常用电平标准比较

合集下载

电平标准

电平标准

一些电平标准下面总结一下各电平标准,和新手以及有需要的人共享一下^_^.现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。

下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。

TTL:Transistor-Transistor Logic 三极管结构。

Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。

因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。

所以后来就把一部分“砍”掉了。

也就是后面的LVTTL。

LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。

3.3V LVTTL:Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。

2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。

更低的LVTTL不常用就先不讲了。

多用在处理器等高速芯片,使用时查看芯片手册就OK了。

TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻; TTL电平输入脚悬空时是内部认为是高电平。

要下拉的话应用1k以下电阻下拉。

TTL输出不能驱动CMOS输入。

CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。

Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。

相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。

对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。

常见逻辑电平标准

常见逻辑电平标准

常见逻辑电平标准现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。

下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。

TTL:Transistor-Transistor Logic三极管结构。

Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。

因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。

所以后来就把一部分“砍”掉了。

也就是后面的LVTTL。

LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。

3.3V LVTTL:Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。

2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。

更低的LVTTL不常用就先不讲了。

多用在处理器等高速芯片,使用时查看芯片手册就OK了。

TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL电平输入脚悬空时是内部认为是高电平。

要下拉的话应用1k以下电阻下拉。

TTL 输出不能驱动CMOS输入。

CMOS:Complementary Metal Oxide Semiconductor??PMOS+NMOS。

Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。

相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。

对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。

常用电平标准的讨论(TTL,ECL,PECL,LVDS,CMOS,CML,GTL,HSTL,SSTL)

常用电平标准的讨论(TTL,ECL,PECL,LVDS,CMOS,CML,GTL,HSTL,SSTL)

常用电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML, GTL, HSTL, SSTL)部分资料上说它们的逻辑标准,门限都是一样的,就是供电大小不同,这两种电平的区别就是这些么?是否LVTTL电平无法直接驱动TTL电路呢?另外,"因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。

" 中,关于改善噪声容限和系统功耗部分大家还有更深入的解释么?简单列个表把Voh Vol Vih Vil VccTTL 2.4 0.4 2.0 0.8 5CMOS 4.44 0.5 3.5 1.5 5LVTTL 2.4 0.4 2.0 0.8 3.3LVCMOS 2.4 0.5 2.0 0.8 3.3SSTL_2 1.82 0.68 1.43 1.07 2.5根据上表所示,LVTTL可以驱动TTL,至于噪声,功耗问题小弟就不理解了,希望高手赐教!TTL 和LVTTL 的转换电平是相同的, TTL 产生于1970 年代初, 当时逻辑电路的电源电压标准只有5V 一种, TTL 的高电平干扰容限比低电平干扰容限大. CMOS 在晚十几年后才形成规模生产, 转换电平是电源电压的一半. 1990 年代才产生了3.3V/2.5V 等不同的电源标准, 于是重新设计了一部分TTL 电路成为LVTTL.LVTTLTTL 和LVTTL 的转换电平是相同的, TTL 产生于1970 年代初, 当时逻辑电路的电源电压标准只有5V 一种, TTL 的高电平干扰容限比低电平干扰容限大. CMOS 在晚十几年后才形成规模生产, 转换电平是电源电压的一半. 1990 年代才产生了3.3V/2.5V 等不同的电源标准, 于是重新设计了一部分TTL 电路成为LVTTL.ECL电路是射极耦合逻辑(Emitter Couple Logic)集成电路的简称与TTL电路不同,ECL电路的最大特点是其基本门电路工作在非饱和状态所以,ECL电路的最大优点是具有相当高的速度这种电路的平均延迟时间可达几个毫微秒甚至亚毫微秒数量级,这使得ECL集成电路在高速和超高速数字系统中充当无以匹敌的角色。

各种电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML, GTL, HSTL, SSTL.......)

各种电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML, GTL, HSTL, SSTL.......)

