用光拍频法测量光速

合集下载

光拍频法测量光速实验

光拍频法测量光速实验

图1 拍频波场在某一时刻t 的空间分布 光拍频法测量光速实验一、实验目的1. 掌握光拍频法测量光速的原理和实验方法,并对声光效应有一初步了解。

2. 通过测量光拍的波长和频率来确定光速。

二、原理根据振动叠加原理,频差较小,速度相同的两列同向传播的简谐波叠加即形成拍。

若有振幅相同为E 0、圆频率分别为1ω和2ω(频差12ωωω∆=-较小)的二光束:1011120222cos()cos()E E t k x E E t k x ωφωφ=-+⎫⎬=-+⎭(1) 式中112/k πλ=,222/k πλ=为波数,1ϕ和2ϕ分别为两列波在坐标原点的初位相。

若这两列光波的偏振方向相同,则叠加后的总场为: 121212012122cos[()]22cos[()](2)22x E E E E t c x t c ωωφφωωφφ--=+=-+++⨯-+ 上式是沿轴方向的前进波,其圆频率为12()/2ωω+,振幅为1202cos[()]22x E t c ωφφ∆--+,因为振幅绝对值以频率为12/2f f f ωπ∆=∆=-周期性地变化,所以被称为拍频波,∆f 称为光拍波频率。

实验中拍频波由光电探测器检测,光电探测器上的光电流如图1(b )和下式 []{}201cos (/))i gE t x c ωϕ=+∆-+ (3) 其中g 是光电探测器的转换常数,2f ωπ∆=∆,ϕ是初相位。

如果有两路光频波,使其通过不同光程后入射同一光电探测器,则该探测器所输出的两个光拍信号的位相差ϕ∆与两路光的光程差L ∆之间的关系 2L f L c c ωπϕ∆⋅∆∆⋅∆∆== (4) 当πϕ2=∆时,∆L =Λ,恰为光拍波长,此时上式简化为c f =∆⋅Λ (5)可见,只要测定了Λ和f ∆,即可确定光速c 。

为产生光拍频波, 要求相叠加的两光波具有一定的频差, 这可通过超声与光波的相互作用来实现。

超声(弹性波)在介质中传播,使介质内部产生应变引起介质折射率的周期性变化,就使介质成为一个位相光栅。

光拍频法测量光的速度

光拍频法测量光的速度

nn 1
=1.14×106
频率相近的两束光同方向共线传播, 叠加成光拍频波,其强度包络的频率 (光拍频)为两束光的频差。用斩光 器依次切断光束①和②,则在示波器 屏上同时显示光束①和②的拍频信号 正弦波形。光如果直接测量的话,波 长很好测,但是频率很难测,10 的 14 次方,属于高频段,一台高频的示波
53.85
下滑块
1.01
上滑块
47.11
上滑块
3.79
194.36
2.92123080× 108
下滑块
54.31
下滑块
0.45
上滑块
48.70
上滑块
0.61
198.80
2.98796400× 108
下滑块
ቤተ መጻሕፍቲ ባይዱ
54.51
下滑块
3.20
上滑块
51.30
上滑块
1.07
197.06
2.96181180× 108
器相当的昂贵,所以我们选测光拍频 法测光速,可以使得频率降低,方便 测量。[2]本实验采取了光拍频波两种 方法中的驻波法进行光波拍频,若超 声波功率信号源的频率为 F= /2 , 则 第 L 级 衍 射 光 的 频 率 为
f L , m f o ( L 2m) F
式中 L,m=0, 士 1, ±2,..., 可见,除不同衍 射级的光波产生频移外,在同一级衍射 光内也有不同频率的光波。因此,用同 一级衍射光就可获得不同的拍频波。 同时要分析本实验的误差主要来源是 相移对应的米尺的读数,可以通过固 定其中一个可移动滑块,然后只动另 一个滑块进行距离测量。 4 结论 利用光拍频法在光速测定仪上测量光 速,以近程光为基准,远程光移动相 位差为 2π得到的距离差计算光速与光 速公认值有一定的差距,这个可能是 系统测量的误差和测量距离时读数的 误差造成的。以近程光为基准,远程 光移动相位差为π时,更加难以把握半 波长移动的准确位置,并且最终测量 计算的值偏差更大,应该在尽量减少 实验误差的情况下精确光速的测量。 参考文献: [1] 蔡秀峰,蔡德发. 光速测量方法的 改进. 大学物理,2007,26(3) :44 [2]董有尔. 近代物理实验. 北京: 科学 出版社,2004:208~214 [3]吴先球, 熊予莹. 近代物理实验教程. 北京:科学出版社,2009

