高中数形结合问题总结知识讲解

合集下载

高中数学中数形结合思想的运用

高中数学中数形结合思想的运用

高中数学中数形结合思想的运用作者:景丽丽来源:《读写算》2013年第48期【摘要】数学作为一门重要的学科,被人们誉为人类最古老的科学领域之一。

数学特别是高中数学在教学过程中存在着很难让同学们理解等一系问题。

就此,本文从数形结合思想的运用来说明一下如何学好高中数学。

【关键词】数学数形结合高中前言:在数学教学中有反证法、归纳法、配方法等教学方法。

然而,本人认为在高中教学中应该适当地运用数形结合的方法。

这种种教学思想的运用不仅可以很好地学习好数学,且在对以后的生活产生深远的影响。

一、数形结合的概念数形结合就是把抽象的数学语言与直观的图形结合起来,通过数与形之间的对应和转化来解决数学问题。

数字和图形两个原本毫不相干的物体,融洽的存在于数学这一教学载体中。

高中,是教学过程中比较重要的阶段。

数学,作为高中比较重要的一门学科,如何学好它至关重要。

众所周知,数学是研究我们在实际生活中遇到的一些问题和数量之间关系的科学。

由此可见,“数”和“形”是我们要进行数学教学所要研究的两大对象。

怎样把现实生活中如此庞大的“形”和虚拟世界中的数字进行连接,这便是数形结合这一思想能存在与数学发展长河中的主要解决的问题。

二、解决教学重点和难点在进行课件使用的过程中,是否能够更好地解决教学中的重点和难点,直接影响到了教学效果,这里我们举实例说明。

比如说在人教版高中数学教学课程当中,对于《椭圆定义》讲解的时候,在课程导入的过程中,我在播放行星运行的过程中,引导学生观察,并且进行任务的布置工作,从而引入相关的理念,在进行动手实践的时候,提出了相关的思考题,最后观察了屏幕的各种建系并且在黑板上推导出了公式,得出了椭圆的标准方程。

