通信辐射源个体特征提取技术
一种新的通信辐射源个体识别方法

(.Istt o fr ainE gneig nom t nE gnen nvrt hn zo ea 5 0 2 hn ; 1 ntu I om t n ie n ,I r ai n i r gU i sy i ef n o r f o ei e i,Z eghuH nn4 0 0 ,C ia 2 U i7 4 6o I . nt 2 0 fPA,We a h n og2 40 ,C ia i i a dn 62 3 hn) h S
J un lo mp trAp l ain ora f Co ue pi t s c o
I S 1 01 9 S N 0 — 081
2 2. 5— 01 0 01
计算机应用,0 2 3 () 16 4 2 16 2 1 ,2 5 :4 0—16 ,4 6 文章编号 :0 1 9 8 ( 02 0 10 — 0 1 2 1 )5—16 0 4 0— 3
u k o nsm ls osm xet h auew srbs u dr WG ( d iv i asi os) h o p t nn w a pe.T o eetn,tef tr a out n e e A N A dt eWht G us n N i .T ecm ue i e a e r
依据不 同通信辐射源 中振 荡器个体 的频 率稳 定度 不相 等这 一事 实, 出一种适 用 于多进 制数 字相 位调制 ( S 信 提 MP K)
号 的基 于分形维数的特征提取与分类方法。首先 对中频信号进行过 采样 , 然后提 取信号 瞬时相位 的信 息维数作 为分 类特征 , 最后利 用支持 向量机 ( V 分类器 实现样本属性的 自动判别。该方法特征 维数低 、 S M) 分类 简单, 对加性 高斯 白
基于双谱的通信辐射源个体识别

识别方法,即采用高阶谱分析对辐射源个体特征参 数进行提取,并在特征 向量 中融合了对分类具有显 著贡献 的特征参数。采用径向基神经网络完成对相 同型 号 、相 同批 次 、工 作参数 相 同的 电台进行个 体 识别 。在 1d 信 噪 比的条件 下 ,识别 正确 率优于 5B
Ab t a t sr c :Ba e n t e b s e t n s d o ip c r a d RBF a n w t o o e t y n i ee t r n mitr ft e s mo e s h a , e meh d f ri n i i g d f r n a s t s o h a d f t e d lwa p e e td Th ee t d s e t n a a tr i n f a tf rc a s c t n o h e e v d s n ! o m e i e t c t n r sn e . e s lc p c r a d p r mee s sg i c n o ls i ai fte rc i e i a f r t d n i a i e a i i f o  ̄ h i f o fa u e v co , n e tr e tr a dRB su e o r aiet eid v d a i e t c t n Ex e i n e ut h w ta t e meh di b e t F wa s dt e l h n i iu l d n i a i . p rme t s l s o h t h t o s a l z i f o r s o c a s yt es mo e t n mi e wi na c r c t f ols h n9 % u d r h n io me t f o r NR. l si h f a d lr s t r t a t ha c u a yr eo n e st a O a n e t ee vr n n o l we S Ke ywo d : e e tdb s e t ; BF i d v d a i e t c t n r s s lc e ip e r R a ;n iiu ld ni ai i f o
嵌入注意力机制的通信辐射源个体识别方法

第44卷 第1期系统工程与电子技术Vol.44 No.12022年1月SystemsEngineeringandElectronicsJanuary 2022文章编号:1001 506X(2022)01 0020 08 网址:www.sys ele.com收稿日期:20210118;修回日期:20210515;网络优先出版日期:20210712。
