ 3π , 2π ⎫⎪ ⎪ ⎪ 2 ⎪ ⎝ 2 ⎭⎝ 2 ⎭⎝ 2 ⎭⎝ ⎭【答案】A【解析】π π π【分析】解不等式2k π -< x - < 2k π + 2 6 2(k ∈ Z ) ,利用赋值法可得出结论.【详解】因为函数 y = sin x 的单调递增区间为⎛2k π - π , 2k π + π ⎫(k ∈ Z ),2 2 ⎪ ⎝ ⎭对于函数 f (x ) = 7 sin ⎛ x - π ⎫ ,由2k π - π < x - π < 2k π + π (k ∈ Z ) , 6 ⎪ 2 6 2 ⎝ ⎭2k ππ 2π 解得- < x < 2k π + 3 3(k ∈ Z ) , 取 k = 0 ,可得函数 f ( x ) 的一个单调递增区间为⎛ - π , 2π ⎫,3 3 ⎪ ⎝ ⎭则⎛ 0, π ⎫ ⊆ ⎛ - π , 2π ⎫ , ⎛ π ,π ⎫ ⊄ ⎛ - π , 2π ⎫,A 选项满足条件,B 不满足条件;2 ⎪3 3 ⎪ 2 ⎪ 3 3 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭取 k = 1 ,可得函数 f ( x ) 的一个单调递增区间为⎛ 5π , 8π ⎫,3 3 ⎪ ⎝ ⎭⎛π , 3π ⎫ ⊄ ⎛ - π , 2π ⎫且⎛π , 3π ⎫ ⊄⎛ 5π , 8π ⎫ , ⎛ 3π , 2π ⎫ ⊄ ⎛ 5π , 8π ⎫ ,CD 选项均不满足条件. 2 ⎪ 3 3 ⎪ 2 ⎪ 3 3 ⎪ 2 ⎪ 3 3 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成 y = A sin (ωx + φ) 形式,再求2 2= = θ ( θ + θ ) ⎝⎝y = A sin (ωx + φ) 的单调区间,只需把ω x + ϕ 看作一个整体代入 y = sin x 的相应单调区间内即可,注意要先把ω 化为正数.F F x 2 y 2 MF ⋅ MF5. 已知 1 , 2 是椭圆C :+= 1的两个焦点,点 M 在C 上,则1942的最大值为( )A. 13B. 12C. 9D. 6【答案】C【解析】【 分 析 】 本 题 通 过 利 用 椭 圆 定 义 得 到MF 1 + MF 2= 2a = 6, 借 助 基 本 不 等 式2MF ⋅ MF ≤ 即可得到答案. 1 22 ⎭【详解】由题, a 2 = 9, b 2 = 4 ,则 MF 1 + MF 2 = 2a = 6 ,2所以 MF ⋅ MF ≤ = 9 (当且仅当 MF 1 = MF 2 = 3 时,等号成立). 1 22 ⎭ 故选:C .【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到.sin θ (1+ sin 2θ )6. 若tan θ = -2 ,则 sin θ + cos θ= ()A. - 6 5B. -2 C.2 D. 6555【答案】C【解析】【分析】将式子进行齐次化处理,代入tan θ = -2 即可得到结果. 【详解】将式子进行齐次化处理得:sin θ (1+ sin 2θ ) sin θ + cos θ sin θ (sin 2 θ + cos 2θ + 2sin θ cos θ ) sin sin cos sin θ + cos θsin θ (sin θ + cos θ ) tan 2 θ + tan θ 4 - 2 2 = = = = .sin 2 θ + cos 2 θ 1+ tan 2 θ1+ 4 5故选:C .【点睛】易错点睛:本题如果利用tan θ = -2 ,求出sin θ , cos θ 的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.max max7. 若过点(a , b ) 可以作曲线y = e x 的两条切线,则( )A. e b < aB. e a < bC. 0 < a < e bD. 0 < b < e a【答案】D【解析】【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果 【详解】在曲线 y = e x 上任取一点 P (t , et) ,对函数 y = e x 求导得 y ' = e x ,所以,曲线 y = e x 在点 P 处的切线方程为 y - e t = e t(x - t ) ,即 y = e t x + (1- t )e t , 由题意可知,点(a , b ) 在直线 y = e tx + (1- t )e t上,可得b = ae t+ (1- t )e t= (a +1- t )e t,令 f (t ) = (a +1- t )e t,则 f '(t ) = (a - t )e t.当t < a 时, f '(t ) > 0 ,此时函数 f (t ) 单调递增,当t > a 时, f '(t ) < 0 ,此时函数 f (t ) 单调递减,所以, f (t ) = f (a ) = e a ,由题意可知,直线 y = b 与曲线 y = f (t ) 的图象有两个交点,则b < f (t ) = e a,当t < a +1时, f (t ) > 0 ,当t > a +1时, f (t ) < 0 ,作出函数 f (t ) 的图象如下图所示:由图可知,当0 <b <e a时,直线y =b 与曲线y = f (t )的图象有两个交点.