2021届高考数学一轮复习第五章数列第二节等差数列及其前n项和课件文北师大版20210219163

合集下载

2021高考数学一轮复习第五章数列第2节等差数列及其前n项和练习

2021高考数学一轮复习第五章数列第2节等差数列及其前n项和练习

第2节 等差数列及其前n 项和[A 级 基础巩固]1.(一题多解)(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:法一 设等差数列{a n }的公差为d ,依题意⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,解得d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8, 所以d =4,故选C. 答案:C2.(2020·安阳联考)在等差数列{a n }中,若a 2+a 8=8,则(a 3+a 7)2-a 5=( ) A .60 B .56 C .12D .4解析:因为在等差数列{a n }中,a 2+a 8=8,所以a 2+a 8=2a 5=8,解得a 5=4,(a 3+a 7)2-a 5=(2a 5)2-a 5=64-4=60.答案:A3.已知等差数列{a n }的前n 项和为S n ,S 2=3,S 3=6,则S 2n +1=( ) A .(2n +1)(n +1) B .(2n +1)(n -1) C .(2n -1)(n +1)D .(2n +1)(n +2)解析:设等差数列{a n }的公差为d , 则2a 1+d =3,3a 1+3d =6,所以a 1=d =1,则a n =1+(n -1)×1=n .因此S 2n +1=(2n +1)(1+2n +1)2=(2n +1)(n +1).答案:A4.(2020·宜昌一模)等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( )A .a 7=0B .|a 7|=|a 8|C .|a 7|>|a 8|D .|a 7|<|a 8|解析:因为公差d >0,(S 8-S 5)(S 9-S 5)<0, 所以S 9>S 8,所以S 8<S 5<S 9,所以a 6+a 7+a 8<0,a 6+a 7+a 8+a 9>0, 所以a 7<0,a 7+a 8>0,|a 7|<|a 8|. 答案:D5.中国古诗词中,有一道“八子分棉”的数学名题:“九百九十六斤棉,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤棉分给8个儿子作盘缠,按照年龄从大到小的顺序依次分棉,年龄小的比年龄大的多17斤棉,那么第8个儿子分到的棉是( )A .174斤B .184斤C .191斤D .201斤解析:用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的棉数, 由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996, 所以8a 1+8×72×17=996,解得a 1=65.所以a 8=65+7×17=184,即第8个儿子分到的棉是184斤. 答案:B6.(2019·江苏卷)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设数列{a n }的公差为d , 则⎩⎪⎨⎪⎧(a 1+d )(a 1+4d )+a 1+7d =0,9a 1+9×82d =27, 解得a 1=-5,d =2,所以S 8=8×(-5)+8×72×2=16.答案:167.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:2008.在等差数列{a n }中,若a 7=π2,则sin 2a 1+cos a 1+sin 2a 13+cos a 13=________.解析:根据题意可得a 1+a 13=2a 7=π, 2a 1+2a 13=4a 7=2π,所以有sin 2a 1+cos a 1+sin 2a 13+cos a 13= sin 2a 1+sin(2π-2a 1)+cos a 1+cos(π-a 1)=0. 答案:09.各项均不为0的数列{a n }满足a n +1(a n +a n +2)2=a n +2a n ,且a 3=2a 8=15.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .(1)证明:依题意得,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,故1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2. (2)解:由(1)可知b n =a n 2n +6=12·1(n +2)(n +3)=12⎝ ⎛⎭⎪⎫1n +2-1n +3,故S n =12⎝ ⎛⎭⎪⎫13-14+14-15+…+1n +2-1n +3=n 6(n +3). 10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110. (1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n . (1)解:设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2.[B 级 能力提升]11.(2020·珠海联考)已知数列{a n }中,a 1=1,S n +1S n =n +1n,则数列{a n }( ) A .既非等差数列,又非等比数列 B .既是等差数列,又是等比数列 C .仅为等差数列 D .仅为等比数列 解析:数列{a n }中,S n +1S n =n +1n ,则S n S n -1=nn -1(n ≥2), 则S n =S n S n -1×S n -1S n -2×…×S 2S 1×S 1=n n -1×n -1n -2×…×21×1=n (n ≥2),当n =1时,S 1=a 1=1符合,则当n ≥2时,a n =S n -S n -1=n -(n -1)=1,当n =1时,a 1=1符合,故a n =1(n ∈N *),则数列{a n }为非零的常数列,它既是等差数列,又是等比数列. 答案:B12.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:设等差数列{a n }的公差为d ,因为a 2=-3,S 5=-10,所以⎩⎪⎨⎪⎧a 1+d =-3,5a 1+5×42d =-10, 即⎩⎪⎨⎪⎧a 1+d =-3,a 1+2d =-2,得⎩⎪⎨⎪⎧a 1=-4,d =1,所以a 5=a 1+4d =0,S n =na 1+n (n -1)2d =-4n +n 2-n 2=12(n 2-9n )=12⎝ ⎛⎭⎪⎫n -922-818,因为n ∈N *,所以n =4或n =5时,S n 取最小值,最小值为-10. 答案:0 -1013.已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列; (2)设a 1=d ,T n =∑k =02n(-1)k b 2k,n ∈N *,求证:∑k =0n1T k <12d 2.证明:(1)由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2n =a n +1·a n +2-a n a n +1=2da n +1,因此c n +1-c n =2d (a n +2-a n +1)=2d 2,所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n ) =2d (a 2+a 4+…+a 2n ) =2d ·n (a 2+a 2n )2=2d 2n (n +1).所以∑k =0n1T k =12d 2∑k =0n 1k (k +1)=12d 2∑k =0n ⎝ ⎛⎭⎪⎫1k -1k +1=12d 2·⎝ ⎛⎭⎪⎫1-1n +1<12d2. [C 级 素养升华]14.(多选题)已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则( ) A .a 6+a 7=4 B .a 6+a 7=12 C .a 6a 7≥4D .a 6a 7≤4解析:在等差数列{a n }中,因为S 12=6(a 6+a 7)=24, 所以a 6+a 7=4.又a 6>0,a 7>0,所以a 6a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.故选AD. 答案:AD。