网络优先出版地址:http:∥kns.cnki.net/kcms/detail/11.2422.TN.20210712.1656.024.html基金项目:安徽省自然科学基金(1908085MF202)资助课题 通讯作者.引用格式:曲凌志,杨俊安,刘辉,等.嵌入注意力机制的通信辐射源个体识别方法[J].系统工程与电子技术,2022,44(1):20 27.犚犲犳犲狉犲狀犮犲犳狅狉犿犪狋:QULZ,YANGJA,LIUH,etal.Methodforindividualidentificationofcommunicationradiationsourceembeddedinattentionmechanism[J].SystemsEngineeringandElectronics,2022,44(1):20 27.嵌入注意力机制的通信辐射源个体识别方法曲凌志,杨俊安 ,刘 辉,黄科举(国防科技大学电子对抗学院,安徽合肥230037) 摘 要:复杂电磁环境中,针对低信噪比条件下现有神经网络识别算法对于通信电台识别准确率不高的问题,提出一种结合双层注意力机制和残差网络的通信辐射源个体识别方法。
首先,以空间注意模块和通道注意模块构成注意力机制。
其次,在一维残差网络中嵌入双层注意力机制,提高对关键特征的学习能力。
最后,在实际数据集上验证算法的有效性。
实验证明,相比于残差神经网络算法,所提方法既能保持模型较好的稳定性又在数据集上有明显的提升效果。
关键词:低信噪比;辐射源识别;注意力机制;残差学习中图分类号:TN911.7 文献标志码:A 犇犗犐:10.12305/j.issn.1001 506X.2022.01.03犕犲狋犺狅犱犳狅狉犻狀犱犻狏犻犱狌犪犾犻犱犲狀狋犻犳犻犮犪狋犻狅狀狅犳犮狅犿犿狌狀犻犮犪狋犻狅狀狉犪犱犻犪狋犻狅狀狊狅狌狉犮犲犲犿犫犲犱犱犲犱犻狀犪狋狋犲狀狋犻狅狀犿犲犮犺犪狀犻狊犿QULingzhi,YANGJunan ,LIUHui,HUANGKeju(犐狀狊狋犻狋狌狋犲狅犳犈犾犲犮狋狉狅狀犻犮犆狅狌狀狋犲狉犿犲犪狊狌狉犲狊,犖犪狋犻狅狀犪犾犝狀犻狏犲狉狊犻狋狔狅犳犇犲犳犲狀狊犲犜犲犮犺狀狅犾狅犵狔,犎犲犳犲犻230037,犆犺犻狀犪) 犃犫狊狋狉犪犮狋:Incomplexelectromagneticenvironment,anovelcommunicationradiationsourceidentificationmethodcombiningdouble deckattentionmechanismandresidualnetworkisproposedtosolvetheproblemthattheexistingneuralnetworkidentificationalgorithmisnotaccurateenoughincommunicationstationidentificationunderlowsignaltonoiseratiocondition.Firstly,spatialattentionmoduleandchannelattentionmoduleareusedtoconstructtheattentionmechanism.Secondly,atwo layerattentionmechanismisembeddedintheone dimensionalresidualnetworktoimprovethelearningabilityofkeyfeatures.Finally,theeffectivenessofthealgorithmisverifiedontheactualdataset.Experimentalresultsshowthat,comparedwiththeresidualneuralnetworkalgorithm,theproposedmethodnotonlymaintainsbetterstabilityofthemodel,butalsohasasignificantimprovementeffectonthedataset.犓犲狔狑狅狉犱狊:lowsignaltonoiseratio;radiationsourceidentification;attentionmechanism;residuallearning0 引 言辐射源个体识别(specificemitteridentification,SEI)是指提取同型号、同批次通信辐射源信号中的个体特征来识别不同辐射源个体的过程[1]。