故选:D.【点睛】数形结合是解决数学问题常用且有效的方法8.有6 个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1 个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立【答案】B【解析】【分析】根据独立事件概率关系逐一判断【详解】P(甲) =1,P(乙) =1,P(丙) =5,P(丁) =6=1,6636366P(甲丙) = 0 ≠P(甲)P(丙),P(甲丁) =136=P(甲)P(丁)P(乙丙) =136故选:B≠P(乙)P(丙),P(丙丁) = 0 ≠P(丁)P(丙)【点睛】判断事件A, B 是否独立,先计算对应概率,再判断P( A)P(B) =P( AB) 是否成立二、选择题:本题共4 小题,每小题5 分,共20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5 分,部分选对的得2 分,有选错的得0 分.9.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c ( i = 1, 2,⋅⋅⋅, n), c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同【答案】CD【解析】【分析】A、C 利用两组数据的线性关系有E( y) =E(x) +c 、D( y) =D(x) ,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D 的正误.OP 1 = OP 2OA ⋅ OP 3 = OP 1 ⋅ O P 2 OP 2 4sin 2 α 2 【详解】A : E ( y ) = E (x + c ) = E (x ) + c 且c ≠ 0 ,故平均数不相同,错误; B :若第一组中位数为 x i ,则第二组的中位数为 y i = x i + c ,显然不相同,错误; C :D ( y ) = D (x ) + D (c ) = D (x ) ,故方差相同,正确;D :由极差的定义知:若第一组的极差为 x max - x min ,则第二组的极差为y max - y min = (x max + c ) - (x min + c ) = x max - x min ,故极差相同,正确;故选:CD10. 已知O 为坐标原点,点 P 1 (cos α , sin α ),P 2 (cos β , -sin β ) ,P 3 (cos (α + β ), sin (α + β )),A (1, 0),则()A B.C. D.【答案】AC【解析】【分析】A 、B 写出OP 1 , 、AP 1 , AP 2 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【 详 解 】 A : OP 1 = (cos α , sin α ) , OP 2 = (cos β , -sin β ) , 所 以 | =1 ,| = 1 ,故| OP 1 |=| OP 2 |,正确;B : AP 1 = (cos α -1, sin α ) , AP 2 = (cos β -1, -sin β ) ,所以| == α= = 2 | sin | , 2同理| = 2 | sin β | ,故| AP |,| AP | 不一定相等,错误;21 2C :由题意得: OA ⋅ OP 3 = 1⨯cos(α + β ) + 0⨯sin(α + β ) = cos(α + β ) ,OP 1 ⋅ OP 2 = cos α ⋅cos β + sin α ⋅ (-sin β ) = cos(α + β ) ,正确;D :由题意得: OA ⋅ OP 1 = 1⨯cos α + 0⨯sin α = cos α ,OP 2 ⋅ O P 3 = cos β ⨯cos(α + β ) + (-sin β ) ⨯sin(α + β )= cos α cos 2 β - sin α sin β cos β - sin α sin β cos β - cos α sin 2 βAP 1 = AP 2OA ⋅ OP 1 = OP 2 ⋅ O P 3OP |= cos 2 α + sin 2 α 1 OP |= (cos β)2 + (-sin β )2 2 AP |= (cos α -1)2+ sin 2α 1cos 2α - 2 cos α +1+ sin 2α 2(1- cos α ) AP |= (cos β -1)2 + sin 2 β 211 534 = cos α cos 2β - sin α sin 2β = cos(α + 2β ) ,错误;故选:AC11. 已知点 P 在圆(x - 5)2+ ( y - 5)2= 16 上,点 A (4, 0) 、 B (0, 2) ,则( )A. 点 P 到直线 AB 的距离小于10B. 点 P 到直线 AB 的距离大于2C. 当∠PBA 最小时, PB = 3D. 当∠PBA 最大时, PB = 3【答案】ACD【解析】【分析】计算出圆心到直线 AB 的距离,可得出点 P 到直线 AB 的距离的取值范围,可判断 AB 选项的正误;分析可知,当∠PBA 最大或最小时, PB 与圆 M 相切,利用勾股定理可判断 CD 选项的正误. 