理论力学静力学典型习题+答案

合集下载

静力学基础试题及答案

静力学基础试题及答案

静力学基础试题及答案一、单项选择题(每题2分,共20分)1. 静力学中,物体处于平衡状态的条件是()。

A. 合力为零B. 合力矩为零C. 合力和合力矩都为零D. 合力和合力矩中任意一个为零答案:C2. 作用在物体上的力可以分解为()。

A. 平衡力和非平衡力B. 重力和摩擦力C. 拉力和压力D. 作用力和反作用力答案:D3. 以下哪个选项不是静力学中常见的约束类型()。

A. 铰链约束B. 滑动约束C. 固定约束D. 弹性约束答案:B4. 静力学中,二力杆的特点是()。

A. 只能承受拉力B. 只能承受压力C. 只能承受弯矩D. 既能承受拉力也能承受压力答案:D5. 静定结构和超静定结构的主要区别在于()。

A. 材料种类不同B. 受力情况不同C. 约束数量不同D. 几何形状不同答案:C6. 静力学中,物体的平衡状态不包括()。

A. 静止状态B. 匀速直线运动状态C. 匀速圆周运动状态D. 加速运动状态答案:D7. 静力学中,力的三要素不包括()。

A. 大小B. 方向C. 作用点D. 性质答案:D8. 以下哪个选项是静力学中常见的平衡方程()。

A. ∑Fx = 0, ∑Fy = 0B. ∑M = 0C. ∑F = 0D. 所有选项都是答案:D9. 静力学中,力的平移定理指的是()。

A. 力的大小和方向不变,作用点可以任意移动B. 力的大小和作用点不变,方向可以任意改变C. 力的方向和作用点不变,大小可以任意改变D. 力的大小、方向和作用点都可以任意改变答案:A10. 静力学中,力的合成和分解遵循()。

A. 几何法则B. 代数法则C. 物理法则D. 数学法则答案:B二、填空题(每题2分,共20分)1. 静力学中,物体的平衡状态可以分为__________平衡和__________平衡。

答案:静态;动态2. 静力学中,力的平行四边形法则表明,两个力的合力大小和方向可以通过__________来确定。

答案:平行四边形法则3. 静力学中,物体在__________作用下,其运动状态不会发生改变。

《理论力学》静力学典型习题+答案

《理论力学》静力学典型习题+答案

1-3 试画出图示各构造中构件AB的受力争1-4 试画出两构造中构件ABCD的受力争1-5 试画出图 a 和 b 所示刚系统整体各个构件的受力争1-5a1-5b1- 8 在四连杆机构的ABCD的铰链 B 和 C上分别作用有力F1和 F2,机构在图示位置均衡。

试求二力F1和 F2之间的关系。

解:杆 AB,BC, CD为二力杆,受力方向分别沿着各杆端点连线的方向。

解法 1( 分析法 )假定各杆受压,分别选用销钉 B 和 C 为研究对象,受力以下图:yyFBCC xB Fo45BCx30o o F60F2CDF AB F1由共点力系均衡方程,对 B 点有:F x0F2F BC cos4500对 C点有:F x0FBC F1 cos3000解以上二个方程可得:F12 6F2 1.63F23解法 2( 几何法 )分别选用销钉 B 和 C 为研究对象,依据汇交力系均衡条件,作用在 B 和C 点上的力构成关闭的力多边形,以下图。

F F2BCF AB o30o45CD60oFF BC F1对 B 点由几何关系可知:F2F BC cos450对 C 点由几何关系可知:F BC F1 cos300解以上两式可得:F1 1.63F22-3 在图示构造中,二曲杆重不计,曲杆AB 上作用有主动力偶 M。

