高中数学必修三《几何概型》优秀教案

合集下载

最新人教版高中数学必修三几何概型优质教案

最新人教版高中数学必修三几何概型优质教案

§3.3 几何概型§3.3.1 几何概型一、教材分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X落到[0,1]区间内任何一点是等可能的,则称X 为[0, 1]区间上的均匀随机数.二、教学目标1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

人教A版高中数学必修3《几何概型》教案

人教A版高中数学必修3《几何概型》教案

参赛课题:几何概型使用教材:普通高中课程标准实验教科书数学必修3(人教A版)《几何概型》教案说明一、《几何概型》在教材中的地位本节课是高中数学(必修3)第三章概率的第三节几何概型的第一课时,是在学习了古典概型情况下教学的。

它是对古典概型内容的进一步拓展,主要是要把概率问题与几何问题完美的结合,用数形结合的思想,通过建立基本事件与相应点的对应,实现从有限到无限形式上的转化,使等可能事件的概念从有限向无限延伸,进而建立合理的几何模型解决相关概率问题。

此节内容也是新课标中增加的,反映了《新课标》对数学知识在实际应用方面的重视.同时也暗示了它在概率论中的重要作用,以及在高考中的题型的转变。

二、《几何概型》教学目标定位1、教学目标1)知识目标通过解决具体问题让学生感知用图形解决概率问题的思路,体会几何概型计算公式及几何意义。

2)能力目标通过多个问题的分析及试验让学生理解几何概型的特征,归纳总结出几何概型的概率计算公式,渗透有限到无限,转化与化归及数形结合的思想。

3)情感目标教会学生用数学方法去研究不确定现象的规律,帮助学生获取认识世界的初步知识和科学方法。

2、教学目标的设置意图几何概型概念中的核心是它的两个特征,(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等(等可能性),所以教学的重点不是“如何计算概率”,而是要引导学生动手操作,开展小组合作学习,通过举出大量的几何概型的实例与数学模型使学生概括、理解、深化几何概型的两个特征及概率计算公式。

同时使学生初步能够把一些实际问题转化为几何概型,并能够合理利用随机、统计、化归、数形结合等数学思想方法有效解决有关的概率问题。

三、《几何概型》的重难点分析1、教学重点:几何概型概念及计算公式的形成过程.2、教学难点:将实际问题转化为数学问题,建立几何概率模型,并求解。

3、诊断分析:本节课让学生动手操作,亲身体验感受基本事件的个数不可数的情形下,从而引起思维的困惑,进而引导学生利用数形结合的思想,通过建立等量替代的关系,实现有限和无限之间的对应转化,从而解决了无限性难以计算的问题,让学生理解这样的对应是内在的,逻辑的,因此建立的度量公式是合理,这是本节课的难点所在,也是学生难以理解的地方。

人教版高中数学必修3几何概型教案及教案说明

人教版高中数学必修3几何概型教案及教案说明

课题:《几何概型》教案及其说明教材:人教版(A)数学必修3《几何概型》教案说明一、《几何概型》的教学目标:1、教学目标:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2、教学目标的设置意图:几何概型概念中的核心是它的两个特征,(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等(等可能性),尤其是特征(2),所以教学的重点不是“如何计算概率”,而是要引导学生动手操作,开展小组合作学习,通过举出大量的几何概型的实例与数学模型使学生概括、理解、深化几何概型的两个特征及概率计算公式。

同时使学生初步能够把一些实际问题转化为几何概型,并能够合理利用随机、统计、化归、数形结合等数学思想方法有效解决有关的概率问题。

几何概型是对古典概型有益的补充,几何概型将古典概型的研究从有限个基本事件过渡研究无限多个基本事件,几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例。

在强化几何概型概念教学的同时,将几何概型概念形成的教学通过猜想验证思想逐步让学生自主探究,并体会概念形成的合理性。

二、《几何概型》在教材中的地位:1、几何概型是区别于古典概型的又一概率模型,几何概型是对古典概型有益的补充,将研究有限个基本事件过渡到研究无限多个基本事件;2、学习几何概型主要是为了更广泛地满足随机模拟的需要。