【详解】圆( x - 5)2+ ( y - 5)2= 16 的圆心为 M (5, 5) ,半径为4 ,直线 AB 的方程为 x + y= 1,即 x + 2 y - 4 = 0 ,42圆心 M 到直线 AB 的距离为= = 11 5 > 4 , 5所以,点 P 到直线 AB 的距离的最小值为11 5 - 4 < 2 ,最大值为11 5 + 4 < 10 ,A 选项正确,B 选项错55误;如下图所示:当∠PBA 最大或最小时, PB 与圆 M 相切,连接 MP 、 BM ,可知 PM ⊥ PB ,BM ==, MP = 4 ,由勾股定理可得 BP == 3 2 ,CD 选项2212 + 225 + 2⨯ 5 - 4 (0 - 5)2 + (2 - 5)2BM 2 - MP 2正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点 P 到直线l 的距离的取值范围是[d - r , d + r ].12. 在正三棱柱 ABC - A 1B 1C 1 中,AB = AA 1 = 1 ,点 P 满足 BP = λ BC + μ BB 1 ,其中λ ∈[0,1] ,μ ∈[0,1] ,则()A. 当λ = 1 时, △AB 1P 的周长为定值B. 当 μ = 1 时,三棱锥 P - A 1BC 的体积为定值C. 当λ = 1时,有且仅有一个点 P ,使得 A P ⊥ BP21D. 当 μ = 1 时,有且仅有一个点 P ,使得 AB ⊥ 平面 AB P21 1【答案】BD【解析】【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标; 对于B ,将 P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量 平移将 P 点轨迹确定,进而考虑建立合适的直角坐标系来求解 P 点的个数;对于D ,考虑借助向量的平移将 P 点轨迹确定,进而考虑建立合适的直角坐标系来求解 P 点的个数.【详解】易知,点 P 在矩形 BCC 1B 1 内部(含边界).对于A ,当λ = 1 时, BP = BC + μ BB 1 =BC + μCC 1 ,即此时 P ∈ 线段CC 1 , △AB 1P 周长不是定值,故A 错误;AP = ⎛ - 3 = - 对于B ,当 μ = 1 时,BP = λ BC + BB 1 =BB 1 + λ B 1C 1 ,故此时 P 点轨迹为线段 B 1C 1 ,而B 1C 1 //BC ,B 1C 1 // 平面 A 1BC ,则有 P 到平面 A 1BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当λ = 1时, BP = 1BC + μ BB ,取 BC , BC 中点分别为Q , H ,则 BP = BQ + μQH ,所221 1 1以 P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,A ⎛ 3 , 0,1⎫ ,P (0, 0,μ ) ,B ⎛ 0, 1 , 0 ⎫, 1 2⎪ 2 ⎪ ⎝ ⎭⎝ ⎭则, 0, μ -1⎫ , BP = ⎛ 0, - 1 , μ ⎫, μ (μ -1) = 0 ,所以 μ = 0 或 μ = 1 .故 H ,Q 均满足,故 1 2⎪ 2 ⎪ ⎝ ⎭⎝ ⎭ C 错误;对于D ,当 μ = 1时, BP = λ BC + 1BB ,取 BB , CC 中点为 M , N . BP = BM + λ M N ,所以 P 点2 211 1轨迹为线段 MN .设 P ⎛ 0, y , 1 ⎫ ,因为 A ⎛ 3 ⎫ ⎛ ,0, 0,所以 AP = - 3 , y , 1 ⎫ , AB ⎛ 3 1 ⎫ , , -1 , 0 2 ⎪ 2 ⎪ 2 0 2 ⎪ 1 2 2 ⎪ ⎝ ⎭ ⎝ ⎭ 3 1 1 1⎝ ⎭ ⎝ ⎭所以 + y 0 - = 0 ⇒ y 0 = - ,此时 P 与N 重合,故D 正确. 4 2 2 2故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.三、填空题:本题共 4 小题,每小题 5 分,共 20 分.13. 已知函数 f ( x ) = x 3 (a ⋅ 2x - 2- x )是偶函数,则a = .【答案】1【解析】【分析】利用偶函数的定义可求参数a 的值.【详解】因为 f (x ) = x 3 (a ⋅ 2x - 2-x ) ,故 f (-x ) = -x 3 (a ⋅ 2-x - 2x ),因为 f ( x ) 为偶函数,故 f (-x ) = f ( x ) ,时 x 3 (a ⋅ 2x - 2-x ) = -x 3 (a ⋅ 2-x - 2x ),整理得到(a -1)(2x +2-x )=0 ,故 a = 1 , 故答案为:114. 已知O 为坐标原点,抛物线C : y 2 = 2 px ( p > 0 )的焦点为 F ,P 为C 上一点,PF 与 x 轴垂直,Q 为p p 1 x 轴上一点,且 PQ ⊥ OP ,若 FQ = 6 ,则C 的准线方程为.【答案】 x =- 32【解析】【分析】先用坐标表示 P ,Q ,再根据向量垂直坐标表示列方程,解得 p ,即得结果.