光速测定实验报告

光速测定实验报告

一、实验目的1. 理解光拍频的概念。

2. 掌握光拍法测光速的技术。

3. 通过实验验证光速的理论值,并分析实验误差。

二、实验原理光拍频是指两束光波频率接近时,由于相位差的变化,产生的干涉现象。

光拍法测光速的原理是利用光拍频现象,通过测量光拍频的频率和光拍频产生的干涉条纹数,从而计算出光速。

光速的公式为:v = λf,其中v为光速,λ为光波的波长,f为光波的频率。

三、实验仪器1. 光源:激光器2. 分光器:半透半反镜3. 干涉仪:迈克尔逊干涉仪4. 测量仪器:秒表、刻度尺5. 计算器四、实验步骤1. 将激光器发出的光通过分光器分为两束,一束作为参考光,另一束作为测量光。

2. 将测量光束引入迈克尔逊干涉仪,调整干涉仪的臂长,使干涉条纹清晰可见。

3. 记录干涉条纹的周期T,并测量干涉条纹的间距d。

4. 改变干涉仪的臂长,记录新的干涉条纹周期T'和间距d'。

5. 计算光拍频的频率f = 1/T - 1/T'。

6. 根据光拍频的频率和干涉条纹的间距,计算光速v = λf。

五、实验数据及处理1. 干涉条纹周期T:0.2秒2. 干涉条纹间距d:2毫米3. 干涉条纹周期T':0.3秒4. 干涉条纹间距d':3毫米计算光拍频的频率f:f = 1/T - 1/T' = 1/0.2秒 - 1/0.3秒≈ 2.5Hz计算光速v:v = λf = 2d/T - 2d'/T' = 2×2毫米/0.2秒 - 2×3毫米/0.3秒≈ 3.3×10^8 m/s六、实验结果与分析1. 实验测得的光速v ≈ 3.3×10^8 m/s,与理论值c ≈ 3.0×10^8 m/s相近,说明光拍法测光速的原理是正确的。

2. 实验过程中,由于仪器的精度和操作误差,导致实验结果存在一定的误差。

通过分析实验数据,发现实验误差主要来源于干涉条纹的间距测量和干涉条纹周期的记录。

光拍频法测量光速教案

光拍频法测量光速教案

实验十四光拍频法测量光速教案课任教师:胡君辉一、明确实验目的1、理解光拍频概念及其获得。

2、掌握光拍法测量光速的技术。

二、讲解实验原理1、光速测量的意义:光波是电磁波,光速是最重要的物理常数之一。

光速的准确测量有重要的物理意义,也有重要的实用价值。

基本物理量长度的单位就是通过光速定义的;而且光速的精确测定还是对爱因斯坦相对论理论的检验。

2.光速测量的方法:(1)光速测定的天文学方法:a.1676年丹麦天文学家罗默(1644—1710)的卫星蚀法(测得光速为299840±60km/s )b.1728年,英国天文学家布莱德雷(1693—1762)的光行差法(C=299930km/s)(2)光速测定的大地测量方法:a.伽利略测定光速的方法b.旋转齿轮法(测得c=299793.1±0.3km/s)c.旋转镜法(1851年傅科c=298000±500km/s;1926年迈克耳逊:c=299796km/s)(3)光速测定的实验室方法:a.微波谐振腔法(1950年埃森测得c=299792.5±1km/s)b. 激光测速法(1790年美国国家标准局和美国国立物理实验室c=299792.458±0.001km/s)今天我们的方法:光速c=s/Δt,s是光传播的距离,Δt是光传播s所需的时间。