三、《几何概型》的重难点分析:1、《几何概型》的重难点:重点:(1)几何概型概率计算公式及应用。

(2)如何利用几何图形,把问题转化为几何概型问题。

难点:无限过渡到有限;实际背景如何转化几何图形;正确判断几何概型并求出概率。

2、几何概型的学习是建立在古典概型的学习基础之上,少数学生受古典概型学习的影响,容易忽视对几何概型的判断与选择,不善于把求未知量的问题转化成几何概型求概率的问题,而常常转化成古典概型进行分析;因此在教学中结合[课前练习]、[问题初探]进行深入讨论,让学生真正体会到判断几何概型的特点以及重要性,利用回顾、猜想、试验、对比等手段来帮助学生解决问题。

人教版高中必修3(B版)3.3.1几何概型教学设计

人教版高中必修3(B版)3.3.1几何概型教学设计

人教版高中必修3(B版)3.3.1几何概型教学设计
一、教学目的
1.理解几何概型的概念和性质。

2.掌握分段讨论和间断函数的求解方法。

3.能够解决常见的几何问题,如角平分线、垂心、垂线等问题。

4.培养学生的逻辑思维和推理能力。

二、教学重点
1.了解几何概型的性质。

2.学会运用几何概型的思想解决几何问题。

三、教学难点
1.掌握分段讨论和间断函数的求解方法。

2.学会几何问题中常用的一些策略和方法。

四、教学资源
1.人教版高中数学(B版)教材。

2.电脑和投影仪。

3.黑板、彩色粉笔。

五、教学过程设计
1. 导入环节
引导学生回忆上一节学习的内容,如线段平分线、角平分线等概念,以及它们的性质和应用。

2. 理论讲解
1.讲解几何概型的概念和性质。

2.介绍分段讨论和间断函数的求解方法。

3.讲解如何运用几何概型的思想解决几何问题。

3. 练习环节
1.给学生提供一些几何问题,引导他们通过分析和运用几何概型的思想
来解决问题。

2.带着学生复习之前学过的几何知识,解决一些常见问题。

4. 总结反思
让学生回顾本节课学到的内容,提出问题、分享经验,帮助大家理解几何概型和解题思路。

同时告诉学生,几何问题虽然看似简单,但需要不断地练习和思考。

六、教学评价
1.在练习环节中观察学生的解题方法和策略,以及对几何概型的掌握程
度。

2.根据课堂互动、讨论和回答问题的表现,对学生进行评价。

3.希望学生课后主动做一些练习,加深对几何概型的理解和应用。

高中数学几何概型教案

高中数学几何概型教案

高中数学几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的基本性质和特点。

2. 培养学生运用几何概型解决实际问题的能力。

3. 通过对几何概型的学习,提高学生的逻辑思维能力和空间想象能力。

二、教学内容1. 几何概型的定义与特点2. 几何概型的分类3. 几何概型的概率计算方法4. 几何概型在实际问题中的应用三、教学重点与难点1. 重点:几何概型的概念、特点和概率计算方法。