【详解】不妨设P ( , p )∴Q (6 + 2 2uuur , 0), PQ = (6, - p ) 因为 PQ ⊥ OP ,所以 p ⨯ 6 - p 2 = 0 Q p > 0∴ p = 3∴ C 的准线方程为 x =- 32 2 故答案为: x =- 32【点睛】利用向量数量积处理垂直关系是本题关键. 15. 函数 f ( x ) = 2x -1 - 2 ln x 的最小值为 .【答案】1【解析】【分析】由解析式知 f (x ) 定义域为(0, +∞) ,讨论0 < x ≤ 1 、 1< x ≤ 1、 x > 1 ,并结合导数研究的单调22性,即可求 f (x ) 最小值.【详解】由题设知: f (x ) =| 2x -1| -2 ln x 定义域为(0, +∞) , ∴当0 < x ≤ 1时, f (x ) = 1- 2x - 2 ln x ,此时 f (x ) 单调递减;2当 1 < x ≤ 1时, f (x ) = 2x -1- 2 ln x ,有 f '(x ) = 2 - 2≤ 0 ,此时 f (x ) 单调递减;2x当 x > 1 时, f (x ) = 2x -1- 2 ln x ,有 f '(x ) = 2 - 2> 0 ,此时 f (x ) 单调递增;x又 f (x ) 在各分段的界点处连续,∴综上有: 0 < x ≤ 1时, f (x ) 单调递减, x > 1 时, f (x ) 单调递增; ∴ f (x ) ≥ f (1) = 1故答案为:1.16. 某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm ⨯12dm 的长方形纸,对折 1 次共可以得到10dm ⨯12dm , 20dm ⨯ 6dm 两种规格的图形,它们的面积之和S = 240dm 2 ,对折 2 次共可以得到5dm ⨯12dm ,10dm ⨯ 6dm , 20dm ⨯ 3dm 三种规格的图形,它们的面积之和 S 2 = 180dm 2 ,以此类推,则对折 4 次共可以得到不同规格图形的种数为;如果对折n 次,+ 120n 2n -1( ) ( ) 2 ( )那么∑S k = dm 2.k =1【答案】(1). 5(2).720 -15(3 + n ) 2n -4【解析】【分析】(1)按对折列举即可;(2)根据规律可得 S n ,再根据错位相减法得结果.【详解】(1)对折 4 次可得到如下规格: 5 dm ⨯12dm , 5 dm ⨯ 6dm , 5dm ⨯ 3dm , 10dm ⨯ 3dm ,4 2 220dm ⨯ 3dm ,共5 种;4(2)由题意可得S = 2 ⨯120 , S = 3⨯ 60 , S = 4 ⨯ 30 , S = 5⨯15 , , S 120n +1 = , 12120⨯ 2 120⨯ 3 120⨯ 43120(n +1) 4n2n -1设 S = + + +L +, 20 21 22 2n -1则 1S = 120⨯ 2 + 120 ⨯ 3 +120 n +1 + , 22122 2n60⎛1- 1 ⎫ 1 ⎛ 1 1 1 ⎫ 120 (n +1) 2n -1 ⎪ 120(n +1) 两式作差得 S = 240 +120 + + + n -1 ⎪ - = 240 + ⎝ ⎭ - 1 n 2 ⎝ 2 2 2 ⎭ 2120 120(n +1)120(n + 3) 1- 22 = 360 -- = 360 -, 2n -1 2n240(n + 3) 2n15(n + 3)因此, S = 720 -= 720 -. 2n15 n + 3 故答案为: 5 ; 720 -.2n -42n -4【点睛】方法点睛:数列求和 常用方法:(1) 对于等差等比数列,利用公式法可直接求解; (2) 对于{a n b n }结构,其中{a n } 是等差数列,{b n }是等比数列,用错位相减法求和; (3) 对于{a n + b n } 结构,利用分组求和法;(4) 对于⎧ 1 ⎫ 结构,其中{a } 是等差数列,公差为d (d ≠ 0) ,则1= 1 ⎛ 1 - 1 ⎫ ,利用裂 ⎨ ⎬na a⎪ ⎩ a n a n +1 ⎭nn +1d ⎝ a n a n +1 ⎭ n n项相消法求和.四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{a } 满足a = 1 , a= ⎧a n +1, n 为奇数, n1n +1⎨a + 2, n 为偶数. ⎩ n(1) 记b n = a 2n ,写出b 1 , b 2 ,并求数列{b n } 的通项公式;(2) 求{a n }的前 20 项和.【答案】(1) b 1 = 2, b 2 = 5 ;(2) 300 .【解析】【分析】(1)根据题设中的递推关系可得b n +1 = b n + 3 ,从而可求{b n } 的通项.(2)根据题设中的递推关系可得{a n } 的前20 项和为S 20 可化为 S 20 = 2(b 1 + b 2 + + b 9 + b 10 ) -10 ,利用(1) 的结果可求 S 20 .【详解】(1)由题设可得b 1 = a 2 = a 1 +1 = 2, b 2 = a 4 = a 3 +1 = a 2 + 2 +1 = 5又 a 2k +2 = a 2k +1 +1, a 2k +1 = a 2k + 2 ,故 a 2k +2 = a 2k + 3 即b n +1 = b n + 3 即b n +1 - b n = 3 所以{b n }为等差数列,故b n = 2 + (n -1)⨯ 3 = 3n -1 .