进行例子的讲解,并进行了课堂习题的训练。

从而经过了一系列的过程,充分发挥了现代教学中的优点,得到了最优秀的教学成果。

三、数形结合思想的运用高中数学,一直被很多考生称之为老大难。

真可谓:听起来难,学起来更难,想要考好难上加难。

高中数学几何解题技巧之数形结合策略

高中数学几何解题技巧之数形结合策略

高中数学几何解题技巧之"数""形"结合策略摘要:"数""形"结合策略是高中数学几何解题的重要技巧,通过将几何形状与数学关系相结合,利用数学方法解决几何问题。

关键词:高中数学;几何解题技巧;数""形"结合策略前言在高中数学几何解题中,"数""形"结合策略是一种重要的技巧。

通过将几何形状与数学关系相结合,可以更好地理解和解决几何问题。

一、介绍"数""形"结合策略的概念和重要性"数""形"结合策略是在解决高中数学几何问题时常用的一种方法。

它结合了数学的抽象思维和几何的形象思维,通过数学的计算和几何的图形分析相互支持,从而更全面地理解和解决问题。

这种策略的重要性在于它能够帮助我们从不同的角度来理解几何问题。

几何问题通常涉及到图形的形状、大小、位置等方面的特征,而数学则提供了精确的计算和推理工具。

通过将数学和几何结合起来,我们可以更好地理解几何问题的本质,并找到解决问题的有效方法。

"数""形"结合策略的基本思路是将几何问题转化为数学问题,然后利用数学的方法进行计算和推理,最后再将结果转化回几何语言。

这种策略使我们能够通过数学的计算和推理来揭示几何问题的隐藏规律和性质,从而更深入地理解几何概念。

例如,在解决三角形的问题时,我们可以利用角度和边长的关系,通过数学计算来推导出三角形的性质和关系。

同时,我们也可以通过几何图形的分解和组合,利用图形的对称性和变换来简化问题的解决过程。

这种数形结合的策略使我们能够更全面地理解和解决几何问题[1]。

二、解释为什么这种策略在解决几何问题时很有用"数""形"结合策略在解决几何问题时非常有用,原因如下:首先,几何问题通常涉及到图形的形状、大小、位置等方面的特征。

高中数学高考二轮复习数形结合思想教案

高中数学高考二轮复习数形结合思想教案

第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。

高中数学 数形结合思想

高中数学 数形结合思想

第二讲 数形结合思想知识整合数形结合思想的实质是把抽象的数学语言与直观的图形语言有机结合,达到抽象思维和形象思维的和谐统一.通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到解决.数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.1.数形结合思想在方程的根或函数零点中的应用典题例析例1 若f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内,g (x )=f (x )-mx-m 有两个零点,则实数m 的取值范围是( D )A .[0,12)B .[12,+∞)C .[0,13)D .(0,12][解析] 当x ∈(-1,0]时,x +1∈(0,1], ∵当x ∈(0,1]时,f (x )=x ,∴f (x +1)=x +1.而由f (x )+1=1f (x +1),可得f (x )=1f (x +1)-1=1x +1-1(x ∈(-1,0]).如图所示,作出函数f (x )在区间(-1,1]内的图象,而函数g (x )零点的个数即为函数f (x )与y =mx +m 图象交点的个数,显然函数y =mx +m 的图象为经过点P (-1,0),斜率为m 的直线.如图所示,f (1)=1,故B (1,1).直线PB 的斜率k 1=1-01-(-1)=12,直线PO 的斜率为k 2=0.由图可知,函数f (x )与y =mx +m 的图象有两个交点,则直线y =mx +m 的斜率k 2<m ≤k 1,即m ∈(0,12].规律总结利用数形结合求方程解应注意两点1.讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性、否则会得到错解.2.正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.1.已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为__1__.[解析] 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.2.(2019·辽宁模拟)f (x )=2sinπx -x +1的零点个数为( B ) A .4 B .5 C .6D .7[解析] 令2sinπx -x +1=0,则2sinπx =x -1,令h (x )=2sinπx ,g (x )=x -1,则f (x )=2sinπx -x +1的零点个数问题就转化为两个函数h (x )与g (x )图象的交点个数问题.h (x )=2sinπx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h (52)>g (52),g (4)=3>2,g (-1)=-2,所以两个函数图象的交点一共有5个,所以f (x )=2sinπx -x +1的零点个数为5.故选B.2.数形结合化解不等式问题典题例析例2 (1)(2019·四川模拟)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( D ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞)D .(-1,+∞)[解析] 方法一:不等式2x (x -a )<1可变形为x -a <(12)x .在同一平面直角坐标系内作出直线y =x -a 与y =(12)x 的图象,如图,由题意,知在(0,+∞)上,直线y =x -a 有一部分在曲线y =(12)x 的下方.观察可知,有-a <1,所以a >-1,故选D.方法二:不等式2x (x -a )<1可变形为a >x -(12)x .记g (x )=x -(12)x (x >0),易知g (x )为增函数,又g (0)=-1,所以g (x )∈(-1,+∞).故a >-1.故选D.(2)已知关于x 的不等式x >ax +32的解集为{x |4<x <b },则ab = 92 .[解析] 设f (x )=x ,g (x )=ax +32(x ≥0).因为x >ax +32的解集为{x |4<x <b },所以两函数图象在4<x <b 上有f (x )>g (x ),如图所示.当x =4,x =b 时,由f (x )=g (x ),可得⎩⎨⎧4=4a +32,b =ab +32,解得⎩⎪⎨⎪⎧a =18,b =36,所以ab =18×36=92. 规律总结1.数形结合思想解决参数问题的思路(1)分析条件所给曲线.(2)画出图象.(3)根据图象求解. 2.常见的数与形的转化(1)集合的运算及韦恩图.(2)函数及其图象.(3)数列通项及求和公式的函数特征及函数图象.(4)方程(多指二元方程)及方程的曲线.1.(2019·太原模拟)不等式2x -x 2≤x +b 恒成立,则实数b 的取值范围是( C ) A .(-∞,-2-1] B .(-∞,2-1] C .[2-1,+∞)D .[-2-1,2-1][解析] 设y =2x -x 2=1-(x -1)2,整理得(x -1)2+y 2=1(y ≥0),表示以A (1,0)为圆心,半径为1的上半圆;而y =x +b 表示斜率为1,在y 轴上的截距为b 的直线.如图所示,要使不等式恒成立,则直线y =x +b 在半圆的上方,即圆心到直线的距离不小于圆的半径,故|1+b |2≥1,解得b ≥2-1或b ≤-2-1.而当b ≤-2-1时,直线y=x +b 在半圆的下方,所以不满足条件.所以实数b 的取值范围是[2-1,+∞).故选C.2.对∀x ∈(0,13),8x <log a x +1恒成立,则实数a 的取值范围是 13≤a <1 .[解析] 当0<x <13时,函数y =8x -1的图象如图中实线所示.