试求 A 和 C 点处的拘束力。

解: BC为二力杆 ( 受力以下图 ) ,故曲杆 AB 在 B 点处遇到拘束力的方向沿BC 两点连线的方向。

曲杆AB遇到主动力偶M的作用, A 点和 B 点处的拘束力一定构成一个力偶才能使曲杆AB保持均衡。

AB受力以下图,由力偶系作用下刚体的均衡方程有(设力偶逆时针为正):M0 F A10a sin(450 )M 0F A0.354Ma此中:tan 1。

对 BC杆有:F C FB F A0.354M 3aA,C两点拘束力的方向以下图。

2-4解:机构中 AB杆为二力杆,点A,B 出的拘束力方向即可确立。

静力学习题课答案

静力学习题课答案

【1】 梁AB 一端为固定端支座,另一端无约束,这样的梁称为悬臂梁。

它承受均布荷载q 和一集中力P 的作用,如图4-9(a )所示。

已知P =10kN , q =2kN/m ,l =4m ,︒=45α,梁的自重不计,求支座A 的反力。

【解】:取梁AB 为研究对象,其受力图如图4-9(b )所示。

支座反力的指向是假定的,梁上所受的荷载和支座反力组成平面一般力系。

在计算中可将线荷载q 用作用其中心的集中力2qlQ =来代替。

选取坐标系,列平衡方程。

)(kN 07.7707.010cos 0cos - 0A A →=⨯====∑ααP X P X X)(kN 07.11707.010242sin 2 0sin 2 0A A ↑=⨯+⨯=+==--=∑ααP ql Y P qlY Y )( m kN 28.404707.0108423sin 83 0sin 422ql 022A A ⋅=⨯⨯+⨯⨯=⋅+==⋅-⎪⎭⎫⎝⎛+-=∑l P ql m l P l l m M A αα力系既然平衡,则力系中各力在任一轴上的投影代数和必然等于零,力系中各力对任一点之矩的代数和也必然为零。

因此,我们可以列出其它的平衡方程,用来校核计算有无错误。

校核028.40407.114424242A A B =+⨯-⨯⨯=+⋅-⨯=∑m l Y l ql M 可见,Y A 和m A 计算无误。

【2】 钢筋混凝土刚架,所受荷载及支承情况如图4-12(a )所示。

已知kN 20 m,kN 2 kN,10 kN/m,4=⋅===Q m P q ,试求支座处的反力。

【解】:取刚架为研究对象,画其受力图如图4-12(b )所示,图中各支座反力指向都是假设的。

本题有一个力偶荷载,由于力偶在任一轴上投影为零,故写投影方程时不必考虑力偶,由于力偶对平面内任一点的矩都等于力偶矩,故写力矩方程时,可直接将力偶矩m 列入。

设坐标系如图4-12(b )所示,列三个平衡方程)(kN 3446106 06 0A A ←-=⨯--=--==++=∑q P X q P X X)(kN 296418220310461834 036346 0B B A ↑=⨯++⨯+⨯=+++==⨯--⨯-⨯-⨯=∑q m Q P Y q m Q P Y M)(kN 92920 00B A B A ↓-=-=-==-+=∑Y Q Y Q Y Y Y校核3462203102)9(6)34(6363266 C=⨯⨯+-⨯+⨯+-⨯--⨯=⨯+-++-=∑qmQPYXMAA说明计算无误。

(完整版)理论力学习题集册答案解析

(完整版)理论力学习题集册答案解析

第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

b(杆AB)a(球A )d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体 )b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。