(2) 设{a n }的前20 项和为 S 20 ,则 S 20 = a 1 + a 2 + a 3 + + a 20 ,因为a 1 = a 2 -1, a 3 = a 4 -1,, a 19 = a 20 -1 ,所以S 20 = 2 (a 2 + a 4 + + a 18 + a 20 ) -10= 2(b + b ++ b + b) -10 = 2⨯⎛10⨯ 2 +9⨯10 ⨯ 3⎫-10 = 300 . 129102⎪ ⎝ ⎭【点睛】方法点睛:对于数列的交叉递推关系,我们一般利用已知的关系得到奇数项的递推关系或偶数项的递推关系,再结合已知数列的通项公式、求和公式等来求解问题.18. 某学校组织“一带一路”知识竞赛,有 A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得 20 分,否则得 0 分: B 类问题中的每个问题回答正确得 80 分,否则得 0 分,己知小明能正确回答 A 类问题的概率为 0.8,能正确7 回答 B 类问题的概率为 0.6,且能正确回答问题的概率与回答次序无关.(1) 若小明先回答 A 类问题,记 X 为小明的累计得分,求 X 的分布列; (2) 为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2) B 类. 【解析】【分析】(1)通过题意分析出小明累计得分 X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答 B 类问题的数学期望,比较两个期望的大小即可. 【详解】(1)由题可知, X 的所有可能取值为0 , 20 ,100 .P ( X = 0) = 1- 0.8 = 0.2 ; P ( X = 20) = 0.8(1- 0.6) = 0.32 ; P ( X = 100) = 0.8⨯ 0.6 = 0.48 . 所以 X 的分布列为(2)由(1)知, E ( X ) = 0⨯ 0.2 + 20⨯ 0.32 +100 ⨯ 0.48 = 54.4 .若小明先回答 B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0 , 80 ,100 .P (Y = 0) = 1- 0.6 = 0.4 ; P (Y = 80) = 0.6 (1- 0.8) = 0.12 ; P ( X = 100) = 0.8⨯ 0.6 = 0.48 .所以 E (Y ) = 0⨯ 0.4 + 80 ⨯ 0.12 +100 ⨯ 0.48 =57.6 .因为54.4 < 57.6 ,所以小明应选择先回答 B 类问题.19. 记 ABC 是内角A , B , C 的对边分别为a , b , c .已知b 2 = ac ,点 D 在边 AC 上,BD sin ∠ABC = a sin C .(1) 证明: BD = b ;(2) 若 AD = 2DC ,求cos ∠ABC【答案】(1)证明见解析;(2)cos ∠ABC = . 12X 0 20100 P0.20.320.48c a c b b 【解析】【分析】(1)根据正弦定理的边角关系有 BD = ac ,结合已知即可证结论.b(2)由题设 BD = b , AD =2b , DC = b,应用余弦定理求cos ∠ADB 、cos ∠CDB ,又 3 32 b 4 11b 2∠ADB = π - ∠CDB ,可得2a + = ,结合已知及余弦定理即可求cos ∠ABC .a 2 3【详解】(1) 由题设, BD =a sin C ,由正弦定理知: =b sin C ,即= c , sin ∠ABC ∴ BD =ac,又b 2 = ac ,b∴ BD = b ,得证.(2) 由题意知: BD = b , AD =2b , DC = b , 3 3sin C sin ∠ABC sin ∠ABC b2 + 4b 2- 2 13b 2 - c 2 2+ b 2 - 2 10b 2 - a 2 ∴ cos ∠ADB = 9 = 9 ,同理cos ∠CDB = 9 = 9 , 2b ⋅ 2b 4b 2 2b ⋅ b2b 2 3 3 3 3∵ ∠ADB = π - ∠CDB ,13b 2 - 9 c 2 a 2 = - 10b 292 211b 2∴4b 22b 2,整理得2a + c =,又b 3 = ac ,332b 4 11b 2 4 2 2 4 a 21 a2 =3 ∴ 2a + = a 2 ,整理得6a 3-11a b + 3b = 0 ,解得 b 2 = 3 或 b 22 ,a 2 + c 2 -b 24a 2由余弦定理知: cos ∠ABC == -, 2ac3 2b 2当 a 2 = 1时, cos ∠ABC = 7 > 1不合题意;当 a 2 = 3 时, cos ∠ABC = 7 b 2 36 b 2 2 12 2 ;综上,cos ∠ABC =7.12【点睛】关键点点睛:第二问,根据余弦定理及∠ADB =π-∠CDB 得到a, b, c 的数量关系,结合已知条件及余弦定理求cos ∠ABC .20.如图,在三棱锥A -BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点.