∵对∀x ∈(0,13),8x <log a x +1恒成立,∴当x ∈(0,13)时,y =log a x 的图象恒在y =8x -1的图象的上方(如图中虚线所示).∵y =log a x 的图象与y =8x -1的图象交于点(13,1)时,a =13,∴13≤a <1.3.利用数形结合思想解决不等式、参数问题 典题例析例3 (1)(2017·全国卷Ⅰ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( B )A .-2B .-32C .-43D .-1[解析] 方法1:(解析法)建立坐标系如图所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ), ∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2[x 2+(y -32)2-34]≥2×(-34)=-32. 当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B. 方法2:(几何法)如图所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤(|P A →|+|PD →|2)2=(32)2=34,∴[P A →·(PB →+PC →)]min =2(P A →·PD →)min =-2×34=-32.故选B.(2)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB ︵ 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值为__2__.[解析] 如题图所示,则A (1,0),B (-12,32).设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α).由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,解得⎩⎨⎧x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6).又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.规律总结建坐标系可以实现平面向量问题的全面运算,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,化繁为简,轻松破解.1.(2019·福建模拟)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t .若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于( A )A .13B .15C .19D .21[解析] 以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B (1t ,0)(t >0),C (0,t ),P (1,4),PB →·PC →=(1t -1,-4)(-1,t -4)=17-(4t +1t )≤17-2×2=13.当且仅当t =12时,PB →·PC →最大为13,故选A .2.(2019·西安高新模拟)如图,在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB →·AC→=2AB →·AD →,则AD →·AC →=__12__.[解析] 方法一:因为AB →·AC →=2AB →·AD →, 所以AB →·AC →-AB →·AD →=AB →·AD →, 所以AB →·DC →=AB →·AD →.因为AB ∥CD ,CD =2,∠BAD =π4,所以2|AB →|=|AB →||AD →|cos π4,化简得|AD →|=2 2.故AD →·AC →=AD →·(AD →+DC →)=|AD →|2+AD →·DC →=(22)2+22×2cos π4=12.方法二:如图,建立平面直角坐标系xAy .依题意,可设点D (m ,m ),C (m +2,m ),B (n,0),其中m >0,n >0,则由AB →·AC →=2AB →·AD →,得(n,0)·(m +2,m )=2(n,0)·(m ,m ), 所以n (m +2)=2nm ,化简得m =2.故AD →·AC →=(m ,m )·(m +2,m )=2m 2+2m =12.4.数形结合化解圆锥曲线问题典题例析例4 (1)(2019·武汉模拟)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点的距离之和取得最小值时,点P 的坐标为( A )A .(14,-1)B .(14,1)C .(1,2)D .(1,-2)[解析] 点P 到抛物线焦点的距离等于点P 到抛物线准线的距离,如图所示,设焦点为F ,过点P 作准线的垂线,垂足为S ,则|PF |+|PQ |=|PS |+|PQ |,故当S ,P ,Q 三点共线时取得最小值,此时P ,Q 的纵坐标都是-1,设点P 的横坐标为x 0,代入y 2=4x ,得x 0=14,故点P 的坐标为(14,-1),故选A .(2)已知A (1,1)为椭圆x 29+y 25=1内一点,F 1为椭圆的左焦点,P 为椭圆上一动点,求|PF 1|+|P A |的最大值和最小值.[解析] 由x 29+y 25=1可知a =3,b =5,c =2,左焦点F 1(-2,0),右焦点F 2(2,0).由椭圆定义,知|PF 1|=2a -|PF 2|=6-|PF 2|, ∴|PF 1|+|P A |=6-|PF 2|+|P A |=6+|P A |-|PF 2|.如图,由||P A |-|PF 2||≤|AF 2|=(2-1)2+(0-1)2=2,知-2≤|P A |-|PF 2|≤ 2.当点P 在AF 2的延长线上的点P 2处时,取右“=”, 当点P 在AF 2的反向延长线上的点P 1处时,取左“=”, 即|P A |-|PF 2|的最大、最小值分别为2,- 2. 于是|PF 1|+|P A |的最大值是6+2,最小值是6- 2. 规律总结(1)在解析几何的解题过程中,通常要数形结合,这样使数更形象,更直白,充分利用图象的特征,挖掘题中所给的代数关系式和几何关系式,避免一些复杂的计算,给解题提供方便.(2)应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.1.(2019·南宁模拟)椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( C )A .55B .655C .855D .455[解析]如图,设椭圆的右焦点为F′,连接MF′,NF′.因为|MF|+|NF|+|MF′|+|NF′|≥|MF|+|NF|+|MN|,所以当直线x=m过椭圆的右焦点时,△FMN的周长最大.此时|MN|=2b2a=855,又c=a2-b2=5-4=1,所以此时△FMN的面积S=12×2×855=855.故选C.2.(2019·广西模拟)设P为双曲线x2-y215=1右支上一点,M,N分别是圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1上的点,设|PM|-|PN|的最大值和最小值分别为m,n,则|m -n|=(C)A.4 B.5C.6 D.7[解析]由题意得,圆C1:(x+4)2+y2=4的圆心为(-4,0),半径为r1=2;圆C2:(x -4)2+y2=1的圆心为(4,0),半径为r2=1.设双曲线x2-y215=1的左、右焦点分别为F1(-4,0),F2(4,0).如图所示,连接PF1,PF2,F1M,F2N,则|PF1|-|PF2|=2.又|PM|max=|PF1|+r1,|PN|min=|PF2|-r2,所以|PM|-|PN|的最大值m=|PF1|-|PF2|+r1+r2=5.又|PM|min=|PF1|-r1,|PN|max=|PF2|+r2,所以|PM|-|PN|的最小值n=|PF1|-|PF2|-r1-r2=-1,所以|m-n|=6.故选C.。