()3、力偶矩就是力偶。

()二.电动机重P=500N,放在水平梁AC的中央,如图所示。

静力学试题及答案

静力学试题及答案

静力学试题及答案一、单项选择题(每题2分,共20分)1. 静力学中,力的三要素是什么?A. 大小、方向、作用点B. 大小、方向、作用线C. 大小、作用点、作用线D. 方向、作用点、作用线答案:A2. 力的合成遵循什么法则?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 平行四边形法则答案:D3. 以下哪个不是静力学平衡条件?A. 合力为零B. 合力矩为零C. 物体静止D. 物体匀速直线运动答案:D4. 在静力学中,物体的平衡状态是指:A. 物体静止B. 物体匀速直线运动C. 物体静止或匀速直线运动D. 物体加速运动答案:C5. 以下哪个力不是保守力?A. 重力B. 弹簧力C. 摩擦力D. 电场力答案:C6. 静摩擦力的方向总是:A. 与物体运动方向相反B. 与物体运动趋势相反C. 与物体运动方向相同D. 与物体运动趋势相同答案:B7. 动摩擦力的大小与以下哪个因素有关?A. 物体的质量B. 物体的速度C. 物体间的接触面积D. 物体间的正压力答案:D8. 物体在斜面上保持静止时,斜面对物体的摩擦力方向是:A. 垂直于斜面向上B. 垂直于斜面向下C. 平行于斜面向上D. 平行于斜面向下答案:C9. 以下哪个力不是静力学中的力?A. 重力B. 弹力C. 摩擦力D. 惯性力答案:D10. 物体在水平面上静止时,其受力情况是:A. 重力与支持力平衡B. 重力与摩擦力平衡C. 支持力与摩擦力平衡D. 重力与支持力不平衡答案:A二、填空题(每题2分,共20分)1. 静力学中,物体的平衡状态是指物体处于________或________状态。

答案:静止;匀速直线运动2. 力的平行四边形法则可以用于求解两个力的______。

答案:合力3. 静摩擦力的大小与物体间的正压力______。

答案:无关4. 当物体在斜面上静止时,斜面对物体的摩擦力方向是______。

答案:平行于斜面向上5. 动摩擦力的大小与物体间的正压力______。

《理论力学》第四章 静力学应用专题习题解

《理论力学》第四章 静力学应用专题习题解

第四章 力系的简化习题解[习题4-1] 试用节点法计算图示杵桁架各杆的内力。

解:(1)以整体为研究对象,其受力图如图所示。

由结构的对称性可知, kN R R B A 4==(2)以节点A 为研究对象,其受力图如图所示。

因为节点A 平衡,所以0=∑iyF0460sin 0=+AD N)(62.4866.0/4kN N AD -=-=0=∑ixF060cos 0=+AD AC N N)(31.25.062.460cos 0kN N N AD AC =⨯=-= (3)以节点D 为研究对象,其受力图如图所示。

因为节点D 平衡,所以 0=∑iyF0430cos 30cos 0'0=---AD D C N N 0866.0/4=++AD D C N N 0866.0/4866.0/4=+-D C N0=DC N0=∑ixF030sin 30sin 0'0=-+AD D C D E N N N 05.062.4=⨯+DE NkN4)(akN4AB RkN 2AC23N A )(31.2kN N DE -=(4)根据对称性可写出其它杆件的内力如图所示。

[习题4-2] 用截面法求图示桁架指定杆件 的内力。

解:(a)(1)求支座反力以整体为研究对象,其受力图如图所示。

由对称性可知,kN R R B A 12==(2)截取左半部分为研究对象,其受力图 如图所示。

因为左半部分平衡,所以0)(=∑i CF M0612422843=⨯-⨯+⨯+⨯N 063243=⨯-++N )(123kN N =kN2AC23N A0=∑ixF0cos cos 321=++N N N αθ01252252421=+⋅+⋅N N012515221=+⋅+⋅N N0512221=++N N ……..(1) 0=∑iyF02812sin sin 21=--++αθN N025*******=+⋅+⋅N N02525121=+⋅+⋅N N052221=++N N0544221=++N N ……..(2) 05832=-N)(963.53/582kN N ==)(399.1652963.5252221kN N N -=-⨯-=--=解:(b )截取上半部分为研究对象,其受力图如图所示。

《理论力学》静力学典型习题+答案00

《理论力学》静力学典型习题+答案00

1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。

试求二力F 1和F 2之间的关系。

解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。

解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。

对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知:0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。