例如c=fλ中,λ相当上式的s,可以方便地测得,但光频f大约1014Hz,我们没有那样的频率计,同样传播λ距离所需的时间Δt=1/f也没有比较方便的测量方法。

如果使f变得很低,例如30MHz,那么波长约为10m。

这种测量对我们说来是十分方便的。

这种使光频“变低”的方法就是所谓“光拍频法”。

频率相近的两束光同方向共线传播,叠加成拍频光波,其强度包络的频率(即光拍频)即为两束光的频差,适当控制它们的频差即可达到降低拍频光波拍频的目的。

3.光拍的产生和接收根据振动叠加原理,频差较小、速度相同的二同向共线传播的简谐波相叠加形成拍。

光速测定讲义

光速测定讲义

实验八 光拍法测量光速一、实验目的1、理解光拍频的概念。

2、掌握光拍法测光速的技术。

二、实验原理1.光拍的产生和传播:根据振动迭加原理,频差较小、速度相同的二同向传播的简谐波相迭加即形成拍。

考虑频率分别为f1和f2(频差△f = f1 - f2较小)的光束(为简化讨论,我们假定它们具有相同的振幅):E1=Ecos( ω1t – K1X +ф1 ) E2=Ecos( ω2t – K2X +ф2 )它们的迭加⎥⎦⎤⎢⎣⎡++⎪⎭⎫ ⎝⎛-+⨯⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛--=+=22cos 22cos 22121212121ϕϕωωϕϕωωc x t c x t E E E E s (1)是角频率为221ωω+,振幅为⎥⎦⎤⎢⎣⎡++⎪⎭⎫ ⎝⎛-+22cos 22121ϕϕωωc x t E 的前进波。

注意到s E 的振幅以频率 πωω221+=∆f 周期地变化,所以我们称它为拍频波,f ∆ 就是拍频,如图一所示: ⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛--22cos 22121ϕϕωωc x t E [包络]我们用光电检测器接收这个拍频波。

因为光检测器的光敏面上光照反应所产生的光电流系光强(即电场强度的平方)所引起,故光电流为2s o gE i =(2)g 为接收器的光电转换常数。

把(l )代入(2),同时注意:由于光频甚高(Hz f o 1410>),光敏面来不及反映频率如此之高的光强变化,迄今仅能反映频率Hz 810左右的光强变化,并产生光电流;将io 对时间积分,并取对光检测器的响应时间)11(ft f t o ∆<<的平均值。

结果,i 。

积分中高频项为零,只留下常数项和缓变项。

即:⎰⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡∆+-∆+=⋅=tt o c x t gE d i t i ϕω)(cos 112 (3) 其中Δω是与Δf 相应的角频率,Δф=ф1-ф2为初相。

可见光检测器输出的光电流包含有直流和光拍信号两种成分。

光拍频法测量光速原理片段

光拍频法测量光速原理片段

光拍频法测量光速一.光拍的产生与传播两列速度相同,振面相同,频差较小,而同向传播的简谐波叠加即形成拍。

)x k t cos(E E 11101ϕω+-= )(22202ϕω+-=x k t cos E E 21E E E += ⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛--=22221210ϕϕωωc x t cos E ×⎥⎦⎤⎢⎣⎡++⎪⎭⎫ ⎝⎛-+222121ϕϕωωc x t cos E 的振幅⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛--22221210ϕϕωωc x t cos E 是时间和空间的函数; E 以频率πωω221-=∆f 周期性的变化,称这种低频的行波为光拍频波,∆f 为拍频,振幅的空间分布周期为拍频波长,以Λ表示。

二.光拍的探测用光电探测器接收光的拍频波,光照产生的光电流与光强成正比,光强又与拍频波振幅的平方成正比,所以有i =gE 20{1+cos[ω∆(t-cx )+(1ϕ-2ϕ)]} 将直流成分滤掉,既得频率与光拍信号拍频f ∆相同的电流信号。

三.光速测量光拍信号的位相与空间位置X 有关,将光拍信号用半透镜分为两路——远程光和近程光,用探测器在同一位置探测两光波,则其位相差为: ψ∆=[ω∆(t-c x 1)+(1ϕ-2ϕ)]-[ω∆(t-cx 2)+(1ϕ-2ϕ)] =ω∆c x x 12-⋅=ω∆c L ∆⋅=c L f ∆⋅∆π2当ϕ∆=2π时 Λ=∆L ,此时上式简化为 Λ⋅∆=f c四.相拍二光波的获得•通过超声与光波的相互作用来实现:超声在介质中传播,引起介质折射率的周期性变化,使介质成为一个位相光栅。

当激光通过该介质时发生衍射,衍射光的频率与声频有关。

•行波法:超声通过介质后无反射,当激光通过相当于位相光栅的介质时发生衍射,第L 级衍射光的频率为 LF f f l +=0,0f 和F 分别为入 射激光和超声的频率。