2. 难点:几何概型在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的相关知识。

2. 利用多媒体课件,辅助教学,增强学生对几何概型的空间想象力。

3. 结合实际例子,让学生感受几何概型在生活中的应用。

五、教学过程1. 导入新课:通过一个简单的抽奖活动,引导学生思考抽奖活动的概率问题,从而引入几何概型的概念。

2. 自主学习:让学生阅读教材,理解几何概型的定义与特点。

3. 课堂讲解:讲解几何概型的分类和概率计算方法。

4. 课堂练习:让学生完成一些有关几何概型的练习题,巩固所学知识。

5. 应用拓展:结合实际例子,让学生运用几何概型解决实际问题。

六、教学评价1. 评价学生对几何概型的概念、特点和概率计算方法的掌握程度。

2. 评价学生运用几何概型解决实际问题的能力。

3. 评价学生在课堂练习中的表现,包括解题速度和正确率。

4. 评价学生在小组讨论中的参与程度和合作能力。

七、教学资源1. 教材:高中数学几何概型相关内容。

2. 多媒体课件:用于展示几何概型的图形和实例。

3. 练习题库:用于课堂练习和课后作业。

4. 实际案例:用于引导学生将几何概型应用于实际问题。

八、教学进度安排1. 第一课时:介绍几何概型的概念和特点。

2. 第二课时:讲解几何概型的分类和概率计算方法。

3. 第三课时:课堂练习和应用拓展。

九、教学反思1. 反思教学内容是否适合学生的认知水平。

2. 反思教学方法是否有效,是否能够激发学生的兴趣和参与度。

高中数学优质教学设计3:3.3.1几何概型 教案

高中数学优质教学设计3:3.3.1几何概型 教案

3.3.1 几何概型(第1课时)一、教学目标:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力。

二、教学重点与难点:重点:1、几何概型概率计算公式及应用。

2、如何利用几何图形,把问题转化为几何概型问题。

难点:正确判断几何概型并求出概率。

三、学法与教学用具:1、通过对本节知识的探究与学习,感知用几何图形解决概率问题的方法,掌握数学建模的思想;2、教学用具:计算机及多媒体教学.四、教学基本流程:复习古典概型的概提出问题,引入课题五、教学情境设计:问题问题设计意图师生活动复习巩固谁能叙述古典概型的有关知识吗?复习上节课相关知识师:提出问题,引导学生回忆,对学生活动进行评价。

生:回忆、概括。

问题情境1.小红和小黄玩转盘游戏,猜想在四种情况下,小红获胜的概率是多少?2.在区间[0,1] 内随意说一个数,它大于0.5的概率是多大?让学生通过观察,猜想几何概型的特点及计算公式。

师:提出问题,引导学生思考、猜想,得出几何概型的概率计算公式。

生:观察、思考、猜想。

建构数学1.几何概型的概型、特点及概率公式2.你能说说几何概型与古典概型的区别吗?分析、比较,更加深对几何概型的理解。

师:引导学生比较两种概型的区别,明确几何概型要求的基本事件有无限多个,明确几何概型的计算公式。

生:思考,比较,理通过转盘游戏和数字游戏、猜想相应的概率几何概型的概念、特点、与古典概型的区别例题的教学,明确几何概型的计算步骤练习和小结解。

《必修三《几何概型》教案

《必修三《几何概型》教案

《必修三《几何概型》教案教案:几何概型一、教学目标1.知识与技能:-了解几何概型的基本概念和相关属性;-掌握计算几何概型的可能性和概率;-能够运用几何概型解决实际问题。

2.态度与价值观:-培养学生对几何概型的兴趣和好奇心;-培养学生合作、探究和创新精神。

二、教学重点和难点1.重点:-几何概型的基本概念和相关属性;-计算几何概型的可能性和概率。

2.难点:-运用几何概型解决实际问题。

三、教学过程1.教学准备:-教师准备PPT、绘制几何概型相关图形。

2.导入与引入:-向学生提问:“大家了解什么是几何概型吗?”-学生回答后,教师进行引导,介绍几何概型的基本概念和相关属性。

3.概念讲解:-讲解几何概型的基本概念,例如:平面上点、线、面,三维空间中体等;-讲解几何概型的相关属性,例如:相似、相等等;-通过示例和图像说明几何概型的应用,如建筑设计、工程测量等。

4.练习与讨论:-让学生通过绘制几何概型图形,进行练习;-学生分组讨论几何概型的相关问题,例如:如何计算不同形状的房屋占地面积等。

5.案例分析:-教师给出一个实际生活中的案例,例如:如何计算一个无规则形状的花坛的面积;-学生利用几何概型的知识和技巧,分析并解决这个问题;-学生分组展示自己的解决过程和答案,并进行讨论。

6.解决问题与拓展:-继续给学生出一些难度适中的问题,让学生运用几何概型的知识和技巧解决;-引导学生思考如何拓展几何概型的应用领域,发现几何概型在日常生活中的其他应用。

四、课堂小结-教师对本课的教学内容和学生的表现进行总结;-检查学生对几何概型的掌握情况,回答学生提出的问题;-引导学生对几何概型的学习进行反思和思考。

五、作业布置-布置相关练习题,要求学生运用几何概型的知识和技巧解答;-要求学生写一篇小结,总结几何概型的基本概念和相关属性。

六、教学反思-分析课堂教学过程中的不足和问题;-总结有效的教学方法和策略,为下一节课的教学做好准备。

几何概型教案

几何概型教案

3-3.3 几何概型一、教材分析在人教版高中数学教材的知识体系中,几何概型被安排在必修3的第三章第三节,是继古典概型后对另一常见概型的学习,是在古典概型基础上进一步的拓展,将等可能事件的概念从有限延伸至无限。