高中化学解题方法指导4数形结合思想

高中化学解题方法指导4数形结合思想

高中化学解题方法指导4:数形结合思想我国著名数学家华罗庚先生曾形象地描述数形结合思想的特点:“数缺形,少直观,形缺数,难入微。

”具体地说,就是在解决问题时,根据问题的背景、关系、图形特征或使“数”的问题借助于“形”去观察,或将“形”的问题借助于“数”去思考,这种解决问题的思想称为数形结合思想。

“数形结合百般好,割裂分家万事非。

”这就明确告诉我们:在解决问题时,数与形这一对应关系犹如形影不可分离一样,“数”的问题借助于“形”去观察,以形解数;“形”的问题借助于“数”去思考,以数赋形。

这种数形结合的思想也常常用于解决化学问题,直观形象,化难为易,优化解题。

1.1 以形赋数先给出图形,然后根据图形寻找出有用的数据,最后进行计算。

这种方法是将复杂问题以图形方式表示出来,考查学生的识图能力和综合应用知识能力。

第一步:析图形,明意义分析图形的特点及变化趋势,明晰各种点(起点、拐点、极点、终点等)的意义第二步:找数据,定反应在图形中找出各段线发生的反应及离子的变化情况第三步:用原理,作判断利用化学反应原理或化学方程式进行计算并判断正误向FeI2、FeBr2的混合溶液中通入适量氯气,溶液中某些离子的物质的量随通入Cl2的物质的量的变化如图所示。