高考数学大一轮总复习 第五章 数列 5.2 等差数列及其前n项和课件 理 北师大版

高考数学大一轮总复习 第五章 数列 5.2 等差数列及其前n项和课件 理 北师大版

变式训练1 (1)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=
0,Sm+1=3,则m=( )
B. 2
C.10 解析
D.12 ∵公差 d=1,S8=4S4,∴8a1+ 2 a8=4×4a21+a4,
即 2a1+7d=4a1+6d,解得 a1=12。
∴a10=a1+9d=12+9=129。
答案 B
4.(2016·宜春模拟)已知数列{an}的通项公式为an=3n-2(n∈N+),则
a3+a6+a9+a12+a15=( )
2.等差数列的有关公式
(1)通项公式:an=__a_1+__(_n_-__1_)_d______。 (2)前 n 项和公式:Sn=__n_a_1+__n__n_2-__1__d_=__a_1_+_2_a_n_n__。 3.等差数列的常用性质 (1)通项公式的推广:an=am+ (n-m) d,(n,m∈N+)。 (2) 若{an}为等差 数列, 且 k+l= m+ n, (k, l, m,n ∈ N+) ,则 ___a_k+__a_l_=__am_+__a_n_____。
B.10 D.14
【解析】 (1)因为 S3=3a1+3×23-1d=3×2+3×2 2d=12,所以 d =2。所以 a6=a1+(6-1)d=2+5×2=12。
【答案】 C
(2)(2015·浙江卷)已知{an}是等差数列,公差d不为零。若a2,a3,a7成 2
等比数列,且2a1+a2=1,则a1=___3_____,d=____-__1__。 【解析】 由题意得2a23a=1+aa2·2a=7,1, 即2aa11++2ad1+2=d=a11+,d·a1+6d,
A.120
B.125
C.130

2021高考数学一轮复习第6章数列第2节等差数列及其前n项和课件文北师大版

2021高考数学一轮复习第6章数列第2节等差数列及其前n项和课件文北师大版


1 a1
=1,因此数列
1
an
是首项为1,公差为2的等差数列,所以
a1n=1+2(n-1)=2n-1,
所以an=2n1-1.]
39
2.在数列{an}中,a1=2,an是1与anan+1的等差中项. 求证:数列an-1 1是等差数列,并求{an}的通项公式.
40
[证明] 由题意知2an=1+anan+1, ∴an+11-1-an-1 1 =aan-n+11--1aan+n-1-11 =an+1·ana-n-ana+n1+-1 an+1=2ana-n-ana+n1+-1 an=1. 又a1=2,a1-1 1=1, ∴数列an-1 1是首项为1,公差为1的等差数列.
[答案](1)× (2)√ (3)√ (4)×
12
二、教材改编
1.等差数列11,8,5,…中,-49是它的( )
A.第19项
B.第20项
C.第21项
D.第22项
C [由题意知an=11+(n-1)×(-3)=-3n+14,令-3n+14 =-49得n=21,故选C.]
13
2.在等差数列{an}中a1=14.5,d=0.7,an=32,则Sn=( )
等差中项 2an-1=an+an-2(n≥3,n∈N*)成立⇔{an}是 法 等差数列
适合题型
解答题中 证明问题
30
通项公式 an=pn+q(p,q为常数)对任意的正整数n都成 选择、填
法 立⇔{an}是等差数列
空题中的
前n项和公 验证Sn=An2+Bn(A,B是常数)对任意的正整 判定问题
式法 数n都成立⇔{an}是等差数列
4
课前自主回顾
5
1.等差数列的有关概念