学好此节内容有助于学生全面系统地掌握概率知识和进一步形成辩证思想。

二、学情分析学生已经学习了概率的含义以及古典概型的计算方式,对概率有一定的了解,掌握了一定的概率求解方法,掌握了古典概型的相关知识。

通过对比分辨两种概型的区别与联系,进行几何概型的学习。

三、教学目标1、知识与技能:通过实际操练,使学生从多种维度体验几何概型的实际应用,初步体会几何概型的意义;将古典概型与几何概型进行对比,使学生明确几何概型与古典概型的区别,掌握几何概型概率计算公式的应用,能够运用线性规划等方法解决复杂的几何概型问题。

通过思维拓展,使学生初步了解随机模拟方法的使用及其实际意义。

2、过程与方法:通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯,培养学生实践能力、协调能力、创新意识和处理数据能力以及应用数学意识。

3、情感、态度与价值观:帮助学生养成合作交流的习惯,初步形成建立数学模型的能力,通过学生的实际操作,激发学生学习的兴趣,重视数学在实际生活中的作用。

四、教学重点、难点1.教学重点①正确理解几何概型的定义、特点;②会用几何概型概率公式求解随机事件的概率。

2.教学难点①根据古典概型与几何概型的区别,来判断一个试验是否为几何概型;②将实际问题抽象成几何概型,并灵活运用各类方法解决几何概型问题.五、教法选择“以学生为主体”的探究性教学,讲授法,谈话法六、教学过程本节课的教学,共分为五个部分:一、知识梳理二、情境导入三、问题探究四、思维拓展五、回顾小结七、教学设计一、知识梳理【师】:同学们,上节课我们学习了古典概型,通过以下情景我们来回顾一下。

情景一:区间[0,4]上取一整数,恰好在区间[0,1]上的概率是多少?(板书在右边)这个情境里,基本事件是什么?基本事件有哪些?每一个基本事件发生的可能性为多少?什么情况下事件A发生?【生】:所取得的整数;01234五个;1/5;0,1;2/5【师】:非常好,由此我们可以得出情景一下的概率为2/5.那么由此我们可以知道古典概型有什么特点呢?【生】:基本事件可数,发生的可能性相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:3.3.1 几何概型
教学目标:
1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:
P (A )=,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。

2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识。

教学重点:理解几何概型的定义、特点,会用公式计算几何概率。

教学难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。

通过数学建模解决实际问题。

教学方法:讲授法
课时安排:2课时,本节第1课时
教学过程:
一、导入新课:
复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?
二、新课讲授:
创设情境:
问题1:某人在7:00-8:00任一时刻随机到达单位,此人在7:00-7:10到达单位的概率? 问题2:比赛靶面直径为10cm,靶心直径为1cm ,随机射箭,假设每箭都能中靶,射中黄心的概率是多少?
问题3:500ml 水样中有一只草履虫,从中随机取出2ml 水样放在显微镜下观察,问发现草履虫的概率?
[师生互动]
1.教师引导学生从以下几个方面思考:
1)本题中基本事件是指什么?
2)基本事件的个数?
3)满足条件的基本事件个数?
2.学生交流回答;教师板书课题
什么是几何概型?它有什么特点?
活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括。

几何概型:
对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型。

如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的)
()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A
概率模型为几何概率模型,简称几何概型。

几何概型的基本特点:
1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等
讨论结果:经分析,第一个试验,从每一个时刻都是一个基本事件,到达的时刻可以7:00-7:10内的任意一点。

第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为10 cm 的大圆内的任意一点。

在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解。

考虑第一个问题, 设“某人在7:00-7:10到达单位”为事件A
于是事件A 发生的概率P (A )=10/60=1/6
第二个问题,如右图,记“射中黄心”为事件A,由于中靶心随机地落在面积为
×π×102 cm 2的大圆内,而当中靶点落在面积为
×π×12 cm 2的黄心内时,事件A 发生,于是事件B 发生的概率P (A )=1/100
第三个问题草履虫在这500ml 中的分布可以看作是随机的,取得的2ml 水可视作构成事件的区域,500ml 升水可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。