•驻波法:在声光介质与超声源相对的端面敷以反声材料,前进波和反射波在介质中形成驻波超声场,沿超声传播方向,当介质厚度恰为超 声半波长整数倍时,介质也是一个位相光删。

用光拍频法测量光速

用光拍频法测量光速

用光拍频法测量光速光速一般是指光在真空中的传播速度,实验测得各种波长的电磁波(广义的光)在真空中的传播速度都相同。

据近代的精确测量,光速为。

它是自然界重要常数之一。

近代物理学理论的两大支柱之一——爱因斯坦的相对论,是建立在两个基本“公设”之上的,这两个公设之一就是“光在空虚空间里总是以确定的速度v 传播着”s m /102.997924588×1,即通常所说的真空中光速不变。

由麦克斯韦电磁理论得到电磁波在真空中的传播是一个恒量,通过电磁学测出的这一恒量与实际测定的光速十分接近,于是麦克斯韦提出了光的电磁理论,认为光是在一定频率范围内的电磁波。

1887年的“迈克尔逊——莫雷实验”表明光速在任何惯性系都是不变的。

爱因斯坦采用了麦克斯韦的理论作为他相对论的基础之一,而迈克尔逊——莫雷实验是相对论的重要实验基础。

目前光速测量技术,如光脉冲测量法、相位法等,还用于激光测距仪等测量仪器。

实验目的1. 理解光的拍频概念。

2. 掌握拍频法测量光速的技术。

实验原理1.光拍的产生和传播两个同方向传播、同方向振动的简谐波,如果其频率差远小于它们的频率时,两波迭加即形成拍。

考虑满足上述条件的两束光,频率为f 1 和f 2 ,且f f f 12−<<1 及f f f 12−<<2 ,设两光强相等,初相为 0,沿 x 方向传播:)(cos )(cos 202101cx t E E c x t E E −=−=ωω (1)1 爱因斯坦 “论动体的电动力学”,1905年9月可推导出合成波E s 的方程:)](22cos[)](22cos[2 )](2cos[)](2cos[2121201212021c x t f f c x t f f E cx t c x t E E E E s −+⋅−−=−+⋅−−=+=ππωωωω (2) 可见合成波是频率为 2)(12f f + ,振幅为222021E f f t x ccos[()]π−− 的行波。

光拍频法测光速实验报告

光拍频法测光速实验报告

光拍频法测光速实验报告
实验目的:利用光拍频法测量光的传播速度。

实验原理:光拍频法是利用干涉现象来测量光速的方法。

当两束光在同一条光路上传播时,由于光波长的差异,会在某个地方发生干涉现象。

若在该地方放置一个光门,当两束光的波长符合一定条件时,光门会打开,此时可以记录光门打开时的时间。

通过改变两束光之间的光路差,可以测出光速。

实验器材:光源、分光镜、准直器、平面镜、光幕、计时器。

实验步骤:
1.调整光源、分光镜和准直器,使得通过分光镜的光能够水平射入光幕。

2.调整平面镜,使得经过分光镜后的光经过平面镜后与原光平行,并能够垂直射入光幕。

3.调整光幕的位置,使得经过平面镜反射后的光能够射到光幕上。

4.打开计时器,并观察光门在不同光路差下是否打开。

5.记录光门打开的时间,并计算出不同光路差下的光速值。

6.重复实验多次,取平均值作为最后的测量结果。

实验结果:
- 在不同光路差下,记录光门打开的时间,得到一组数据。

- 根据光门打开的时间和光路差的关系,计算出光速的值。

实验讨论与分析:
- 实验结果可能会受到实验环境的影响,如温度、大气压等。

- 实验结果的准确性还受到仪器的精度和测量误差的影响。

实验结论:利用光拍频法,可以测量得到光速的值。

然而实验结果还需要进一步验证和修正,以提高测量的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用光拍频法测量光速
光速一般是指光在真空中的传播速度,实验测得各种波长的电磁波(广义的光)在真空中的传播速度都相同。

据近代的精确测量,光速为。

它是自然界重要常数之一。

近代物理学理论的两大支柱之一——爱因斯坦的相对论,是建立在两个基本“公设”之上的,这两个公设之一就是“光在空虚空间里总是以确定的速度v 传播着”s m /102.997924588×1,即通常所说的真空中光速不变。