高考数学统考一轮复习 第五章 数列 第二节 等差数列及其前n项和(教师文档)教案 文 北师大版

高考数学统考一轮复习 第五章 数列 第二节 等差数列及其前n项和(教师文档)教案 文 北师大版

学习资料第二节 等差数列及其前n 项和授课提示:对应学生用书第92页[基础梳理]1.等差数列的有关概念(1)定义: ①文字语言:从第2项起,每一项与它的前一项的差都等于同一个常数. ②符号语言:a n +1-a n =d (n ∈N +,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =错误!,其中A 叫作a ,b 的等差中项.2.等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+错误!d =错误!.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.1.两个重要技巧(1)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d 。

(2)若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.2.三个必备结论(1)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,错误!=错误!.(2)若等差数列{a n }的项数为奇数2n +1,则①S 2n +1=(2n +1)a n +1;②S 奇S 偶=错误!. (3)在等差数列{a n }中,若a 1>0,d <0,则满足错误!的项数m 使得S n 取得最大值S m ;若a 1<0,d >0,则满足错误!的项数m 使得S n 取得最小值S m 。

2021届高三数学总复习第一轮——等差数列

2021届高三数学总复习第一轮——等差数列

等差数列高考大纲思维导图讲义导航知识梳理一、等差数列的定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示二、等差数列的通项公式等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.三、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).四、等差数列的求和公式等差数列的前n项和公式等差数列的前n项和的公式:①()12nnn a aS+=;②()112nn nS na d-=+.五、等差数列最值求解等差数列前n项和的最值问题可转化为项的正负问题,也可转化为二次函数最值问题.例题讲解一、等差数列定义的理解例1.下面数列中,是等差数列的有( ) ①4,5,6,7,8…②3,0,-3,0,-6,…③0,0,0,0…④110,210,310,410,… A .1个 B .2个C .3个D .4个例2.下列数列中不是等差数列的为( ) A.0,0,0,0,0 B.0,1-,2-,3-,4- C.2,3,4,5,6 D.0,1,2,1,0二、等差数列通项公式例1.在等差数列{}n a 中,已知32a =,5815a a +=,则10(a = ) A .64 B .26C .18D .13例2.在等差数列{}n a 中,214a =,55a =,则公差(d = )A .2-B .3-C .2D .3例3.已知{}n a 是等差数列,124a a +=,7828a a +=,则公差等于( ) A .2 B .4 C .6 D .8三、等差数列的性质例1.等差数列{}n a 中,已知21016a a +=,则468(a a a ++= ) A .16 B .20 C .24 D .28例2.等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值是( )A .14B .15C .16D .17例3.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是( )A .(2,4)B .(,2)-∞C .(2,)+∞D .(4,)+∞四、等差数列的求和公式例1.已知等差数列{}n a 的前n 项和为n S ,若33S a =,且30a ≠,则43(S S = ) A .1B .53C .83D .3例2.等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项的和9S 等于( ) A .99 B .66C .144D .297例3.设{}n a 是任意等差数列,它的前n 项和、前2n 项和与前4n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .23X Z Y +=B .44X Z Y +=C .237X Z Y +=D .86X Z Y +=六、等差数列最值求解例1.已知等差数列{}n a 中,39a a =,公差0d <,则使其前n 项和n S 取得最大值的自然数n 是( ). A.4或5 B.5或6 C.6或7 D.不存在例2.设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值_______.例3.在各项均为正数的等比数列{a n }中,214a =,且a 4+a 5=6a 3.练习A1.下列说法中正确的是( )A.若a ,b ,c 成等差数列,则222,,a b c 成等差数列B.若a ,b ,c 成等差数列,则222log ,log ,log a b c 成等差数列C.若a ,b ,c 成等差数列,则a+2,b+2,c+2成等差数列D.若a ,b ,c 成等差数列,则2,2,2a b c 成等差数列2.已知下列各数列,其中为等差数列的个数为( ) 1 4,5,6,7,8,... 2 3,0,-3,0,-6,... 3 0,0,0,0, (4)1234,,,,10101010… A.1 B.2C.3D.43.已若{}n a 是等差数列,则由下列关系确定的数列{}n b 也一定是等差数列的是( )A. 2n n b a =B. 2n n b a n =+C. 1n n n b a a +=+D. n n b na =4.已知数列{}n a 为等差数列,且39a =,53a =,则9a 等于( )A .9-B .6-C .3-D .275.已知等差数列{}n a 中,1232a a a ++=,3456a a a ++=,则91011a a a ++的值为( ) A .18 B .16 C .14 D .126.