各种电平标准的讨论(TTL,ECL,PECL,LVDS、CMOS、CML, GTL,HSTL, SSTL.......)ECL电路是射极耦合逻辑(Emitter Couple Logic)集成电路的简称与TTL电路不同,ECL电路的最大特点是其基本门电路工作在非饱和状态所以,ECL电路的最大优点是具有相当高的速度这种电路的平均延迟时间可达几个毫微秒甚至亚毫微秒数量级,这使得ECL集成电路在高速和超高速数字系统中充当无以匹敌的角色。

ECL电路的逻辑摆幅较小(仅约 0.8V ,而 TTL 的逻辑摆幅约为2.0V ),当电路从一种状态过渡到另一种状态时,对寄生电容的充放电时间将减少,这也是 ECL电路具有高开关速度的重要原因。

但逻辑摆幅小,对抗干扰能力不利。

由于单元门的开关管对是轮流导通的,对整个电路来讲没有“截止”状态,所以单元电路的功耗较大。

从电路的逻辑功能来看, ECL 集成电路具有互补的输出,这意味着同时可以获得两种逻辑电平输出,这将大大简化逻辑系统的设计。

ECL集成电路的开关管对的发射极具有很大的反馈电阻,又是射极跟随器输出,故这种电路具有很高的输入阻抗和低的输出阻抗。

射极跟随器输出同时还具有对逻辑信号的缓冲作用。

在通用的电子器件设备中,TTL和CMOS电路的应用非常广泛。

但是面对现在系统日益复杂,传输的数据量越来越大,实时性要求越来越高,传输距离越来越长的发展趋势,掌握高速数据传输的逻辑电平知识和设计能力就显得更加迫切了。

1. 几种常用高速逻辑电平1.1LVDS电平LVDS(Low Voltage Differential Signal)即低电压差分信号,LVDS 接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。

LVDS的典型工作原理如图1所示。

最基本的LVDS器件就是LVDS驱动器和接收器。

LVDS的驱动器由驱动差分线对的电流源组成,电流通常为3.5 mA。

现在常用的电平标准有TTLCMOSLVTTLLVCMOS

现在常用的电平标准有TTLCMOSLVTTLLVCMOS

现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。

下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。

TTL:Transistor-Transistor Logic 三极管结构。

Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。

因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。

所以后来就把一部分“砍”掉了。

也就是后面的LVTTL。

LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。

3.3V LVTTL:Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。

2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。

更低的LVTTL不常用就先不讲了。

多用在处理器等高速芯片,使用时查看芯片手册就OK了。

TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻; TTL电平输入脚悬空时是内部认为是高电平。

要下拉的话应用1k以下电阻下拉。

TTL输出不能驱动CMOS输入。

CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。

Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。

相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。

对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。

电平标准

电平标准

常用电平标准:现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。

下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。

TTL:Transistor-Transistor Logic 三极管逻辑。

Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。

因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。

所以后来就把一部分“砍”掉了。

也就是后面的LVTTL。

LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。

3.3V LVTTL:Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。

2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。

更低的LVTTL不常用就先不讲了。

多用在处理器等高速芯片,使用时查看芯片手册就OK了。

TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL电平输入脚悬空时是内部认为是高电平。

要下拉的话应用1k 以下电阻下拉。

TTL输出不能驱动CMOS输入。

CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。

Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。

相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。

对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。

电平接口标准

电平接口标准

. TTL电平的VIH/VIL一般是2V/0.8V,VOH/VOL一般是 2.4V/0.4V,不论是3.3V还是5V 的TTL都一样的;CMOS的VIH/VIL一般是70%VCC/30%VCC,VOH/VOL一般是80% VCC/20%VCC,所以不同的电平不能互推!另外CMOS的速度比较快,一般的高速器件采用!常见逻辑电平标准现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。

下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。

TTL:Transistor-Transistor Logic 三极管结构。

Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。

因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。

所以后来就把一部分“砍”掉了。

也就是后面的LVTTL。

LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low V oltage TTL)。

3.3V LVTTL:Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。

2.5V LVTTL:Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。

更低的LVTTL不常用就先不讲了。

多用在处理器等高速芯片,使用时查看芯片手册就OK 了。

TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL 电平输入脚悬空时是内部认为是高电平。

要下拉的话应用1k以下电阻下拉。

TTL输出不能驱动CMOS输入。

CMOS:Complementary Metal Oxide Semiconductor??PMOS+NMOS。

电平标准(总结)

电平标准(总结)