已知:2Fe2++Br22Fe3++2Br-,2Fe3++2I-2Fe2++I2。

则下列有关说法中,不正确的是A.线段BD表示Fe3+的物质的量的变化B.原混合溶液中FeBr2的物质的量为6 molC.当通入2 mol Cl2时,溶液中已发生的离子反应可表示为2Fe2++2I-+2Cl22Fe3++I2+4Cl-D.原溶液中n(Fe2+)∶n(I-)∶n(Br-)=2∶1∶3【思路点拨】第一步,依据溶液中各离子还原性强弱顺序确定反应发生的先后顺序;第二步,对照反应发生的先后顺序从图形中找出各线段对应的发生反应的各种物质及其物质的量;第三步,结合题意,判断选项正误。

【试题解析】通过题给信息可知,发生反应的先后顺序为2I-+Cl2I2+2Cl-,2Fe2++Cl22Fe3++2Cl-,2Br-+Cl2Br2+2Cl-。

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

数形结合,巧解“与圆有关的最值问题”例1 平面上有两点A (1-,0),B (1,0),P 为圆x y x y 2268210+--+=上的一点,试求S AP BP =+||||22最小值.解析:把已知圆的一般方程化为标准方程得()()x y -+-=34422,设点P 的坐标为(,)x y 00,则2222220000||||(1)(1)S AP BP x y x y =+=+++-+222002(1)2(1)x y OP =++=+ 要使22||||BP AP S +=最小,需||OP 最小,即使圆上的点到原点的距离最小.结合图形,容易知道325||min =-=-=r OC OP ,所以20)13(22min =+=S .点评:设 P (x ,y ),使要求的式子转化为求圆上的点到原点的距离问题,利用数形结合法求最值,实质上是利用初中学过的“连结两点的线段中,直线段最短”这一性质.例2 点A 在圆()()x y -+-=53922上,则点A 到直线3420x y +-=的最短距离为( )A. 9B. 8C. 5D. 2解析:过C 作CD ⊥直线3420x y +-=于D ,交圆C 于A , 则AD CD r =-为所求 .∴AD例3 )0,3(P 在圆0122822=+--+y x y x 内一点.求(1)过P 的圆的最短弦所在直线方程(2)过P 的圆的最长弦所在直线方程解析:圆方程可以化成5)1()4(22=-+-y x ,圆心)1,4(O 1=OP k∴ 短l :)3(--=x y 即 03=-+y x ; 长l :)3(-=x y 即03=--y x . 点评:最长弦当然是直径了,而最短弦是与直径垂直的弦.例4 已知实数x ,y 满足方程22(2)3x y -+=.(1) 求y x的最大值与最小值; (2) 求y x -的最大值与最小值; (3) 求22x y +的最大值和最小值.分析:22(2)3x y -+=为圆的方程,(,)P x y 是圆心为(2,0)点.y x的几何意义是圆上一点与原点连线的斜率,y x -的几何意义是直线y x b =+在轴上的截距,22x y +的几何意义是圆上一点到原点距离的平方.解:(1)设y k x=,即y kx =.当直线y kx =与圆相切时,斜率k 取最大值与最小值,=k =.所以y xk = (2)设y x b -=,当直线y x b -=与圆相切时,纵截距b 取得最大值与最小值,=解得2b =-所以y x -的最大值为2-,最小值2-.(3表示圆上一点到原点距离,由平面几何知识知,其最大值为圆心到原点的距离加上圆的半径,其最小值为圆心到原点的距离减去圆的半径,分别是2与222x y +的最大值和最小值分别为7+7-.例5 过直线1y =上一点P (x ,y )作圆22(1)(1)1x y +++=的切线,求切线长的最小值.解析:如图所示,切线长2221PM PC CM PC =-=-,所以要求PM 的最小值,只需求PC 的最小值.PC 是直线上一点到圆心的距离,由于经直线外一点所引直线的垂线段的长度是该点到直线的距离的最小值,所以当PC 垂直于直线时,min 2PC =,此时,切线长最小,为3.小结与提升:圆的知识在初中与高中都要学习,是一典型的知识交汇点.现在的数学高考非常重视初高中知识的衔接问题,所以同学们在处理与圆有关的小题时,一定要数形结合,多联想一下与之有关的平面几何知识,以免“小题大作”.。