基于深度聚类的通信辐射源个体识别方法

基于深度聚类的通信辐射源个体识别方法
贾鑫;蒋磊;郭京京;齐子森
【期刊名称】《空军工程大学学报》
【年(卷),期】2024(25)1
【摘要】针对非合作通信条件下缺少标签数据的通信辐射源个体识别问题,提出了一种基于深度聚类的通信辐射源个体识别方法。
利用自编码器网络强大的特征提取和数据重构能力对原始I/Q数据进行表征学习,提取个体识别的指纹特征,同时将表征学习过程和特征聚类过程进行联合优化,使表征学习和特征聚类契合度更高,更好地完成无标签条件下的通信辐射源个体识别。
通过对5种ZigBee设备采集的信号进行实验,结果表明在信噪比高于0 dB时,可以达到85%以上的识别准确率,证明了本文方法的有效性和稳定性。
【总页数】8页(P115-122)
【作者】贾鑫;蒋磊;郭京京;齐子森
【作者单位】空军工程大学信息与导航学院;93184部队
【正文语种】中文
【中图分类】TN957.51;TN911.7
【相关文献】
1.一种基于深度置信网络的通信辐射源个体识别方法
2.基于深度学习的辐射源个体识别方法综述
3.基于多域特征融合的通信辐射源个体识别方法
4.基于卷积原型网
络的通信辐射源个体开集识别方法5.基于SDAE_SVDD的通信辐射源个体开集识别方法
因版权原因,仅展示原文概要,查看原文内容请购买。
一种稳健的通信辐射源个体识别方法

关键 词 : 通信 对抗 ; 通 信辐 射 源个体 识 别 ; 峰 值提 取 ; 包络 特征 ; 模板 匹配 ; 模 式识 别
中图分 类号 : T N 9 7 5
文献标 志码 : A
引用格式 : 黄欣 , 郭汉伟. 一种稳健的通信辐射源个体识别方法[ J ] . 电讯技术 , 2 0 1 5, 5 5 ( 3 ) : 3 2 1 — 3 2 7 . [ HU A NG X i n , G U O H a n w e i . A R o b u s t S p e —
一
种 稳 健 的通 信 辐 射 源 个 体 识 别 方 法
黄 欣 料, 郭汉伟
( 1 . 中国西南电子技术研究所 , 成都 6 1 0 0 3 6 ; 2 . 北京科航 军威科 技有限公 司。 北京 1 0 0 0 4 4)
摘
要: 通信 辐射 源个体 识 别是 目前通 信 对抗领 域研 究 热点 与难 点 问题 , 相 对 于雷达 辐射 源 . 通信 辐
第5 5卷 第 3期
2 0 1 5年 3月
电讯 技 术
T e l e c o mmu n i c a t i o n E n g i n e e r i n g
Vo1 . 5 5. No. 3
Ma r c h, 2 01 5
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1 - 8 9 3 x . 2 0 1 5 . 0 3 . 0 1 6
p l a t e s i n po we r s p e c t r u m d o ma i n a n d c o n s t uc r t t h e s p e c i ic f v e c t o r f e a t u r e . Co mb i n i n g t h e Na i v e Ba y e s c l a s —
通信辐射源个体识别技术研究

通信辐射源个体识别技术研究通信辐射源个体识别技术对提升无线通信系统的安全性和提高军事通信侦察对抗能力具有重要意义。
通过提取通信辐射源发射机在设计、生产过程中产生的硬件设备差异特征,可以分辨接收的信号来自哪个通信辐射源。
然而,提取这些细微的辐射源个体差异特征非常困难,使得通信辐射源个体识别技术研究成为一项十分具有挑战性的课题。
本文系统的研究了通信辐射源个体识别的理论框架,在此基础上研究了多种具有理论及实用价值的个体识别算法,通过仿真实验和实测数据验证了算法的有效性,部分算法在实际通信辐射源个体识别系统中得到了应用。
本文主要工作包括以下几个方面:1.通信辐射源个体识别基本理论研究。
分析了通信辐射源射频指纹特征信息的传输和处理流程,构建了通信辐射源个体识别的理论框架。
在建立通信辐射源个体特征信息的编译码模型基础上,分析了辐射源个体识别系统的理论性能,指出辐射源个体识别处理流程中应尽可能减少个体特征信息的损失。
2.基于发射机非线性模型的辐射源个体识别方法研究。
在分析通信辐射源个体差异特征的生成机理基础上,研究了基于发射机功放非线性行为的辐射源个体识别方法,可以刻画辐射源发射机功放的弱记忆非线性行为。