等差数列{}n a 中,若46101290a a a a +++=,则10141(3a a -= )A .15B .30C .45D .607.等差数列{}n a 中,31a =-,1117a =-,则7a 等于( )A .9-B .8-C .92-D .4-8.在等差数列{}n a 中,公差为12,1359960a a a a +++⋯+=,则246100(a a a a +++⋯+= ) A .60 B .70 C .75 D .859.已知等差数列{}n a 满足12910a a a ++⋯+=,则有( )A .3890a a +=B .2900a a +<C .1910a a +>D .4646a =10.已知数列{}n a 为等差数列,且17132a a a π++=,则7tan (a = )A.BC. D.11.已知0a >,0b >,并且1a ,12,1b成等差数列,则9a b +的最小值为( ) A .16 B .9C .5D .412.等差数列{}n a 中,已知21016a a +=,则468(a a a ++= ) A .16 B .20C .24D .2813.在等差数列{}n a 中,若4681012120a a a a a ++++=,则10122a a -的值为( ) A .20 B .22C .24D .2814.等差数列{}n a 中,156a a +=,65a =,那么9a 的值是( ) A .7- B .7 C .113-D .11315.已知等比数列{}n a 中,各项都是正数,且1321,,22a a a 成等差数列,则8967a a a a ++等于( )A.1+B.1-C.3+D.3-16.已知等差数列{}n a 的前n 项和为n S ,若33S a =,且30a ≠,则43(S S = ) A .1B .53C .83D .317.设等差数列{}n a 的前n 项和n S ,若4104a a +=,则13(S = ) A .13 B .14C .26D .5218.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5(S = ) A .5 B .7C .9D .1019.在等差数列{}n a 中,若351024a a a ++=,则此数列的前13项的和等于( ) A .8 B .13C .16D .2620.在等差数列{}n a 中,若14739a a a ++=,36927a a a ++=,则9(S = ) A .66 B .99C .144D .29721.已知{}n a 为等差数列,n S 为其前n 项和.若312S =,244a a +=,则6(S = ) A .6 B .12C .15D .1822.等差数列{}n a 前n 项和为n S ,111a =-,466a a +=-.则当n S 取最小值时,(n = ) A .6 B .7C .8D .923.数列{}n a 的通项公式为2328n a n n =-,则数列{}n a 各项中最小项是( )A .第4项B .第5项C .第6项D .第7项24.已知数列{}n a 是等差数列,若91130a a +<,10110a a <,且数列{}n a 的前n 项和n S 有最大值,那么当n S 得最小正值时,n 等于( ) A .20 B .17 C .19 D .2125.已知n S 是等差数列*{}()n a n N ∈的前n 项和,且564S S S >>,以下有四个命题:①数列{}n a 中的最大项为10S ②数列{}n a 的公差0d < ③100S >④110S <其中正确的序号是( )A .②③B .②③④C .②④D .①③④26.在等差数列{}n a 中,128a =-,公差4d =,若前n 项和n S 取得最小值,则n 的值为( ) A .7 B .8C .7或8D .8或927.数列{}n a 是首项为111a =,公差为2d =-的等差数列,那么使前n 项和n S 最大的n 值为( ) A .4 B .5C .6D .7练习B1.设{}n a 为等差数列,则下列数列中,成等差数列的个数为( )①2{}na ②{}n pa ③{}n pa q + ④{}(n na p 、q 为非零常数) A .1 B .2C .3D .42.等差数列{}n a 的公差0d >,前n 项和为n S ,则对2n >时有( ) A .1nn S a a n<< B .1nn S a a n <<C .1n n Sa a n<<D .1,,n n Sa a n的大小不确定3.设等差数列{}n a 的前n 项和为n S ,在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )A .当4n =时,n S 取得最大值B .当3n =时,n S 取得最大值C .当4n =时,n S 取得最小值D .当3n =时,n S 取得最小值4.已知数列{}n a 是等差数列,n S 为其前n 项和.若3916S S =,则612(S S = )A .110B .310C .510D .7105.设等差数列{}n a 的前n 项和为n S ,且满足100S >,110S <,则下列数值最大的是( )A .4SB .5SC .6SD .7S6.等差数列{}n a 与{}n b 的前n 项和分别为n S 与n T ,若3221n n S n T n -=+,则77(ab = ) A .3727B .3828C .3929D .40307.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为( ) A .10 B .12 C .14 D .168.已知点(n ,*)()n a n N ∈都在直线3240x y --=上,那么在数列n a 中有79(a a += )A .790a a +>B .790a a +<C .790a a +=D .790a a =9.已知等差数列{}n a 满足3243a a =,则{}n a 中一定为零的项是( )A .6aB .8aC .10aD .12a10.在等差数列{}n a 中,15a =,470a a +=,则数列{}n a 中为正数的项的个数为( ) A .4 B .5 C .6 D .711.已知数列{}n a 中,132(3n n a a ++= *)n N ∈,且356820a a a a +++=,那么10a 等于( ) A .8 B .5 C .263D .712.若等差数列{}n a 的公差为d ,前n 项和为n S ,记nn S b n=,则( ) A .数列{}n b 是等差数列,{}n b 的公差也为dB .