(1)证明:OA ⊥CD ;(2)若OCD 是边长为1 的等边三角形,点E 在棱AD 上,DE = 2EA ,且二面角E -BC -D 的大小为45︒,求三棱锥A -BCD 的体积.【答案】(1)详见解析(2)36【解析】【分析】(1)根据面面垂直性质定理得AO⊥平面BCD,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【详解】(1)因为AB=AD,O 为BD 中点,所以AO⊥BD因为平面ABD 平面BCD =BD ,平面ABD⊥平面BCD,AO ⊂平面ABD,因此AO⊥平面BCD,因为CD ⊂平面BCD,所以AO⊥CD(2)作EF⊥BD 于F, 作FM⊥BC 于M,连FM因为AO⊥平面BCD,所以AO⊥BD, AO⊥CD所以EF⊥BD, EF⊥CD,BD ⋂CD =D ,因此EF⊥平面BCD,即EF⊥BC因为FM⊥BC,FM I EF =F ,所以BC⊥平面EFM,即BC⊥MF3 17 y则∠EMF 为二面角 E-BC-D 的平面角, ∠EMF = π4 因为 BO = OD , OCD 为正三角形,所以 OCD 为直角三角形 因为 BE = 2ED ,∴ FM = 1 BF = 1 (1+ 1) = 2223 3从而EF=FM= 2∴ AO = 13Q AO ⊥ 平面BCD,所以V = 1 AO ⋅ S3 ∆BCD= 1 ⨯1⨯ 1 ⨯1⨯ = 3 3 2 6【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 21. 在平面直角坐标系 xOy 中,已知点 F 1 (- (1) 求C 的方程;17, 0) 、 F 2( 17, 0) MF 1- MF2= 2 ,点 M 的轨迹为C .(2) 设点T 在直线 x = 1上,过T 的两条直线分别交C 于A 、B 两点和 P ,Q 两点,且 TA ⋅ TB = TP ⋅ TQ ,2求直线 AB 的斜率与直线 PQ 的斜率之和.【答案】(1) x 2 2- = 1( x ≥ 1) ;(2) 0 . 16【解析】【分析】(1)利用双曲线的定义可知轨迹C 是以点 F 1 、 F 2 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程; (2)设点T⎛ 1 , t ⎫ ,设直线 AB 的方程为 y - t = k ⎛ x - 1 ⎫,设点 A ( x , y ) 、B (x , y ) ,联立直线 AB 与 2 ⎪ 1 2 ⎪1 12 2⎝ ⎭ ⎝ ⎭曲线C 的方程,列出韦达定理,求出 TA ⋅ TB 的表达式,设直线 PQ 的斜率为k 2 ,同理可得出 TP ⋅ TQ 的表达式,由 TA ⋅ TB = TP ⋅ TQ 化简可得k 1 + k 2 的值. 【详解】因为 MF 1 - MF 2 = 2 < F 1F 2 = 2 ,- 2 = ( > > ) = = y 1 2 1 2 2 所以,轨迹C 是以点 F 1 、 F 2 为左、右焦点的双曲线的右支,设轨迹C 的方程为 x a 2y 21 a 0, b 0 ,则2a2 ,可得 a 1 , b =b= 4 ,所以,轨迹C 的方程为 x 2 2-= 1( x ≥ 1) ;16(2)设点T ⎛ 1 , t ⎫,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,2 ⎪ ⎝ ⎭不妨直线 AB 的方程为 y - t = k ⎛ x - 1 ⎫,即 y = k x + t - 1 k ,1 2 ⎪12 1⎝ ⎭⎧ y = k x + t - 1 k 2 联立⎪ 1 2 1 ,消去 y 并整理可得(k 2 -16) x 2 + k (2t - k ) x + ⎛ t - 1 k ⎫ +16 = 0 ,⎨ ⎪⎩16x 2 - y 2 = 16 设点 A ( x , y ) 、 B ( x , y1 1 1) ,则 x > 1 且 x > 1. 1 ⎪ ⎝ ⎭ 1 1 2 2 1 2 22⎛ 1 ⎫2k 2- 2k t t - k ⎪ +16 由韦达定理可得 x 1 + x 2 = 1 1, k 2 -16 x 1 x 2 = ⎝ 2 1 ⎭, 1 k 2 -16x + x 1(t 2 +12)(1+ k 2) 所以, TA ⋅ TB = (1+ k 2 )⋅ x - ⋅ x - = (1+ k 2 )⋅⎛ x x - 1 2 + ⎫ = 1 ,1 1 21 12 2 4 ⎪ k 2 -16 ⎝ ⎭ 1(t 2 +12)(1+ k 2 )设直线 PQ 的斜率为k 2 ,同理可得 TP ⋅ TQ =2,k 2-16(t 2 +12)(1+ k 2 ) (t 2 +12)(1+ k 2 )因为 TA ⋅ TB = TP ⋅ TQ ,即1=k 2-16k 2-162,整理可得k 2 = k 2,12即(k 1 - k 2 )(k 1 + k 2 ) = 0 ,显然k 1 - k 2 ≠ 0 ,故k 1 + k 2 = 0 . 因此,直线 AB 与直线 PQ 的斜率之和为0 .【点睛】方法点睛:求定值问题常见的方法有两种:(1) 从特殊入手,求出定值,再证明这个值与变量无关;(2) 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知函数 f ( x ) = x (1- ln x ) .