数形结合的思想在高中数学解题中的应用

数形结合的思想在高中数学解题中的应用

龙源期刊网
数形结合的思想在高中数学解题中的应用
作者:刘锋
来源:《理科考试研究·高中》2013年第09期
数形结合就是把抽象的数学语言与直观的图形结合起来,通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化、抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法.
一、利用数形结合思想解决集合的问题
1.利用韦恩图法解决集合之间的关系问题
二、运用数形结合思想解三角函数题
纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.
三、利用单位圆中的有向线段解决三角不等式问题
在教材中利用单位圆的有向线段表示角的正弦线,余弦线,正切线,并利用三角函数线可作出对应三角函数的图象.如果能利用单位圆中的有向线段表示三角函数线,应用它解决三角
不等式问题,简便易行.
总之,由于数形结合的思想在高考中考查的比重很大,因而要花大力气,循序渐进地使学生建立数形结合的对应转化和应用,既要借助形的直观性来阐明数之间的关系,也要借助于数的精确性来阐明形的某些属性,使学生抓住数形结合本质,在解题中自觉地运用数形结合的思想,以提高解题的能力和速度.。

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数形结合问题总

数形结合思想在高中数学中的应用
灵宝实验高中 王少辉
一、什么是“数形结合思想”?
数形结合是一种数学思考方法;是数学研究和学习中的重要思想;也是解决数学问题的有效方法。

“以形助数”可以使复杂问题简单化、抽象问题具体化;能够把抽象的数学语言变为直观的图形语言、把抽象的数学思维变为直观的形象思维;“以数助形”有助于把握数学问题的本质。

二、什么类型的题可以用“数形结合思想”解决?
“数”和“形”是数学研究的两个基本对象。

数,通俗地说一般是指文字语言、数学符号语言、代数式等;
形,通俗地说一般指图形语言、函数图象、代数式的几何意义等。

既能用“数”表示,又能用“形”表示的知识就可以用数形结合思想解决。

数形结合的思想方法是数学教学内容的主线之一,应用数形结合思想,可以解决以下问题:
①集合问题②函数问题③方程与不等式问题④三角函数问题⑤向量问题⑥数列问题⑦线性规划问题⑧解析几何问题⑨立体几何问题⑩绝对值问题
三、数形结合思想应用举例
(一)在集合中的应用
【知识点】集合的基本运算
在这个知识点中集合的三种运算除了抽象的符号语言描述之外,还有直观的图形语言。

所以在解决某些集合的运算问题时,我们可以用数形结合思想。

【例1】
(1)已知B A B C A C B A C B C A N x x x U U U U U ,},10,1{},9,7,5{},6,4,2{},,10|{*求===∈≤=I I I
(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是_______.
【小结】
数形结合在集合中的应用,主要体现在集合的基本运算中:
(1)离散的集合用Venn 图表示
(2)连续的数集用数轴表示,注意端点
(二)在函数中的应用
1.二次函数区间求值问题
二次函数的图象我们都很熟悉,所以在解决二次函数的相关问题时,我们就可以借助图象来进行。

【例2】已知12)(2+-=ax x x f ,求f (x )在[1,2]上的最小值
【跟踪训练】已知12)(2+-=x x x f ,求f (x )在[t,t+2]上的最小值
2.函数性质综合应用
函数的性质在图象上都有直观的反应,所以在利用函数性质解决某些问题时,我们就可以借助图象来进行。

【例3】设函数⎩⎨⎧>≤+-=4
,log 4,4)(22x x x x x x f ,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a
的取值范围是________.
【例4】已知函数⎩⎨⎧<+-≥=0
,20,2)(x x x x f ,则满足不等式)2()3(2x f x f <-的x 的取值范围为 3.函数零点个数问题
函数零点、方程的根与函数图象的交点密切相关,所以在解决函数零点个数问题,方程根的个数问题时,常使用数形结合思想。