针对单器件非线性参数特征不足以精细建模辐射源发射机的个体差异,研究了发射机正交调制器畸变和功放非线性行为联合建模的辐射源个体识别方法,得到的个体特征向量可以更好地刻画不同发射机差异。
考虑到难以精确建模和求解发射机中包含的所有模拟器件非线性行为,提出了一种基于自然测度的辐射源个体识别方法,将辐射源发射机整体视作一个非线性系统,直接提取发射机系统的非线性特征,可有效分辨不同的辐射源发射机个体。
3.基于统计学习的辐射源个体识别方法研究。
为避免辐射源个体特征提取过程中依赖人的主观经验导致的个体差异信息损失,研究了三种基于统计学习的辐射源个体识别方法。
基于信号暂态稀疏表示的辐射源个体识别方法,利用低维特征空间暂态稀疏表示,采用重构误差最小化原则训练特征提取器,并据此分辨新样本的辐射源类别属性。
基于残差原型网络的辐射源个体识别

差网络的识别方法 也' ($!) 在序列信号的识别中取得了很好
的效 果$另 外'池 化 辅 助 分 类 器 生 成 对 抗 网 络 !C6640./
2;c04021(542))0Q0+1 /+.+12*0R+ 23R+1)21024.+*A61D']NH=
和 ON9"($") 半监督特征提取的方 法 在 ($>) 解 决 小 样 本 问 题
被提出'并用于对G&Y 序列数据的识别分类'这些 方 法 利 用
深度学习的强大特征提取能力*自学习能力和相应的数据
处理方法使得分类性能得到了很大提升$针对序列信号的
特点 基于复数神经网络 '
!56,C4+c=R24;+3.+;124.+*A61D'
和 H799" 网络压缩的高效识别方法 以 ($&) 及基于深度复残
困难$
利用人工提取特征并设计分类器的辐射源个体识别方
法已经有了 大 量 研 究'如 通 过 希 尔 伯 特 黄 变 换!J04T+1*=
矩 形 积 分 双 谱 变 分 模 态 分 J;2./*12.)Q61,'JJE"(")*
* (>)
解 和差分星座轨迹图 (#)
!30QQ+1+.*02456.)*+442*06.*125+Q0/;1+'
AAA8)()=+4+856,
基于残差原型网络的辐射源个体识别
王春升$ 王永民许!华朱华丽
空军工程大学信息与导航学院陕西 西安 #<%%##
辐射源个体识别技术的发展现状及应用建议

电子信息对抗技术Electronic Information Warfare Technology2019,34(4) 中图分类号:TN971.1 文献标志码:A 文章编号:1674-2230(2019)04-0040-04收稿日期:2019-05-16;修回日期:2019-06-11作者简介:刘博(1977 ),男,博士,工程师㊂辐射源个体识别技术的发展现状及应用建议刘 博(海军91001部队,北京100063)摘要:辐射源个体识别(SEI )作为最重要的非合作识别手段,在传统分选识别技术很难处理的新型多功能雷达的目标识别领域表现出优异性能,在国外已经得到长期发展和广泛应用㊂首先介绍了美国在SEI 领域多年来的发展脉络,并对我国相关的技术方法进行了梳理和分类㊂最后对未来我军的SEI 发展提出了几点建议㊂关键词:辐射源个体识别;非合作识别;发展建议DOI :10.3969/j.issn.1674-2230.2019.04.008Development and Application Suggestion on Technologyof Specific Emitter IdentificationLIU Bo(Unit 91001of PLA,Beijing 100063,China)Abstract :As the most important non-cooperative means,Specific Emitter Identification (SEI)performs better than traditional technology which is hard to deal with multifunctional radar iden⁃tification.SEI develops in long term and is widely used abroad.Firstly,the develop venation is introduced in SEI area so many years in USA,and the correlation technology in our country is systemized and stly,several suggestions