(1) 讨论 f( x ) 的单调性;1 2 1 2 2a ⎪b ⎪ (2) 设a , b 为两个不相等的正数,且b ln a - a ln b = a - b ,证明: 2 <1 + 1< e . a b【答案】(1) f ( x ) 的递增区间为(0,1) ,递减区间为(1, +∞) ;(2)证明见解析. 【解析】【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设 1 = x , 1 = x ,原不等式等价于2 < x + x < e ,前者可构建新函数,利用极值点偏移可证,后者a1 b2 1 2可设 x 2 = tx 1 ,从而把 x 1 + x 2 < e 转化为(t -1)ln (t +1) - t ln t < 0 在(1, +∞) 上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为(0, +∞ ) ,又 f '(x ) = 1- ln x -1 = -ln x , 当 x ∈(0,1)时, f '(x ) > 0 ,当 x ∈(1, +∞) 时, f '( x ) < 0 ,故 f (x ) 的递增区间为(0,1) ,递减区间为(1, +∞) . (2)因为b ln a - a ln b = a - b ,故b (ln a +1) = a (ln b +1) ,即ln a +1 = ln b +1, a b故 f ⎛ 1 ⎫ = f ⎛ 1 ⎫ ,⎝ ⎭⎝ ⎭设 1 = x , 1 = x ,由(1)可知不妨设0 < x < 1, x> 1.a1b21 2因为 x ∈(0,1)时, f (x ) = x (1- ln x ) > 0 , x ∈(e , +∞) 时, f ( x ) = x (1- ln x ) < 0 ,故1 < x 2 < e . 先证: x 1 + x 2 > 2 ,若 x 2 ≥ 2 , x 1 + x 2 > 2 必成立.若 x 2 < 2 , 要证: x 1 + x 2 > 2 ,即证 x 1 > 2 - x 2 ,而0 < 2 - x 2 < 1,故即证 f (x 1 ) > f (2 - x 2 ) ,即证: f ( x 2 ) > f (2 - x 2 ) ,其中1 < x 2 < 2 . 设 g (x ) = f ( x ) - f (2 - x ),1 < x < 2 , 则 g '(x ) = f '( x ) + f '(2 - x ) = -ln x - ln (2 - x ) = -ln ⎡⎣x (2 - x )⎤⎦ ,因为1 < x < 2 ,故0 < x (2 - x ) < 1,故-ln x (2 - x ) > 0 ,max 所以 g '(x ) > 0 ,故 g ( x ) 在(1, 2) 为增函数,所以 g ( x ) > g (1) = 0 , 故 f (x ) > f (2 - x ) ,即 f ( x 2 ) > f (2 - x 2 ) 成立,所以 x 1 + x 2 > 2 成立,综上, x 1 + x 2 > 2 成立. 设 x 2 = tx 1 ,则t > 1,结合ln a +1 = ln b +1 , 1 = x , 1 = x 可得: x (1- ln x ) = x (1- ln x ) ,a b a 1b 21 12 2即:1- ln x = t (1- ln t - ln x ) ,故ln x = t -1- t ln t ,1 1 1t -1要证: x 1 + x 2 < e ,即证(t +1) x 1 < e ,即证ln (t +1) + ln x 1 < 1 ,即证: ln (t +1)+ t -1- t ln t < 1 ,即证: (t -1)ln (t +1) - t ln t < 0 ,t -1令 S (t ) = (t -1)ln (t +1) - t ln t , t > 1 ,则 S '(t ) = ln (t +1) +t -1 -1- ln t = ln ⎛1+ 1 ⎫ - 2,t +1t ⎪t +1 ⎝ ⎭先证明一个不等式: ln (x +1) ≤ x . 设u (x ) = ln ( x +1) - x ,则u '( x ) = 1x +1 -1 = -x , x +1当-1 < x < 0 时, u '(x ) > 0 ;当 x > 0 时, u '( x ) < 0 , 故u ( x ) 在(-1, 0) 上为增函数,在(0, +∞) 上为减函数,故u ( x ) = u (0) = 0 ,故ln ( x +1) ≤ x 成立由上述不等式可得当t > 1时, ln ⎛1+1 ⎫ ≤ 1 < 2,故 S '(t ) < 0 恒成立, t ⎪t t +1 ⎝ ⎭故 S (t ) 在(1, +∞) 上为减函数,故 S (t ) < S (1) = 0 ,故(t -1)ln (t +1) - t ln t < 0 成立,即 x 1 + x 2 < e 成立.综上所述, 2 < 1 + 1< e .a b【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年普通高等学校招生全国统一考试
理科数学乙卷
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设2(z+z̅)+3(z-z̅)=4+6i ,则z=( ).