试求A 和C 点处的约束力。

解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。

曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。

AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan =θ。

对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。

2-4FF解:机构中AB杆为二力杆,点A,B出的约束力方向即可确定。

由力偶系作用下刚体的平衡条件,点O,C处的约束力方向也可确定,各杆的受力如图所示。

静力学试题及答案

静力学试题及答案

静力学试题及答案一、选择题1. 在一个平衡的物体上,作用的重力和支持该物体的力的相对位置关系是:A. 重力和支持力的作用线重合B. 重力和支持力的作用线不重合答案:A2. 下列哪个不是满足平衡条件的必要条件:A. 物体受到合力为零的作用B. 物体受到合力矩为零的作用C. 物体所受合力与其自重相等反向答案:B3. 下列哪个条件不是平衡杆的平衡条件:A. 杆上所有质点的合外力为零B. 杆上所有质点的合力矩为零C. 杆上所有质点的合重力为零答案:C4. 若在一根水平杆上放置两个等质量物体,物体A在杆的左端,物体B在杆的右端,下列哪个位置组合是平衡位置:A. A在杆的中点,B在杆的左端B. A在杆的中点,B在杆的右端C. A、B均在杆的两端答案:B5. 下列哪个条件不是平衡力夹具的平衡条件:A. 物体受到合力为零的作用B. 力夹具上所有质点的合力为零C. 力夹具上所有质点的合力矩为零答案:A二、填空题1. 物体所受重力与支持力方向相反,其合力为______。

答案:零2. 物体所受重力矩与支持力矩之间的关系为______。

答案:相等且反向3. 在平衡位置,物体所受合力矩等于______。

答案:零4. 平衡力夹具上所有质点所受力矩之和等于______。

答案:零三、计算题1. 质量为10 kg的物体悬挂在离支点2 m处的杆上,求支持力的大小。

答案:由于平衡条件下物体所受合力为零,支持力的大小等于物体的重力大小,即支持力=mg=10 kg × 9.8 m/s²= 98 N。

2. 在一个长度为6 m的水平杆上有两个距离杆左端为1 m和5 m处的质量分别为4 kg和6 kg的物体,求物体B对杆的支持力和物体A对杆的支持力。

答案:物体B对杆的支持力为FB=6 kg × 9.8 m/s²= 58.8 N;物体A 对杆的支持力为FA=4 kg × 9.8 m/s²= 39.2 N。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-3 试画出图示各结构中构件AB的受力图1-4 试画出两结构中构件ABCD的受力图1-5 试画出图a和b所示刚体系整体各个构件的受力图1-5a1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。

试求二力F 1和F 2之间的关系。

解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。

解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:∑=0x F 045cos 02=-BC F F对C 点有:∑=0x F 030cos 01=-F F BC解以上二个方程可得:22163.1362F F F ==F 2F BCF ABB45oy xF BCF CDC60o F 130oxy解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点上的力构成封闭的力多边形,如图所示。

对B 点由几何关系可知:0245cos BC F F =对C 点由几何关系可知:0130cos F F BC =解以上两式可得:2163.1F F =2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。

试求A 和C 点处的约束力。

解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。

曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。

AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):0=∑M 0)45sin(100=-+⋅⋅M a F A θ aM F A 354.0=其中:31tan =θ。

对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。

2-4F BC F CD 60oF 130o F 2F BCF45o解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。

由力偶系作用下刚体的平衡条件,点O,C 处的约束力方向也可确定,各杆的受力如图所示。

对BC 杆有:0=∑M030sin 20=-⋅⋅M C B F B对AB 杆有: A B F F = 对OA 杆有:0=∑M01=⋅-A O F M A求解以上三式可得:m N M ⋅=31, N F F F C O AB 5===,方向如图所示。