about development of SEI in the future are proposed.Key words :specific emitter identification;non-cooperative identificaion;development suggestion1 引言一直以来电子侦察识别作为最重要的非合作识别手段,在战场目标识别中发挥着不可替代的作用㊂电子侦察识别通过测量雷达重复周期㊁载频㊁脉宽㊁幅度等信号参数,处理后识别雷达型号㊁工作模式等目标信息,掌握电磁态势㊂然而随着雷达技术的迅猛发展,新型多功能雷达的信号样式变得越来越复杂,信号参数呈现出多变和不同模式间的参数交错,基于传统的电子侦察识别方法对于目标的识别变得愈加困难㊂不仅如此,为了能够准确地对目标进行干扰㊁打击,必须做到在目标集群条件下个体的区分,并能给出有效㊁实时战术决策,需要得到具有针对性的个体信息㊂为此,辐射源个体识别(SEI)技术应运而生,它能够准确提供有关敌方雷达配置㊁调动等重要的军事情报,具有广泛的应用前景㊂辐射源个体识别(SEI)技术利用雷达自身的无意调制信息对个体进行识别㊂SEI 装备可以接收远距离信号,具有识别准确率高㊁可全天时全天候工作等技术优势,可与其它识别手段相互配合,能够识别同型雷达的不同个体,具有对雷达辐射源唯一性识别的能力㊂4电子信息对抗技术㊃第34卷2019年7月第4期刘 博辐射源个体识别技术的发展现状及应用建议2 国外发展脉络 二战期间对于电报按键的识别可以作为个体识别的最早需求之一㊂美军SEI 技术的发展一直受到多部门机构重视,在不同时期的关键节点都有政府机关参与推动技术发展㊂2.1 美军技术发展与试验20世纪60年代后,美军为实现 对某一特定移动通信信号发射系统的识别㊁跟踪和定位”这一目标,对辐射源识别提出要求,并逐步发展形成SEI 的概念㊂美国海军研究实验室(NRL)是美国海军科研项目和先进技术开发的重要研究机构,早在1977年,便开始了SEI 技术的研究㊂在1986年,美国国防部制定 基于观测与特征的智能情报分析体系”(measurement and signature intelli⁃gence,MASINT),明确提出对射频辐射源个体的供电子系统㊁开关子系统的无意调制中所蕴含的特征进行研究㊂1993年,美国国家安全局意识到NRL 工作的重要性,开展了深入的研究,邀请多家来自工业和军方的实验室制定国家标准㊂之后,美国SEI 装备技术发展进入了快速阶段㊂美军针对SEI 装备和算法不断升级改进,并开展了一系列试验验证工作㊂1996年,美国海军进行的先进电子战技术项目(AEWT)中,SEI 技术是其研究的关键内容㊂后来,美国军方将改进的UYX-4SEI 系统搭载到TacSat-1进行测试试验,在TacSat-2上,通过进一步改进SEI 载荷并增加AIS 载荷等进行了目标识别试验,SEI 星载试验的成功标志着小型化㊁高可靠性装备研制走向成熟,如图1所示㊂图1 TacSat-2载荷美国军方2002年进行的 千年挑战”(MC -02)演习,作为SEI 设备能力以及军方一体化能力的典型的验证试验,意在测试军队未来面向网络中心战,使用更先进的武器和战术的能力,如图2示㊂2009年,在 三叉戟勇士2009”演习中,NRL 的 海上节目”项目得到好评,改进后的AN /SSX-1系统,展示了更高精度的定位和识别能力㊂美军于2004年设立 Specific Emitter ID”项目,目的是打造海陆空立体全方位SEI 侦察网络系统,实现信息融合与共享,这个项目一直持续到2016年㊂图2 美军 千年挑战2002”演习示意图2.2 美军列装装备示例美军一直高度重视对SEI 设备应用,联合包括Northrop Grumman㊁洛马㊁Condor㊁通用㊁Litton 等公司,在美军所有武装部队的船只㊁飞机㊁潜艇㊁卫星和地面平台上都已经安装SEI 设备㊂Northrop Grumman 公司一直与美国政府和海军进行密切合作㊂2003年,NRL 与洛马公司对安装了ALQ-217ESM 系统的E-2C 预警机进行SEI 升级改造,并推广至最新的改进型E-2C 鹰眼2000”和E-2D 预警机;2004年对P-3C 换装ALR-95ESM 系统,使其具备了SEI 能力㊂美国海军的新型广域海上无人机监视系统MQ-4C(基于RQ-4 全球鹰”平台)上的AN /ZLQ-1ESM 系统也具有SEI 功能的㊂洛马公司多次对美国海军新一代潜艇电子战系统AN /BLQ-10(V)系列进行升级改造(最近一次是2019年),并在窄带侦察分系统中集成SEI 