解:取出2ml 水,其中“含有草履虫”这一事件记为A ,则P (A )=2/500=1/250
结论:1.几何概型的概率公式:
P (A )= 2.古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同。

三、应用巩固
(1)在区间(0,10)内的所有实数中随机取一个实数a ,则这个实数a>7的概率为
(2) 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,如果在海域中任意点钻
探,钻到油层面的概率
(3) 在1000mL 的水中有一个草履虫,现从中任取出2mL 水样放到显微镜下观察,发现草
履虫的概率
四、例题讲解:
例1 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率。

4141)
()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件
A
[师生互动] 分析:1.教师提出问题:
1) 本试验的所有基本事件所构成区域在哪?
2) 事件A 包含的基本事件所构成区域在哪?
2.学生计算,教师板书解题过程。

分析:某人醒来在整点间即60分钟是随机的,等待的时间不多于10分钟可以看作构成事件
的区域,整点即60分钟可以看作所有结果构成的区域,因此本题的变量可以看
作是时间的长度,于是可以通过长度比公式计算其概率。

解:设事件A={等待的时间不多于10分钟} 事件A 发生的区域为时间段[50,60] 显然这是一个与长度有关的几何概型问题,问题比较简单,学生也易于理解。

例2(1)x 和y 取值都是区间[1,4]中的整数,任取一个x 的值和一个y 的值,求 “ x – y ≥1 ”的概率?
(2)x 和y 取值都是区间[1,4]中的实数, 任取一个x 的值和一个y 的值,求 “ x – y ≥1 ”的概率?
[师生互动]教师提出问题:
1) 本题的两个问题所有基本事件分别是什么?
2) 事件A 包含的基本事件是什么?
分析:第一个问题的x 和y 取的是[1,4]中的整数,它们是一个个整数点,所以是一个古典概型的问题;第二个问题x 和y 取值都是区间[1,4]中的实数,它们是[1,4]这一片区域里的点,所以是一个几何概型的问题。

解:(1)总的基本事件有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)有16个
设事件A={“ x – y ≥1 ”}则A 包含的基本事件有(2,1)(3,1)(3,2)(4,1)(4,2)(4,3)有6个,所以
P(A)=
6/16=3/8
(2)总的基本事件为{(x,y )1≤x ≤4, 1≤y ≤4}这一片区域里的点, 设事件A={(x,y )1≤x ≤4, 1≤y ≤4且 x – y ≥1 }这一片区域里的点,所以事件A 发生是几何概型的区域的面积问题,
P (A )=2/9
师生总结:首先我们要审清题目,分清是古典概型还是几何概型,古典概型我们要数清基本事件的个数,几何概型我们要知道它表示的是区域的面积问题。

四.课堂练习
1.两根相距8m 的木杆上系一根拉直绳子,并在绳子上挂一盏灯,求灯与两端距离都大于3m 的概率?
2.取一个边长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率?
五、课堂小结: 请同学们阅读课本,回顾本节课的内容,谈谈本节课的收获与困惑,从以下方面小结:
(一).几何概型的概率公式
P (A )= 6
160106010)(===分钟里醒来的时间长度所有在分钟时间长度等待的时间不多于A P )
()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A
(二).几何概型的特点以及古典概型与几何概型的区别及联系:
(1)试验中所有可能出现的结果(基本事件)有无限个
(2)每个基本事件出现的可能性相等
六、课后作业:
1.取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于1米的概率有多大?
P142页 A组1、2题
设计感想:
本节课首先对古典概型进行了复习,使学生掌握古典概型的适用条件,巩固了古典概型的概率计算公式,接着设计了多个试验,从课题的引入,到问题的提出都非常有针对性,引人入胜,接着从求概率问题引出几何概型这一不同于古典概型的又一概率模型,并通过探究,归纳出几何概型的概率计算公式,同时比较了古典概型和几何概型的区别和联系,通过不同的例题类型和层次, 本节主要是长度模型加深理解和运用,由于它们与实际生活联系密切,所以要反复练习,达到为我们的工作与生活服务,然而这部分内容高考是新内容,因此同学们要高度重视,全面把握,争取好成绩.。

相关文档
最新文档