-6aj F i F F ρρρ23211+=i F F ρρ=2j F i F F ρρρ23213+-=j F i F F R ρρρ3+=k Fa M A ρρ23=A R M F ρρ⊥ad 43=i F F R ρρ2-=ad 43=∑=0x F 0sin =+Bx F P α∑=0y F 0cos =--αP P F By ∑=0x F 0=-Bx Ax F F ∑=0y F 0=-By Ay F F 0=∑A M 0=⋅-l F M By A A By Bx Ay Ax M F F F F ,,,,αsin P F F Bx Ax -==)cos 1(α+==P F F By Ay lP M A )cos 1(α+==∑A M 0cos cos 2cos =⋅-⋅-⋅αααl F l G a N D ∑=0y F 0cos =--F G N D αα,D N 31])2()(2arccos[lG F a G F ++=α0=∑y M 0tan sin cos tan 21=⋅-⋅-⋅αθθαc F c F c P BC BC NF BC 6.60=0'=∑x M 0sin 21=⋅-⋅-⋅a F c F a P BC B θN F B 100=∑=0y F ∑=0z F 以下几题可看一看!Az Ay F F ,0=∑x M 0=∑DE M 045cos 02=⋅F 02=F 0=∑AO M 045cos 45cos 45cos 0006=⋅-⋅-a F a F F F 226-=0=∑BH M 045cos 45cos 0604=⋅-⋅-a F a F F F 224=0=∑AD M 045sin 45cos 0061=⋅-⋅+⋅a F a F a F F F 2211+=0=∑CD M 045sin 031=⋅-⋅+⋅a F a F a F FF 213-=0=∑BC M 045cos 0453=⋅-⋅+⋅a F a F a F 05=F cm N M ⋅=1500⎪⎩⎪⎨⎧∑=∑=∑=00Oy x M F F⎪⎪⎩⎪⎪⎨⎧=-⋅+=+-=-+02)(045sin 045cos 21102201M DF F N p F N p F ⎩⎨⎧==2211N f F N f F s s sf N F N F ,2211,,,02222=+⋅⋅-⋅M f D p f M S S 491.4,223.021==S S f f 491.42=S f 0)1(2)1(2221<+-=S S f f p N 223.0=S f 045=α⎪⎩⎪⎨⎧∑=∑=∑=000Ay x M F F ⎪⎪⎩⎪⎪⎨⎧=⋅-⋅-⋅=-+=-0sin 2cos sin sin cos 0cos 0sin ααθαθθθB A p C A T C A T p T F T F S N NS S F f F =sS N f T F F ,,,646.0=s f ⎪⎩⎪⎨⎧∑=∑=∑=000xB A F M M ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+⋅+⋅-=+⋅-⋅0sin 032sin 2cos 032sin 2cos αααααP F F a P a P a F a P a P a F B A NA NB⎩⎨⎧==NBs B NAs A F f F F f F 21α,,,,NB B NA A F F F F 32)(3tan 1221+-+=s s s s f f f f α0≥NB F 060tan ≤α2a ∑=0CM 02=⋅a F By 0=By F ∑=0H M 0=⋅-⋅a F a F Dy F F Dy =∑=0B M 02=⋅-⋅a F a F Dx FF Dx 2=∑=0y F 0=++By Dy Ay F F F F F Ay -=∑=0A M 02=⋅+⋅a F a F Bx Dx F F Bx -=∑=0B M 02=⋅-⋅-a F a F Dx Ax FF Ax -=F CxF CyF Bx F By=0C M 0=⋅-⋅x F b F D F bxF D =∑=0A M 0=⋅-⋅x F b FB Fb x F B =∑=0E M 02)2(2)(=⋅--⋅+⋅+bF x b F b F F AC D B FF AC =∑=0A M 0)(=+-M M F M B A B F A F AF B F ∑=0C M 045cos 45sin 00=-⋅-⋅M b F a F A A b a M F A -=2∑=0B M 0245sin 03=-⋅-⋅M a qa a F )2(23qa aMF +=F A F BF Cx F CyF D=0x F 045cos 031=-F F qaaM F 21+=∑=0y F 045sin 032=--F F )2(2qa aM F +-=∑=0x F 045cos 03=+F F Ax )2(qa aMF Ax +-=∑=0y F 