【例5】已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,如果函数g (x )=f (x )-m (m ∈R )恰有4个零点,则m 的取值范围是________.
【例6】已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a x 有三个不同的实根,求a 的取值范围.
【小结】
数形结合在函数中的应用,主要体现在函数图象的应用中
(1)二次函数求给定区间上的最值问题
①轴动区间定 ②轴定区间动
(2)函数性质(奇偶性、单调性、周期性)的综合应用
①求范围 ②解不等式
(3)函数零点个数、方程根的个数
转化为图象交点个数问题
【跟踪训练1】 函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( )
A.0
B.1
C.2
D.3
解析 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系
中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所
示:
由图可知函数f (x )在定义域内的零点个数为2.
答案 C
【跟踪训练2】若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.
解析 在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.
由图象知当a >0时,方程|x |=a -x 只有一个解.
答案 (0,+∞)
【跟踪训练3】已知函数⎩⎨⎧>-≤+=0
,130,)(x x x a e x f x (a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( )
A.(-∞,-1)
B.(-∞,0)
C.(-1,0)
D.[-1,0)
解析 当x >0时,f (x )=3x -1有一个零点x =13.
因此当x ≤0时,f (x )=e x +a =0只有一个实根,
∴a =-e x (x ≤0),则-1≤a <0.
答案 D
【跟踪训练4】(2016·山东卷)已知函数⎩⎨⎧>+-≤=m
x m mx x m x x x f ,42|,|)(2,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.
解析 在同一坐标系中,作y =f (x )与y =b 的图象.
当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,
∴要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,
即m 2-3m >0.又m >0,解得m >3.
答案 (3,+∞)
四、作函数图象的常用方法
数形结合的关键在于准确作出函数的图象,那么如何作函数图象就是最关键的步骤,同学们一定要掌握。

下面介绍两种高中数学中最常用的方法。

1.利用描点法作函数的图象
步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.
2.利用图象变换法作函数的图象
(1)平移变换
①y =f(x+a)(a>0)的图象把y =f(x)的图象向左平移a 个单位即可 ;
②y =f(x -a)(a>0)的图象把y =f(x)的图象向右平移a 个单位即可 ;
③y =f(x)+b (b>0)的图象把y =f(x)的图象向上平移b 个单位即可;
④y =f(x) -b (b>0)的图象把y =f(x)的图象向下平移b 个单位即可;
即我们通常所说的左加右减,上加下减。

【练习1】作出下列函数的图象
(1)2
1-=x y (2)2)1(+=x y (3)12-=x y (2)对称变换
①y =-f(x) 的图象把y =f(x)的图象关于 x 轴对称即可 ;
②y =f(-x) 的图象把y =f(x)的图象关于 y 轴对称即可 ;
③y =-f(-x) 的图象把y =f(x)的图象关于原点对称即可 ;
【练习2】作出下列函数的图象
(1)x y 2-= (2))ln(x y -= (3)x e y --=
(3)伸缩变换
①y =f(ax)(a>0)的图象 把y =f(x)的图象纵坐标不变,各点的横坐标变为原来的a 1倍即可 ; 相当于以y 轴为中心,把图象往左右伸长或压缩;a<1时伸长,a>1时压缩.
②y =Af(x)(A>0)的图象
把y =f(x)的图象横坐标不变,各点的纵坐标变为原来的 A 倍即可 ;
相当于以x 轴为中心,把图象上下伸长或压缩;A>1时伸长,A<1时压缩.
(4)翻转变换
①y =|f(x)|的图象,把y =f(x)的图象位于x 轴下方的部分翻到x 轴上方即可;
函数值为负数的变为其相反数,函数值为正数的不变,图象全部在x 轴上方。

②y =f(|x|)的图象,把y =f(x)的图象位于y 轴左边的部分去掉,然后把右边的对称到左边即可. 自变量为负数时,与其相反数对应的函数值一样,所以是偶函数。

【练习3】作出下列函数的图象
(1)|ln |x y = (2)||ln x y =
【练习4】作出下列函数的图象
(1)|)1ln(|+=x y (2)|1|ln +=x y。

相关文档
最新文档