A.1-2i
B.1+2i
C.1+i
D.1-i
2.已知集合S={s|s=2n+1,n ∈Z },T={t|t=4n+1,n ∈Z },则S ∩T=( )
A.∅
B.S
C.T
D.Z
3.已知命题p :∃x ∈R ,sinx <1;命题q :∀x ∈R ,e |x|≥1,则下列命题中为真命题的是( )
A.p ∧q
B.¬p ∧q
C.p ∧¬q
D.¬(pVq)
4.设函数f(x)=1−x 1+x ,则下列函数中为奇函数的是( )
A.f(x-1)-1
B.f(x-1)+1
C.f(x+1)-1
D.f(x+1)+1
5.在正方体ABCD-A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( )
A.π2
B. π3
C. π4
D. π6
6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
A.60种
B.120种
C.240种
D.480种
7.把函数y=f(x)图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y=sin(x-π4)的图像,则f(x)=( )
A.sin(x 2−7π12)
B. sin(x 2+π12)
C. sin(2x −7π12)
D. sin(2x +π12)
8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( )
A. 74
B. 2332
C. 932
D. 29
9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海盗的高。
如图,点E,H,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”。
则海岛的高AB=( ).
A :
表高×表距表目距的差+表高 B :表高×表距表目距的差−表高 C :表高×表距表目距的差+表距 D :表高×表距表目距的差
−表距 10.设a ≠0,若x=a 为函数f (x )=a (x −a )2(x −b )的极大值点,则( ).
A :a <b
B :a >b
C :ab <a 2
D :ab >a 2
11.设B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点,若C 上的任意一点P 都满足|PB |≤2b ,则C 的
离心率的取值范围是( ).
A :[√22,1)
B :[12,1)
C :(0,√22]
D :(0,12] 12.设a =2ln 1.01,b =ln 1.02,c =√1.04−1,则( ).
A :a <b <c
B :b <c <a
C :b <a <c
D :c <a <b
二、填空题:本题共4小题,每小题5分,共20分。
13.已知双曲线C :x 2m −y 2=1(m>0)的一条渐近线为√3x +my=0,则C 的焦距为 .
14.已知向量a =(1,3),b=(3,4),若(a -λb )⊥b ,则λ= 。
15.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为√3,B=60°,a 2+c 2=3ac ,则b= .
16.以图①为正视图和俯视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17-21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
某厂研究了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备和新设备生产产品的该项指标的样本平均数分别记为x̅和y̅,样本方差分别记为s
12和s
2
2
(1)求x̅,y̅, s
12,s
2
2;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y̅-x̅≥2√s12+s22
2
,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
18.(12分)
如图,四棱锥P-ABCD的底面是矩形,P D⊥底面ABCD,PD=DC=1,M为BC的中点,且P B⊥AM,
(1)求BC;
(2)求二面角A-PM-B的正弦值。
19.(12分)
记S
n 为数列{a
n
}的前n项和,b
n
为数列{S
n
}的前n项和,已知2
S n
+1
b n
=2.
(1)证明:数列{b
n
}是等差数列;
(2)求{a
n
}的通项公式.
20.(12分)
设函数f(x)=ln(a-x),已知x=0是函数y=xf(x)的极值点。
(1)求a;
(2)设函数g(x)=x+f(x)
xf(x)
,证明:g(x)<1.
21.(12 分)
己知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4. (1)求p;
(2)若点P在M上,PA,PB是C的两条切线,A,B是切点,求ΔPAB的最大值.
(二)选考题:共10分,请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4一4:坐标系与参数方程](10分)
在直角坐标系xOy中,⊙C的圆心为C(2,1),半径为1.
(1)写出⊙C的一个参数方程;的极坐标方程化为直角坐标方程;
(2)过点F(4,1)作⊙C的两条切线, 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条直线的极坐标方程.
23.[选修4一5:不等式选讲](10分)
已知函数f(x)=|x-a|+|x+3|.
(1)当a=1时,求不等式f(x)≥6的解集;
(2)若f(x)≥—a ,求a的取值范围.。