设备,使其具备全频段侦察定位和SEI 能力㊂Condor 公司1995年与NRL 共同开发了SP-110信号处理器,同年6月被美国国家安全局确定为进行UMOP 采集的标准设备㊂14刘 博辐射源个体识别技术的发展现状及应用建议投稿邮箱:dzxxdkjs@美国海军通过Shipboard EW Improvements项目研发的AN/SSX-1系统满足了水面舰艇SEI能力需求,2002年被通用公司用于 水面电子战改进项目”(SEWIP)㊂由Litton公司研发的AN/SLQ-32(V)系统广泛用于美国海军的水面舰艇,70年代开始列装,后经不断改进,已具备SEI能力㊂通过与技术实力强大的企业联合,美军持续推动SEI技术和装备发展,并同步对现役装备进行升级改造,实现了技术能力与实战能力的结合与提升㊂3摇国内技术研究情况 我国在SEI技术研究方面起步较晚,目前SEI技术基础理论研究单位主要有国防科技大学㊁西安电子科技大学等高校和有关研究院所㊂技术研究方面可分为细微特征提取和分类器的设计㊂传统的特征提取是基于脉冲参数如PRI㊁RF 等和信号的样式匹配,这些量化后的特征无法精细表达个体差异;传统的分类器的设计是基于门限,而基于个体的信号差异很小,明显传统的门限设计已经无能为力㊂目前,典型的基于 指纹”特征方法包括:基于信号脉冲包络等常规检测方法,基于信号高阶谱㊁双谱㊁小波包分解等变换域方法㊁基于雷达模糊函数的特征统计方法等㊂对分类器的研究也取得了一定程度的进展,包括求基于原始数据的数据库规律的统计方法㊁SVM等机器学习方法等㊂ 指纹”特征的提取是实现个体识别最重要的环节㊂我们知道 指纹”特征产生原因主要是由于内部器件的电路特性㊁内部噪声特性等的细微差别,导致在发射信号上的无意调制㊂叶浩欢等在考虑多普勒效应的条件下,对工程中常用的脉内无意调频与无意调相特征进行了可分性比较,仿真实验以及多个实测雷达的个体识别试验结果显示,脉内无意调相特征对噪声的鲁棒性相对更强[1]㊂这为研究无意调制的个体识别提供了实验例证㊂例如,梁红等提出了基于调频指数特征的通信辐射源个体识别算法,利用调频指数参数的变化状态来识别辐射源[2]㊂一般情况下,不同的辐射源个体的频率稳定度也不尽相同,足够时间的信号测量可以得到频率的稳定度值,汪勇等在短时频率稳定度特征分析的FSK信号个体识别中就是利用了信号稳定度特征[3]㊂王磊等提出了基于模糊函数子空间特征优化的个体识别方法,对无意调制的雷达辐射源信号的进行模糊函数分析提取特征[4];王宏伟等提出基于脉冲包络前沿高阶矩特征的辐射源个体识别方法,以脉冲包络前沿波形的高阶矩特征作为辐射源的 指纹”特征,进行雷达辐射源个体识别[5];梁红海提出了一种基于经验模态分解通信辐射源个体识别方法,采用EMD方法提取杂散成分的频域特征作为信号的细微特征,运用支持向量机对多个通信辐射源个体进行分类识别[6]㊂总结以上方法的特点,一方面有些算法需要知道信号调制信息等先验知识,单个特征的使用往往不能完整表征辐射源个体信息;另一方面,有些特征在实际环境中可能容易受外部噪声或应用条件影响,必须对信号强度㊁环境信噪比㊁信号密度和质量等提出要求,限制条件较多;还有,不同的特征之间有重叠性也有互补性,应用时很难把握这些特征之间这种动态的㊁复杂的使用条件㊂对分类器的研究也有很多,如统计决策㊁模糊判决㊁神经网络㊁模式库匹配等机器学习方法,这些方法通过对历史数据的学习,自动总结个体间的信号差异实现个体识别,发现数据模式规律㊂陈沛铂等利用动态时间规整算法能够消除弯折现象所带来的不良影响,实现瞬时幅度以及瞬时频率的距离测度,实现雷达辐射源个体识别[7];史亚等利用机器学习提出一种基于核层面信息融合的雷达辐射源个体识别框架,获取支持向量机的分类超平面,最终实现对辐射源信号的分类[8];杨立明等提出先使Fisher判别主成份分析进行预选和降维,使用支持向量机进行训练识别,构建了可以识别辐射源威胁差异的分类器[9];蔡忠伟等采用选择双谱作为个体识别的基本特征向量,并融合了对分类具有显著贡献的辐射源特征参数,采用径向基神经网络分类器实现了对通信辐射源信号的个体分类识别[10]㊂设计分类器实现简单,识别速度快,但是其缺点是对先验知识的依赖性很强,对于参数不全㊁参数畸变等许多新体制的雷达无能为力;利用专家24电子信息对抗技术㊃第34卷2019年7月第4期刘 博辐射源个体识别技术的发展现状及应用建议系统的分析经验来形成的推理规则的识别技术,需要专家深入地对海量数据分析,处理结果就有较强的主观性,并对处理的实时性带来影响,不利于一体化建设㊂4 