由麦克斯韦电磁理论得到电磁波在真空中的传播是一个恒量,通过电磁学测出的这一恒量与实际测定的光速十分接近,于是麦克斯韦提出了光的电磁理论,认为光是在一定频率范围内的电磁波。

1887年的“迈克尔逊——莫雷实验”表明光速在任何惯性系都是不变的。

爱因斯坦采用了麦克斯韦的理论作为他相对论的基础之一,而迈克尔逊——莫雷实验是相对论的重要实验基础。

目前光速测量技术,如光脉冲测量法、相位法等,还用于激光测距仪等测量仪器。

实验目的
1. 理解光的拍频概念。

2. 掌握拍频法测量光速的技术。

实验原理
1.光拍的产生和传播
两个同方向传播、同方向振动的简谐波,如果其频率差远小于它们的频率时,两波迭加即形成拍。

考虑满足上述条件的两束光,频率为f 1 和f 2 ,且f f f 12−<<1 及f f f 12−<<2 ,设两光强相等,初相为 0,沿 x 方向传播:
)(cos )(cos 202101c
x t E E c x t E E −=−=ωω (1)
1 爱因斯坦 “论动体的电动力学”,1905年9月
可推导出合成波E s 的方程:
)](22cos[)](22cos[2 )](2cos[)](2cos[
212120121
202
1c x t f f c x t f f E c
x t c x t E E E E s −+⋅−−=−+⋅−−=+=ππωωωω (2) 可见合成波是频率为 2)(12f f + ,振幅为222021E f f t x c
cos[()]π−− 的行波。

注意到在传播方向x 上,任何一个确定点上E s 的振幅以频率()f f 212− 周期地变化,所以我们称它为光拍频波,如图(1)所示。

图(1)拍频波
使用光敏二极管接收任何光信号时,光敏二极管输出的光电流与光强的平方,即电场强度的平方成正比。

对于合成波E s ,光敏二极管在空间一点检测,其输出的光电流为
20s kE i = (3)
其中k 为由光敏二极管特性所决定的系数。

将式(2)代入式(3),可以得到光电流
i 0 )](2cos 2
1)(2cos 21 )
)(cos( )
)(cos(1[2112122
00ϕωϕωϕωωϕωω−+−+−+−−−−=t t t t kE i (4) 其中ϕ=x c 。

由式(4)可知,光电流 应由直流分量、i 012f f −、、 和等频率成分组成。

但由于光敏二极管能够输出的光电流信号频率远远低于、2 和12f 22f 12f 12f f +2f f f 2+1,因此这些项不会在光电流 中出现。

滤去直流分量后得到的光电流为 i 0
)(2cos )
(cos )
)(cos(201201122011c
x t f E k t E k t E k i −Δ=−Δ=−−=πϕωϕωω (5)
其中k k 。

1=

图(2)光电流i 1与光敏二极管的空间位置的关系
从式(5)可以看出,处于不同空间位置 x 的光敏探测器,在同一时刻 t 有不同位相的光电流输出。

这就使我们可以用比较相位的方法间接测量光速。

由(5)式可知,光拍频的同相位各点有如下关系:
2f
nc x n c x Δ==Δπω 其中n 为整数,而相邻两同相点的距离
f
nc Δ=λ (6) 即相当于拍频的波长。

测定了λ和光拍频Δf ,即可确定光速c 。

2.相拍两光束的获得
光拍频波要求相拍的两束光具有一定的频差。

使激光束产生固定频移的办法很多。

一种常见的办法是使超声波与光波互相作用。

超声波在介质中传播时,其声压使介质产生疏密交替的变化,促使介质的 折射率相应地作周期性变化,就成为一个位相光栅。

这就使入射的激光束发生了与声频有关的频移,实现了使激光频移的目的。

利用声光作用产生频移的方法有两种。

一种是行波法,另一种是驻波法,这里采用驻波法。

(1)行波法
在声光介质与声源(压电换能器)相对端面上以吸声材料防止声反射,以保证在介质中只有声的行波通过,如图(3a )所示。

当入射光通过介质时,激光束产生对称的多级衍射。

第L 级衍射光的角频率为:
0Ω⋅+=L L ωω (7)
其中ω0 入射光的角频率,Ω为声波的角频率,L 为衍射级数。

通过仔细调整光路,可使+1 级衍射光与0 级衍射光平行迭加,产生频差为 ΔΩΩωωω=+−=00 的光拍频波。

(2)驻波法
如图(3b )所示,当介质传声的厚度为声波半波长的整数倍时,由于声波的反射,使介质中存在驻波声场,它也产生L 级对称衍射,而且衍射效率高,衍射光比行波法时强得多。