数字信号的标准现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。

下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。

一、TTL电平TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。

TTL集成电路的全名是晶体管-晶体管逻辑集成电路(Transistor-Transistor Logic),主要有54/74系列标准TTL、高速型TTL(H-TTL)、低功耗型TTL(L-TTL)、肖特基型TTL(S-TTL)、低功耗肖特基型TTL(LS-TTL)五个系列。

1.标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V(输入H>2V,输入L>0.8V;输出L=3.4V,输出L=0.2)。

2.S-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.5V。

3.LS-TTL输入高电平最小2V,输出高电平最小Ⅰ类2.5V,Ⅱ、Ⅲ类2.7V,典型值3.4V,输入低电平最大Ⅰ类0.7V,Ⅱ、Ⅲ类0.8V,输出低电平最大Ⅰ类0.4V,Ⅱ、Ⅲ类0.5V,典型值0.25V。

TTL:Transistor-Transistor Logic 三极管结构。

Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。

因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。

下面简单介绍一下各自的供电电源、电平标准以及使用注意事项。

TTL:Transistor-Transistor Logic 三极管结构。

Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。

因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。

所以后来就把一部分“砍”掉了。

也就是后面的LVTTL。

LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。

3.3V LVTTL: Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。

2.5V LVTTL: Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。

更低的LVTTL不常用就先不讲了。

多用在处理器等高速芯片,使用时查看芯片手册就OK 了。

TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL 电平输入脚悬空时是内部认为是高电平。

要下拉的话应用1k以下电阻下拉。

TTL输出不能驱动CMOS输入。

CMOS:Complementary Metal Oxide Semiconductor PMOS+NMOS。

Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。

相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。

对应3.3V LVTTL,出现了LVCMOS,可以与3.3V的LVTTL直接相互驱动。

3.3V LVCMOS: Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=0.7V。

2.5V LVCMOS: Vcc:2.5V;VOH>=2V;VOL<=0.1V;VIH>=1.7V;VIL<=0.7V。

CMOS使用注意:CMOS结构内部寄生有可控硅结构,当输入或输入管脚高于VCC一定值(比如一些芯片是0.7V)时,电流足够大的话,可能引起闩锁效应,导致芯片的烧毁。

ECL:Emitter Coupled Logic 发射极耦合逻辑电路(差分结构)Vcc=0V;Vee:-5.2V;VOH=-0.88V;VOL=-1.72V;VIH=-1.24V;VIL=-1.36V。

速度快,驱动能力强,噪声小,很容易达到几百M的应用。

但是功耗大,需要负电源。

为简化电源,出现了PECL(ECL结构,改用正电压供电)和LVPECL。

PECL:Pseudo/Positive ECL Vcc=5V;VOH=4.12V;VOL=3.28V;VIH=3.78V;VIL=3.64V LVPELC:Low Voltage PECL Vcc=3.3V;VOH=2.42V;VOL=1.58V;VIH=2.06V;VIL=1.94VECL、PECL、LVPECL使用注意:不同电平不能直接驱动。

中间可用交流耦合、电阻网络或专用芯片进行转换。

以上三种均为射随输出结构,必须有电阻拉到一个直流偏置电压。

(如多用于时钟的LVPECL:直流匹配时用130欧上拉,同时用82欧下拉;交流匹配时用82欧上拉,同时用130欧下拉。

但两种方式工作后直流电平都在1.95V左右。

)前面的电平标准摆幅都比较大,为降低电磁辐射,同时提高开关速度又推出LVDS电平标准。

LVDS:Low Voltage Differential Signaling 差分对输入输出,内部有一个恒流源3.5-4mA,在差分线上改变方向来表示0和1。

通过外部的100欧匹配电阻(并在差分线上靠近接收端)转换为±350mV的差分电平。

LVDS使用注意:可以达到600M以上,PCB要求较高,差分线要求严格等长,差最好不超过10mil(0.25mm)。

100欧电阻离接收端距离不能超过500mil,最好控制在300mil以内。

下面的电平用的可能不是很多,篇幅关系,只简单做一下介绍。

如果感兴趣的话可以联系我。

CML:是内部做好匹配的一种电路,不需再进行匹配。

三极管结构,也是差分线,速度能达到3G以上。

只能点对点传输。

GTL:类似CMOS的一种结构,输入为比较器结构,比较器一端接参考电平,另一端接输入信号。

1.2V电源供电。

Vcc=1.2V;VOH>=1.1V;VOL<=0.4V;VIH>=0.85V;VIL<=0.75V PGTL/GTL+:Vcc=1.5V;VOH>=1.4V;VOL<=0.46V;VIH>=1.2V;VIL<=0.8VHSTL是主要用于QDR存储器的一种电平标准:一般有VCCIO=1.8V和VCCIO=1.5V。