研究建议 鉴于以上现状,对后续的发展和研究有以下方面的需求和建议㊂4.1 SEI数据标准单个设备作用范围和侦察的目标有限,多个装备的海量数据联合应用㊁并协同工作成为今后的发展趋势㊂为了能够保证不同设备间数据及时地共享㊁数据库互联互通,必须需要一个统一的算法架构㊁数据格式㊁通信标准,保证识别结果的实时性和准确性㊂统一的软硬件处理架构还可以降低研制成本和后期维护成本,并进一步做到设备维护的规范,包括采用标准总线㊁标准接口等,物理尺寸能够兼容和互换㊂4.2 数据库的建立和管理基于海量数据统一构建的数据库利于多装备一体化和高效的识别㊂装载在不同平台上的各种传感器获得了海量的目标数据,建立一套完整㊁流畅㊁高效的处理和管理方法,使得这些数据准确㊁全面地得到分析和标注,进而积淀成为可以普及应用的识别库和知识库,对于应用来说是极其重要的一环㊂同时,还需要统一维护数据库的标准㊁并制定灵活㊁开放㊁兼容性强的数据库规范,因为对于数据库管理,不同规则库间的融合开销很大,统一的数据库建立㊁修改㊁排列和融合等管理体系可以使得查找㊁匹配和关联的效率大大提高㊂4.3 与人工智能技术的结合除了数据库构建㊁新特征的提取和分类器的设计对SEI设备性能影响极大,现有识别模型也存在特征分类性能不稳定㊁适应性不足问题㊂如前文所述,只有结合更多特征才能在复杂电磁环境中完备地表示个体信息,设计更加针对性的机器学习方法㊂深度学习方法已经在图像检测识别领域取得十分显著的成果,应用广泛,而在SEI领域由于输入数据和信号产生机理的不同,还没有有效地进行实践㊂因此,利用基于原始数据的深度学习方法提取更多信号特征,是未来解决大数据处理和消除冗余的关键,具有十分巨大的潜在价值㊂5 结束语 本文介绍了辐射源个体识别(SEI)起源,国外SEI技术研究㊁装备发展及国内技术研究现状,综述了目前SEI装备在细微特征提取㊁分类器设计方法及识别算法等方面存在的问题,最后提出SEI技术发展研究建议,希望对相关技术人员的研究和实际解决问题提供帮助㊂参考文献:[1] 叶浩欢,柳征,姜文利.考虑多普勒效应的脉冲无意调制特征比较[J].电子与信息学报,2012,34(11):2654-2659.[2] 梁红,骆振兴,楼才义.基于调频指数特征的通信辐射源个体识别[J].杭州电子科技大学学报,2011,31(4):77-79.[3] 汪勇,段田东,刘瑞东,等.短时频率稳定度特征分析的FSK信号个体识别[J].太赫兹科学与电子信息学,2013,11(6):880-885.[4] 王磊,姬红兵,史亚.基于模糊函数特征优化的雷达辐射源个体识别[J].红外与毫米波学报,2011,30(1):74-79.[5] 王宏伟,赵国庆,王玉军.基于脉冲包络前沿高阶矩特征的辐射源个体识别[J].现代雷达,2010,32(10):42-45.[6] 梁江海,黄知涛,袁英俊,等.一种基于经验模态分解的通信辐射源个体识别方法[J].中国电子科学研究院学报,2013,8(4):393-397.[7] 陈沛铂,李纲.辐射源个体识别中的模板分段寻优算法[J].现代雷达,2016,38(3):43-46. [8] 史亚,姬红兵,朱明哲,等.多核融合框架下的雷达辐射源个体识别[J].电子与信息学报,2014,36(10):2484-2490.[9] 杨立明,哈章,杨晓蓉,等.辐射源个体识别中分类器应用[J].空军工程大学学报(自然科学版),2012,13(1):28-32.[10] 蔡忠伟,李建东.基于双谱的通信辐射源个体识别[J].通信学报,2007,28(2):75-79.34。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a ay i a d s mm a z d F n l , h r b e fe it g e ta t n t c n q sa e p e e t d swela o s l n l s n u s i r e . i a y t e p o l mso s n x r ci e h i ue r r s n e ,a l sp si e l x i o b f t r e e r h d r ci n f n i i u e t c t n t c o o . u u e r s a c i t so dv d a i n i a i e hn l g e o i l d i f o y Ke wo ds i dv d a au e f a r x r ci n;f e fa r ; S y r : n i u f t r ; e t e e ta to i l e u i t e n eu EI