数列{}n b 是等差数列,{}n b 的公差为2dC .数列{}n n a b +是等差数列,{}n n a b +的公差为dD .数列{}n n a b -是等差数列,{}n n a b -的公差为2d13.等差数列{}n a 中,已知113a =,254a a +=,33n a =,则n 为( )A .48B .49C .50D .5114.若等差数列的首项是24-,且从第10项开始大于零,则公差d 的取值范围是( )A .83d > B .3d < C .833d < D .833d <15.在数列{}n a 中,若1332()n n a a n N +=+∈,且247920a a a a +++=,则10a 为( ) A .5 B .7C .8D .1016.等差数列{}n a 前n 项和为n S ,111a =-,466a a +=-.则当n S 取最小值时,(n = ) A .6 B .7C .8D .917.在各项均为正数的等比数列{}n a 中,63a =,则48(a a += )A .有最小值6B .有最大值6C .有最大值9D .有最小值318.已知实数序列1a ,2a ,⋯,n a 满足:任何连续3项之和均为负数,且任何4项之和均为正数,则n 的最大值是( ) A .4 B .5C .6D .719.已知n S 是等差数列*{}()n a n N ∈的前n 项和,且564S S S >>,以下有四个命题:①数列{}n a 中的最大项为10S ②数列{}n a 的公差0d < ③100S >④110S <其中正确的序号是( )A .②③B .②③④C .②④D .①③④20.已知各项均为正数的等比数列{}n a 中,如果21a =,那么这个数列前3项的和3S 的取值范围是( )A .(-∞,1]-B .[1,)+∞C .[2,)+∞D .[3,)+∞21.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ,下列四个命题中,假命题是( )A .公差d 的最大值为2-B .70S <C .记n S 的最大值为K ,K 的最大值为30D .20162017a a >练习C1.已知||0x y >>.将四个数,,x x y x y -+( )A .当0x >时,存在满足已知条件的x ,y ,四个数构成等比数列B .当0x >时,存在满足已知条件的x ,y ,四个数构成等差数列C .当0x <时,存在满足已知条件的x ,y ,四个数构成等比数列D .当0x <时,存在满足已知条件的x ,y ,四个数构成等差数列2.等差数列{}n a 的公差0d >,前n 项和为n S ,则对2n >时有( )A .1nn S a a n<< B .1nn S a a n<<C .1nn S a a n<< D .1,,nn S a a n的大小不确定3.设等差数列{}n a 的前n 项和为n S ,在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )A .当4n =时,n S 取得最大值B .当3n =时,n S 取得最大值C .当4n =时,n S 取得最小值D .当3n =时,n S 取得最小值4.等差数列,的前项和分别为,,若,则 A . B .C .D .5.在等差数列中,,其前项和为,若,则 A . B .C .2008D .20096.设为等差数列,则下列数列中,成等差数列的个数为① ② ③ ④、为非零常数) A .1 B .2 C .3 D .47.设表示等差数列的前项和,已知,那么等于 A .B .C .D .8.等差数列中,,,则该数列前项之和为{}n a {}n b n n S n T 231n n S n T n =+(n na b =)232131n n --2131n n ++2134n n -+{}n a 12007a =-n n S 20082006220082006S S -=2009(S =)2009-2008-{}n a ()2{}na {}n pa {}n pa q +{}(n na p q n S {}n a n 51013S S =1020SS ()193101813{}n a 1m a k =1()k a m k m=≠mk ()A .B .C .D .9.设数列为等差数列,其前项和为,已知,,若对任意,都有成立,则的值为A .22B .21C .20D .1910.设等差数列的公差为,前项和为.若,则的最小值为 A .10 B .C .D .二.填空题(共2小题) 11.在等差数列中,,若它的前项和有最大值,则使取得最小正数的 19 .12.已知两个等差数列、的前项和分别为和,若,则使为整数的正整数的个数是 5个 .课后练习1.等差数列中,若,则 .2.设等差数列的前项和为,若,,则 0 ,的最小值为 .3.等差数列中,,,则取最大值时, 6或7 .4.已知等差数列的前项和为,能够说明“若数列是递减数列,则数列是递减数列”是假命题的数列的一个通项公式为 (答案不唯一) .5.设等差数列的前项和为,若,,则数列的公差等于 .6.若等差数列满足,则12mk-2mk12mk +12mk+{}n a n n S 14799a a a ++=25893a a a ++=*n N ∈n k S S k (){}n a d n n S 11a d ==8n nS a +()927212+{}n a 11101a a <-n n S n S n ={}n a {}n b n n A n B 7453n n A n B n +=+n na b {}n a 31110a a +=678a a a ++={}n a n n S 23a =-510S =-5a =n S {}n a 10a >49S S =n S n ={}n a n n S {}n a {}n S {}n a 27n a n =-+{}n a n n S 1122S =71a ={}n a 1-{}n a 1461,52a a a =+=2019a =20192二.解答题(共3小题)7.在等差数列中,已知,,. (Ⅰ)求数列的通项公式; (Ⅱ)求.8.设等差数列满足,. (1)求的通项公式;(2)求的前项和及使得最大的序号的值.9.已知为等差数列,,. ( I ) 求数列的通项公式以及前项和. (Ⅱ)求使得的最小正整数的值.{}n a 1312a a +=2418a a +=*n N ∈{}n a 3693n a a a a +++⋯+{}n a 35a =109a =-{}n a {}n a n n S n S n {}n a 112a =-562a a ={}n a n n S 14n S >n。