和上面的GTL相似,输入为输入为比较器结构,比较器一端接参考电平(VCCIO/2),另一端接输入信号。

对参考电平要求比较高(1%精度)。

SSTL主要用于DDR存储器。

和HSTL基本相同。

V&not;&not;CCIO=2.5V,输入为输入为比较器结构,比较器一端接参考电平1.25V,另一端接输入信号。

对参考电平要求比较高(1%精度)。

HSTL和SSTL大多用在300M以下。

RS232和RS485基本和大家比较熟了,只简单提一下:RS232采用±12-15V供电,我们电脑后面的串口即为RS232标准。

+12V表示0,-12V表示1。

可以用MAX3232等专用芯片转换,也可以用两个三极管加一些外围电路进行反相和电压匹配。

RS485是一种差分结构,相对RS232有更高的抗干扰能力。

传输距离可以达到上千米。

TTL和CMOS电平总结1,TTL电平(什么是TTL电平):TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑“1”,0V 等价于逻辑“0”,这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。

TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。

TTL 型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。

这是由于可靠性和成本两面的原因。

因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响。

TTL电路不使用的输入端悬空为高电平。

输出高电平>2.4V,输出低电平<0.4V。

在室温下,一般输出高电平是3.5V,输出低电平是0.2V。

最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

2,CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。

而且具有很宽的噪声容限。

CMOS 电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc。

CMOS电路不使用的输入端不能悬空,会造成逻辑混乱。

另外,CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。

3,电平转换电路:因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。

哈哈4,OC门,又称集电极开路与非门门电路,Open Collector(Open Drain)。

实际使用中,有时需要两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态电平)用同一条导线输送出去。

因此,需要一种新的与非门电路--OC门来实现“线与逻辑”。

OC门主要用于3个方面:4.1.1、实现与或非逻辑,用做电平转换,用做驱动器。

由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻Rp到电源VCC。

OC门使用上拉电阻以输出高电平,此外为了加大输出引脚的驱动能力,上拉电阻阻值的选择原则,从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够小。

4.1.2、线与逻辑,即两个输出端(包括两个以上)直接互连就可以实现“AND”的逻辑功能。

在总线传输等实际应用中需要多个门的输出端并联连接使用,而一般TTL门输出端并不能直接并接使用,否则这些门的输出管之间由于低阻抗形成很大的短路电流(灌电流),而烧坏器件。

在硬件上,可用OC门或三态门(ST门)来实现。

用OC门实现线与,应同时在输出端口应加一个上拉电阻。

4.1.3、三态门(ST门)主要用在应用于多个门输出共享数据总线,为避免多个门输出同时占用数据总线,这些门的使能信号(EN)中只允许有一个为有效电平(如高电平),由于三态门的输出是推拉式的低阻输出,且不需接上拉(负载)电阻,所以开关速度比OC门快,常用三态门作为输出缓冲器。

OD门,即漏极开路门电路open-drain,必须外界上拉电阻和电源才能将开关电平作为高低电平用。

否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。

开漏形式的电路有以下几个特点:4.2.1.利用外部电路的驱动能力,减少IC内部的驱动。

或驱动比芯片电源电压高的负载.4.2.2.可以将多个开漏输出的Pin,连接到一条线上。

通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。

这也是I2C,SMBus等总线判断总线占用状态的原理。

如果作为图腾输出必须接上拉电阻。

接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。

如果要求速度高电阻选择要小,功耗会大。

所以负载电阻的选择要兼顾功耗和速度。

4.2.3.可以利用改变上拉电源的电压,改变传输电平。

例如加上上拉电阻就可以提供TTL/CMOS电平输出等。

4.2.4.开漏Pin不连接外部的上拉电阻,则只能输出低电平。

一般来说,开漏是用来连接不同电平的器件,匹配电平用的。

4.2.5.正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DRAIN了。

这种输出的主要目的有两个:电平转换和线与。

4.2.6.由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。

相关文档
最新文档