0445sin 032=--++qa P F F F Ay qa P F Ay 4+=∑=0A M 0345sin 242032=-⋅+⋅-⋅-⋅+M a F a qa a P a F M A M Pa qa M A -+=242∑=0A M 022=⋅-⋅a F a F By F F By =∑=0B M 022=⋅-⋅-a F a F Ay FF Ay -=∑=0x F 0=++F F F Bx Ax F F E 22=∑=0C M 045sin 0=⋅-⋅+⋅a F a F a F E By Bx 2FF Bx -=2F F Ax -=DF 3 F 2 F 1xyF Ax F Ay F BxF By∑=0A M 060cos 23301=⋅-⋅r P r N )(93.61N N =∑=0x F 060sin 01=-N F Ax )(6N F Ax =∑=0y F 060cos 01=-+P N F Ay )`(5.12N F Ay =∑=0x F 030cos 30cos 001=-T N )(93.6N T =∑=0A M 0cos 22sin 2=⋅-⋅θθLP L F N θtan 2PF N =∑=0B M 0cos cos 2sin =⋅-⋅+⋅θθθL F LP L F s N PF S =Ns s F f F ⋅≤2tan s f ≤θ010≤θRD RC F F ,RD RC F F ,RD RC F F ,2α2αF Ax F AyF NF sPPF NDF SDF Ax F Ay∑=0A M 0=⋅-⋅l F a F ND Fal F ND =∑=0A M 0=⋅-⋅l F a F NC ND NC F F a lF ==∑=0O M 0=⋅-⋅R F R F SD SC SDSC F F =∑=0x F 0cos sin =--SD SC NC F F F ααNDNC SD SC F F F F ααααcos 1sin cos 1sin +=+==NDSD SD NC SC SC F f F F f F ⋅≤⋅≤,2tan ,2tan cos 1sin αααα≥=+≥SD SCf f RD RC F F ,RCF 2α2tan cos 1sin ααα=+≥SC f FalF NC =F alF SC ⋅=2tanα2cosα⋅=a Fl F RC ϕαϕsin )]2180(180sin[00RC F P=---Pφ F RDF RC2α)cos 1)((sin tan ααϕ++=Fl Pa Fl )cos 1)((sin tan ααϕ++=≥Fl Pa Fl f SD ∑=0x F 0cos sin =--SD SC NC F F F αα∑=0y F 0cos sin =---ααNC SC ND F F P F F alF F SD SC ⋅==2tanα)2tan sin (cos ααα⋅++=a Fl P F ND NDSD SD F f F ⋅≤)cos 1)((sin tan ααϕ++=≥Fl Pa Fl f SD⎩⎨⎧∑=∑=00y x F F ⎩⎨⎧=--+=-020P F F F F F NEND SE SD F BF ACF BF ACF 31tan =θACF ∑=0A M 0=-⋅D SD M R F ∑=0F M 0)(=-⋅-D ND M R P FB F ∑=0B M 0=⋅-R F M SE E ∑=0G M 0tan )(=⋅-+θR F P M NE E FP F ND 41+=FP F NE 43+=F F F SE SD 41==FR M M E D 41==ND D F M δ≤NE E F M δ≤NDs SD F f F ≤NE s SE F f F ≤P R f P f f P f P R P R F s s s s δδδδδδ-=----≤4}314,14,34,4min{F 36.0max =F )(091.0N F F SE SD ==)(91.0cm N M M E D ⋅==∑=0C M 0346cos 1=⋅-⋅+⋅G H F F F θ)(58.141kN F -=∑=0x F 0sin 31=---H F F F θ3.313-=F ∑=0y F 0cos 12=--G F F F θ3.182=F ∑=0x F 0=-CD F F FF CD =⎩⎨⎧∑∑00y x F F ⎩⎨⎧=+=--0sin 45sin 0cos 45cos 00θθCG BC CG CD BC F F F F F 2221tan ++=θF F BC586.0=∑=0A M 0322=⋅-⋅-⋅a F a F a F B F F B 5.2=∑=0C M 032=⋅-⋅+⋅a F a F a F B FF 672=∑=0X F 0221=--F F F FF 651=定由杆OA ,O 1C ,DE 组成的系统为研究对象,该系统具有理想约束。

相关文档
最新文档