2’ 0 2年 7月 繁7 m
I
电 子 测
试
E E RONI E T L CT C T s
J . o1 H1 2 2 N o. 7
通信工程学院 ,安徽合肥 203 ) 3 07
摘要:个体特征选择和提取是辐射源个体识别的关键, 直接决定分类识别性能的好坏。由于在实际工程
术未来可能的研究方面。 关键词:个体特征 ;特征提取 ;细微特征 ;指纹识别
中 图分类 号 : N 7 T 9 文 献标识 码 : A
O ve v e ft a m it ri i i ua e t e e r c i n r i w o ns te nd v d lf a ur xt a to r t c ni e h que s
应用中, 利用暂态特征进行通信辐射源个体识别难以实现 , 文从稳态特征出发, 本 对通信辐射 源个体特 征提取技术进行了综述 , 对特征的产生机理、 在信号传播过程中所受到的污染以及在实际工程应用中的 可行性做了归纳与分析。 最后, 指出了目 前通信辐射源个体特征提取技术存在的问题, 展望了个体识别技
Pn J nag eg i hn a
( f l t nc n ier gIstt, fi 3 0 7 C ia HeeEe r i E gn ei tue Hee2 0 3 , hn ) i co n ni
Ab ta t s r c :Fe t r x r c i n i he k y t r n m it r i d v d a d n i c to e h o o y, d t r i e t e a u e e t a to s t e O ta s te n i i u li e t a i n t c n l g i f eem n h p ro a c f t lsi c t n a d i e t c t n n p a t a n i e r g a p i ai n ti d f c l t c i v ef r n e o m he ca s a i n d n i ai .I r ci l e gn e i p l t ,i s i u t O a h e e i f o i f o c n c o f i
模式等。然而,通信信号侦察技术在现代战争中的
地位不断提高, 对那些由 而导致的并表现在发射信号中的物理量逐渐被人们 关注。如何通过提取和分析这些附加调制在发射信 号 上的不影响信息传递、 可检测、可重现、相对稳定
的物理量 ( 细微特征 ) 来区别不同的通佶发身初硬件 寸
e ii g t c n q e fta s t ri d v d a f au e e ta t n a e r v e d he s u c ft e i d v d a e t r , x t e h i u so n mit n i i u e t r x r c i r e iwe ,t o r e o n i i u lfa u e n r e l o h
t e p l to O t e f au e i h o h o l i n t h e t r n t e c mm u ia i n a d t e f ai i t n t e p a t a n i e rn p l ai n a e u n c to n h e s l y i h r ci l e g n e g a p i to r bi c i c
( )器件加工过程 中的工艺缺陷造成器件技 2 术指标与标称值的偏差 ; () 3 装备在设计、生产过程中的个体差异 ; ( )设备在使 用过程 中老化 ,器件性 能变 差 4 等因素的影响 ; ( ) 带信号 : 5基 基带信号 中含有信息特征和 非信息特征 以及 由于数学模 型的偏差 / 近似、元
S eicE t r dnic七 nS )wi as n etr. rm ed —tt seto ercie g a,h p c mie e tiai ( i f t I f o EI t t ni t aue Fo s a y s ea c ft ee d s n te hr e f t a p h v i l
设计 与研发
() 1 现有数学模 型对电磁现象的抽象 ( 别 特
0 引 言
传统的通信信号侦察往往围绕通信电台传递的
有效信息的获取或分析进 即使人们获得中频和射 频 则 的物理信息,以便得到信号的频率, 调制
的对非线性器件 的逼近 )与近似与实际情况不完
全 相符 所造成 的偏 差 ;