数学一轮复习第五章数列第2讲等差数列及其前n项和学案含解析

数学一轮复习第五章数列第2讲等差数列及其前n项和学案含解析

第2讲等差数列及其前n项和[考纲解读]1。

理解等差数列的概念及等差数列与一次函数的关系.(重点)2.掌握等差数列的通项公式与前n项和公式,并熟练掌握其推导方法,能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.(重点、难点)[考向预测]从近三年高考情况来看,本讲一直是高考的热点.预测2021年高考将会以等差数列的通项公式及其性质、等差数列的前n项和为考查重点,也可能将等差数列的通项、前n项和及性质综合考查,题型以客观题或解答题的形式呈现,试题难度一般不大,属中档题型.1.等差数列的有关概念(1)定义:一般地,如果一个数列从错误!第2项起,每一项与它前一项的错误!差都等于错误!同一个常数,那么这个数列就叫做等错误!公差,通常用字母d表示.数学语言表示为错误!a n+1-a n=d(n∈N*),d为常数.(2)等差中项:若a,A,b成等差数列,则A叫做a和b的等差中项,且A=错误!错误!.2.等差数列的通项公式与前n项和公式(1)若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=错误!a1+(n-1)d,可推广为a n=a m+错误!(n-m)d(n,m∈N*).(2)等差数列的前n项和公式S n=n a1+a n2=错误!na1+错误!d(其中n∈N*).3.等差数列的相关性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)等差数列{a n}中,当m+n=p+q时,错误!a m+a n=a p+a q (m,n,p,q∈N*).特别地,若m+n=2p,则错误!2a p=a m+a n(m,n,p∈N*).(2)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为错误!md(k,m∈N*).(3)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为错误!n2d。

(4)错误!也成等差数列,其首项与{a n}首项相同,公差为错误!错误! d。

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理

高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理
第十页,共四十三页。
考点(kǎo di等ǎn)差1数列的基本(jīběn)运算 例 1:(1)(2017 年新课标Ⅰ)记 Sn为等差数列(děnɡ chā shù liè){an}的前n项 和.若a4+a5=24,S6=48,则{an}的公差为( )
第十一页,共四十三页。
解析:方法一,设公差为 d,a4+a5=a1+3d+a1+4d=2a1 +7d=列{an}的前 n 项和为 Sn,a1=15,且满足2ann-+13=
2na-n 5+1,已知 n,m∈N*,n>m,则 Sn-Sm 的最小值为(
第2讲 等差数列(děnɡ chā shù liè)
第一页,共四十三页。
1.理解(lǐjiě)等差数列的概念.
2.掌握等差数列的通项公式与前n项和公式. 3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解
决相应的问题.
4.了解等差数列与一次函数的关系.
第二页,共四十三页。
1.等差数列的定义
7.等差数列的最值
在等差数列{an}中,若a1>0,d<0,则Sn存在最大值;若
a1<0,d>0,则Sn存在(cúnzài)最_小_____值.
第六页,共四十三页。
1.(2015 年重庆(zhònɡ qìnɡ))在等差数列{an}中,若a2=4,a4=2,则a6 =( B )
A.-1
第七页,共四十三页。
第十六页,共四十三页。
考点(kǎo diǎ等n) 差2 数列的基本性质(xìngzhì)及应用 例2:(1)已知等差数列{an}的前n项和为Sn,若S10=1,S30=5,则S40 =( ) A. 思路点拨:思路1,设等差数列{an}的首项为a1,公差为d,根据 (gēnjù)题意列方程组求得a1,d,进而可用等差数列前n项和公式求S40; 思路2,设{an}的前n项和Sn=An2+Bn,由题意列出方程组求得A, B,从而得Sn,进而得S40;