第L 级衍射光的频率为
)2(0Ω++=L m L ωω (8)
其中L 和m 都取整数。

可见在同一级衍射光中,就含有众多不同频率的光波。

我们选择其中两种就可以形成光拍。

例如选L = 0 ,m = 0 和 1 的两种频率成分迭加得到拍频为的拍频波。

2Ω3.光速的获得
两束拍频同为2Ω的光,从O 点出发,其拍频初相相同。

光束1 和光束2 走的光程不同,但最终到达同一点,当这两束光到该点的光程差等于光拍频波长λ的整数倍时,由式(6)可知,两束光拍频的相位相同。

这样,我们只要调整光程差,找到两束光拍频的相位相同,并且距离最近的点,这个光程差即为λ,而ΔΩf n ==2,1,由(6)就可得到光速c 。

实验装置
1.光路部分
光路如图(4)所示。

激光束经频移器产生拍频为2Ω的拍频光波,光束1经半反射镜3、5进入光敏接受器;光束2经半反射镜3,反射镜6——12和半反射镜5进入光敏接收器;斩光器4对两光束进行切换,使其交替到达光敏接收器。

调整反射镜组12的位置就能改变两光束的光程差。

图(4)光路图
2。

电路部分
原理框图如图(5)所示。

高频信号源给声光频移器提供15MHz左右的驱动正弦波,光敏探测器把光信号转换成电信号,在斩光器的作用下,示波器交替显示光束1和光束2经变频器变频后的波形。

为了使用频率较低的普通示波器(f c<10MHz)观测,变频电路将光敏探测器输出的频率为30MHz左右的信号转换为中频信号(280KHz左右)。

由于示波器外触发信号(EXT TRIG)与声光频移器驱动正弦波相位保持不变,这样当示波器同时显示光束1和光束2产生的波形时,就可以比较它们之间的相位关系。

图(5)电路原理框图
实验步骤
1. 打开仪器总电源。

打开激光器电源,调节电流,使激光器稳定出光。

2. 打开示波器电源开关,触发选择“EXT ”档,水平输入选择时间信号。

其它各项参见有
关示波器使用手册。

3. 打开频率计电源开关,打开声光频移器电源开关,预热10 分钟。

调节频率输出旋钮,
使频率为14.8MHz 左右。

4. 调节声光频移器及激光器的位置,使声光频移器前方的小孔光栏处可见到衍射条纹。


调频率输出旋钮,使衍射条纹变强,应能观察到第2 级衍射条纹。

调节小孔光栏的位置,使0 级衍射光通过光栏。

5. 调整斩光器挡光板,使光束2 通过。

调整全反射镜2 及光路2 中的各反射镜和光敏接
收器的位置,使光束2 进入光敏接收器探测面。

这时示波器显示一个正弦波。

6. 调整斩光器挡光板,使光束1 通过。

调节半反射镜5 ,使光束1 进入光敏接收器探测
面。

这时示波器显示一个正弦波。

7. 反复进行步骤7、8直到两光束都能进入光敏接收器探测面。

8. 打开斩光器开关,把转速调到最高。

这时示波器同时显示两束光的信号波形。

调节反射
镜组12 的位置,改变光程差,使两个正弦波同相位。

9. 米尺测出两束光的光程差,读取频率计显示的频率F 。

这时的拍频ΔΩf F ==222π,
光程差为λ,n =1。

由(6)式求出光速c 。

10. 反复测量6次,求出光速值及标准差。

注意事项
1.意保护各光学镜面,严禁触摸。

测量光程时尺子不要碰到光学镜面。

2.激光器接线处有高压电,调整时注意安全。

3.调整光路时动作要轻,不要硬拧各调节钮。

4.实验中两光束显示的波形幅度往往不同,这并不影响调整和测量。

回答问题
1. 图(5)中的两个混频器和分频器的作用是什么?试说明变频电路的工作原理。

2. 如何观察两列波的位相差,怎样保证精度?
3. 分析实验误差与那些因素有关,怎样提高测量精度?。

相关文档
最新文档