2023年新教材高考数学一轮复习第五章数列第二节等差数列课件

2023年新教材高考数学一轮复习第五章数列第二节等差数列课件

[提速度]
1.(2022·枣庄质检)已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,
所有偶数项之和为290,则该数列的中间项为
()
A.28
B.29
C.30
D.31
解析:由结论(8),设项数为奇数2n-1,S奇-S偶=an=319-290=29, 故选B.
答案:B
2.已知Sn是等差数列{an}的前n项和,若a1=-2 020,2S2002200 -2S2001144 =6,则S2 023=
b1+2 b5=192+ 2 64=128.故选C.
答案:C
2.已知等差数列{an}满足a4+a6=22,a1·a9=57,则该等差数列的公差为 ( )
A.1或-1
B.2
C.-2
D.2或-2
解析:由a1+a9=a4+a6=22,a1·a9=57,所以a1,a9是方程x2-22x+57=0的两 实数根,解得aa19= =31,9 或aa19= =13,9, 所以公差d=a9-8 a1=2或-2.故选D. 答案:D
第二节 等差数列
(1)理解等差数列的概念和通项公式的意义;(2)探索并掌握等差数列的前n项 和公式,理解等差数列的通项公式与前n项和公式的关系;(3)体会等差数列与一 元一次函数的关系.
目录
CONTENTS
1
知识 逐点夯实
2
考点 分类突破
3
课时过关检测
01 知识 逐点夯实 课前自修
重点准 逐点清 结论要牢记
等差数列的判定与证明方法 方法
解读
适合题型
定义法 对于数列{an},an-an-1(n≥2,n∈N *)为同一常
数⇔{an}是等差数列
解答题中的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则 a20 等于 ( )
A.7
B.3
C.-1
D.1
[解析] 由{an}是等差数列及 a1+a3+a5=105, 得 3a3=105,即 a3=35, 由{an}是等差数列及 a2+a4+a6=99,得 3a4=99,即 a4=33,则公差 d=a4-a3= -2,
1.两个重要技巧 (1)若奇数个数成等差数列,可设中间三项为 a-d,a,a+d. (2)若偶数个数成等差数列,可设中间两项为 a-d,a+d,其余各项再依据等差数 列的定义进行对称设元. 2.三个必备结论 (1)若等差数列{an}的项数为偶数 2n,则①S2n=n(a1+a2n)=…=n(an+an+1); ②S 偶-S 奇=nd,SS奇 偶=aan+n 1.
(2)依题意,得 2am+2=am+1+am,则 2a1qm+1=a1qm+a1qm-1.在等比数列{an}中, a1≠0,q≠0,所以 2q2=q+1,解得 q=1 或 q=-12. 当 q=1 时,Sm+Sm+1=ma1+(m+1)a1=(2m+1)a1,Sm+2=(m+2)a1. 因为 a1≠0,所以 2Sm+2≠Sm+Sm+1,此时 Sm,Sm+2,Sm+1 不成等差数列. 当 q=-12时,
答案:-n+2
4.(基础点:求等差数列的前 n 项和)已知等差数列 5,427,347,…,则前 n 项和 Sn=________. 答案:154(15n-n2)
考点一 等差数列的基本运算及性质
挖掘 1 用等差数列的基本量 a1 和 d 进行计算/自主练透
[例 1] (1)(2018·高考全国卷Ⅰ)记 Sn 为等差数列{an}的前 n 项和,若 3S3=S2+S4,
[四基自测]
1.(基础点:求项数)已知数列{an}中,an=3n+4,若 an=13,则 n 等于( )
A.3
B.4
C.5
D.6
答案:A
2.(基础点:求公差)已知等差数列{an}满足:a3=13,a13=33,则数列{an}的公差
为( )
A.1
B.2
C.3
D.4
答案:B
3.(基础点:求通项)已知数列{an}中,a1=1,an+1=an-1,则 an 等于________.
如果 a,b,c 成等差数列且不全相等,1a,1b,1c能构成等差数列吗?用函数图像解 释一下. 解析:a,b,c 成等差数列,通项公式为 y=pn+q 的形式,且 a,b,c 位于同一 直线上, 而1a,1b,1c的通项公式为 y=pn1+q的形式. 其图像不是直线,故1a,1b,1c不是等差数列.
∴log3(2x)+log3(4x+2)=2log3(3x),
∴log3[2x(4x+2)]=log3(3x)2,
2x(4x+2)=(3x)2,
∴24xx>+02,>0,
解得 x=4.
3x>0,
∴等差数列的前三项为 log38,log312,log318, ∴公差 d=log312-log38=log332, ∴数列的第四项为 log318+log332=log327=3. [答案] A
像关于直线 x=1 对称,若数列{an}是公差不为 0 的等差数列,且 f(a50)=f(a51),则
{an}的前 100 项的和为( )
A.-200
B.-100
C.0
D.-50
解析:由 y=f(x-2)的图像关于直线 x=1 对称, 可得 y=f(x)的图像关于直线 x=-1 对称,由数列{an}是公差不为 0 的等差数列, 且 f(a50)=f(a51),函数 f(x)在(-1,+∞)上单调,可得 a50+a51=-2, 又由等差数列的性质得 a1+a100=a50+a51=-2, 则{an}的前 100 项的和为100(a12+a100)=-100,故选 B. 答案:B
(2)若等差数列{an}的项数为奇数 2n+1,则①S2n+1=(2n+1)an+1;②SS奇偶=n+n 1. (3)在等差数列{an}中,若 a1>0,d<0,则满足aamm≥ +1≤0,0 的项数 m 使得 Sn 取得最 大值 Sm;若 a1<0,d>0,则满足aamm≤ +1≥0,0 的项数 m 使得 Sn 取得最小值 Sm. 3.两个函数 等差数列{an},当 d≠0 时,an=dn+(a1-d),是关于 n 的一次函数; Sn=d2n2+(a1-d2)n 是无常数项的二次函数.
考点三 等差数列前 n 项和及综合问题 挖掘 1 等差数列的求和及最值/ 互动探究 [例 1] (1)(2018·高考全国卷Ⅱ)记 Sn 为等差数列{an}的前 n 项和,已知 a1=-7, S3=-15. ①求{an}的通项公式; ②求 Sn,并求 Sn 的最小值.
[解析] ①设{an}的公差为 d,由题意得 3a1+3d=-15. 由 a1=-7 得 d=2. 所以{an}的通项公式为 an=a1+(n-1)d=2n-9. ②由①得 Sn=a1+2 an·n=n2-8n=(n-4)2-16. 所以当 n=4 时,Sn 取得最小值,最小值为-16.
3.等差数列的性质 (1)通项公式的推广:an=am+_(_n_-__m_)_d__(n,m∈N+). (2)若{an}为等差数列,且 k+l=m+n(k,l,m,n∈N+),则_a_k_+__a_l=__a_m_+__a_n__. (3)若{an}是等差数列,公差为 d,则 ak,ak+m,ak+2m,…(k,m∈N+)是公差为__m__d_____ 的等差数列. (4)若 Sn 为等差数列{an}的前 n 项和,则数列 Sm,S2m-Sm,S3m-S2m,…也是等差 数列.
由于当 n≥2 时,有 an=-2Sn·Sn-1=-2n(n1-1), 又因为 a1=12,不适合上式.
12(n=1), 所以 an=-2n(n1-1)(n≥2).
挖掘 2 用等差中项法证明/互动探究 [例 2] 已知等比数列{an}的公比为 q,前 n 项和为 Sn. (1)若 S3,S9,S6 成等差数列,求证:a2,a8,a5 成等差数列; (2)若 am+2 是 am+1 和 am 的等差中项,则 Sm,Sm+2,Sm+1 成等差数列吗?
a1=2,则 a5=( )
A.-12
B.-10
C.பைடு நூலகம்0
D.12
[解析] 设等差数列{an}的公差为 d,由 3S3=S2+S4, 得 33a1+3×(23-1)×d=2a1+2×(22-1)×d+4a1+4×(24-1)×d,将 a1 =2 代入上式,解得 d=-3, 故 a5=a1+(5-1)d=2+4×(-3)=-10.故选 B.
[破题技法] 判定数列{an}是等差数列的常用方法 (1)定义法:对任意 n∈N+,an+1-an 是同一个常数.(证明用) (2)等差中项法:对任意 n≥2,n∈N+,满足 2an=an+1+an-1.(证明用) (3)通项公式法:数列的通项公式 an 是 n 的一次函数. (4)前 n 项和公式法:数列的前 n 项和公式 Sn 是 n 的二次函数,且常数项为 0. 提醒:判断是否为等差数列,最终一般都要转化为定义法判断. [拓展] 判断数列为等差数列,也可以利用图像特点:如果数列的图像(孤立的点) 分布在一条直线上,则该数列为等差数列,否则不是等差数列.
考点二 等差数列的判定与证明 挖掘 1 用等差数列定义证明/自主练透 [例 1] (2020·南京模拟)已知数列{an}的前 n 项和为 Sn 且满足 an+2Sn·Sn-1= 0(n≥2),a1=12. (1)求证:S1n是等差数列; (2)求 an 的表达式.
[解析] (1)证明:因为 an=Sn-Sn-1(n≥2), 又 an=-2Sn·Sn-1,所以 Sn-1-Sn=2Sn·Sn-1,Sn≠0.因此S1n-Sn1-1=2(n≥2).故由 等差数列的定义知S1n是以S11=a11=2 为首项,2 为公差的等差数列. (2)由(1)知S1n=S11+(n-1)d=2+(n-1)×2=2n, 即 Sn=21n.
[答案] B
(2)(2019·高考全国卷Ⅰ)记 Sn 为等差数列{an}的前 n 项和.已知 S4=0,a5=5,则
()
A.an=2n-5
B.an=3n-10
C.Sn=2n2-8n
D.Sn=12n2-2n
[解析] 设首项为 a1,公差为 d. 由 S4=0,a5=5 可得a41a+1+4d6= d=5,0, 解得ad1==2-. 3, 所以 an=-3+2(n-1)=2n-5, Sn=n×(-3)+n(n2-1)×2=n2-4n. 故选 A. [答案] A
则 a20=a3+(20-3)d=35-34=1,故选 D.
[答案] D
(3)(2020·广东第一次模拟)等差数列 log3(2x),log3(3x),log3(4x+2),…的第四项等
于( )
A.3
B.4
C.log318
D.log324
[解析] ∵log3(2x),log3(3x),log3(4x+2)成等差数列,
[破题技法] 等差数列的计算技巧
方法
解读
适合题型
基本 用 a1 和 d 表示条件和所求,用方程思 五个基本量,a1,d,Sn,n,an
量法 想求出 a1 和 d
中知三求二
性质 用等差数列的性质将已知和所求联 当已知中有“an+am”式的表
法 系起来,用性质表示 an 和 Sn
达式
(2020·河北石家庄一模)已知函数 f(x)在(-1,+∞)上单调,且函数 y=f(x-2)的图
Sm+2=a1[1-1---1212m+2] =23a1[1-(-12)m+2]=23a1 [1-14×(-12)m], Sm+Sm+1=a11[-1-(--1212)m]+a1[11--(--1212m)+1] =23a1[1-(-12)m+1-(-12)m+1]
相关文档
最新文档