一些常见的极限题目与做法

合集下载

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求函数极限的方法总结及例题

求函数极限的方法总结及例题

求函数极限的方法总结及例题一、求函数极限的方法总结。

1. 代入法。

当函数在极限点处连续时,直接将极限点代入函数求值。

例如,对于函数f(x)=x + 1,求lim_x→2(x + 1),直接将x = 2代入,得到lim_x→2(x+1)=2 + 1=3。

2. 因式分解法。

适用于(0)/(0)型的极限。

例如,求lim_x→1frac{x^2-1}{x 1},将分子因式分解为(x + 1)(x 1),则原式=lim_x→1((x + 1)(x 1))/(x 1)=lim_x→1(x + 1)=2。

3. 有理化法。

对于含有根式的函数,通过有理化来消除根式。

例如,求lim_x→0(√(x+1)-1)/(x),分子分母同时乘以√(x + 1)+1进行有理化,得到lim_x→0((√(x + 1)-1)(√(x + 1)+1))/(x(√(x + 1)+1))=lim_x→0(x)/(x(√(x + 1)+1))=lim_x→0(1)/(√(x + 1)+1)=(1)/(2)。

4. 等价无穷小替换法。

当x→0时,sin xsim x,tan xsim x,ln(1 + x)sim x,e^x-1sim x等。

例如,求lim_x→0(sin2x)/(x),因为sin2xsim2x(x→0),所以lim_x→0(sin2x)/(x)=lim_x→0(2x)/(x)=2。

5. 洛必达法则。

对于(0)/(0)型或(∞)/(∞)型的极限,可对分子分母分别求导再求极限。

例如,求lim_x→0frac{e^x-1}{x},这是(0)/(0)型,根据洛必达法则,lim_x→0frac{e^x-1}{x}=lim_x→0frac{(e^x-1)'}{x'}=lim_x→0frac{e^x}{1}=1。

二、例题。

1. 例1。

求lim_x→3frac{x^2-9}{x 3}解析:这是(0)/(0)型极限,可先对分子因式分解,x^2-9=(x + 3)(x 3)。

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。

本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。

I. 无穷小量法无穷小量法是求解极限最常见的方法之一。

它的基本思想是将待求极限转化为无穷小量之间的比较。

下面通过一个例题来说明这个方法。

例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。

根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。

因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。

故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。

下面通过一个例题来说明夹逼法的思想。

例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。

然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。

也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。

根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。

故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。

下面通过一个例题来说明泰勒展开法的应用。

例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。

为了求出一个函数在某一点的极限,需要使用合适的方法。

下面介绍16种常用的求极限方法,以及一般题型解题思路。

一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。

例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。

二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。

例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。

三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。

如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。

例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。

四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。

例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。

五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。

根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。

求极限的方法和例题总结

求极限的方法和例题总结

求极限的⽅法和例题总结8.⽤初等⽅法变形后,再利⽤极限运算法则求极限例11213lim1--+→x x x解:原式=43)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。

注:本题也可以⽤洛⽐达法则。

例2)12(lim --+∞→n n n n解:原式=2311213lim12)]1()2[(lim=-++=-++--+∞→∞→nn n n n n n n nn 分⼦分母同除以。

例3 nn n n n 323)1(lim++-∞→解:原式11)32(1)31(lim 3=++-=∞→nn n n上下同除以。

3.两个重要极限(1) 1sin lim0=→x xx(2) e x xx =+→10)1(lim ; e x x x =+∞→)11(lim说明:不仅要能够运⽤这两个重要极限本⾝,还应能够熟练运⽤它们的变形形式,例如:133sin lim0=→x xx ,e x xx =--→21)21(lim ,e x xx =+∞→3)31(lim ;等等。

利⽤两个重要极限求极限例5 203cos 1lim x xx -→解:原式=61)2(122sin 2lim 32sin 2lim 220220=?=→→x xx x x x 。

注:本题也可以⽤洛⽐达法则。

例6xx x 2)sin 31(lim -→=6sin 6sin 31sin 6sin 310])sin 31[(lim )sin 31(lim ---→-?-→=-=-e x x xx xx xxx x例7nn n n )12(lim +-∞→=313311331])131[(lim )131(lim -+--+∞→+-?-+∞→=+-+=+-+e n n n n n n n nn n 。

4.等价⽆穷⼩定理2 ⽆穷⼩与有界函数的乘积仍然是⽆穷⼩(即极限是0)。

定理3 当0→x 时,下列函数都是⽆穷⼩(即极限是0),且相互等价,即有:x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-xe 。

最新求极限常用方法及常见题型攻略

最新求极限常用方法及常见题型攻略

求极限常用方法及常见题型攻略以心同学整理求极限原则:(1)先判断类型,再用相应的方法;(2)能用等价无穷小代换的先用等价无穷小代换;(3)有些极限可能需要几种方法才能求出。

1.分子分母的极限均为0,含有根号方法:含有根号的零因子有理化例1求极限xx x x 1lim 21。

分析:1 x 时,分子02 x x ,且含根号,故有理化时分子分母需同时乘2x x 同理1 x 时,分母01x ,且含根号,故有理化时分子分母需同时乘x 1。

解:x x x x 1lim 21))(1)(1()1)()((lim2221x x x x x x x x x x ))(1()1)((lim241x x x x x x x ))(1()1)(1(lim231x x x x x x x ))(1()1)(1)(1(lim 221x x x x x x x x x 221)1)(1(lim xx x x x x x 3 。

2.无穷小乘以有界量还是无穷小例101sinlim 0xx x 。

3.无穷的过程( x x x ,,),分子分母均为x 的多项式。

方法:看分子分母最高次幂,套公式00 b an m n m nm b a a x a x b x b a x a x a x a n n n n m m m mx ,,0,/lim 0011101110 。

注:上面公式对数列极限同样成立。

例1求极限1495)85()37()32(lim x x x x 。

分析:分子分母用二项式定理打开,再乘开后均为多项式,且是无穷的过程。

分子分母最高次幂均为14。

解:1495)85()37()32(lim x x x x 14955)3(2 1495532 。

★另外,有些题分子分母不一定都是多项式,但也可以化为这一类来求,如nn n n 2lim 2 224lim n n n n 224lim n nn n 2141 。

4.1未定式极限的求法方法:利用第二个重要极限:e1)1(lim ,其中0lim 。

高等数学求极限的17种常用方法(附例题和详解)

(ii)
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B

专升本高数极限例题

专升本高数极限例题
作为专升本高数考试的一部分,极限是一个重要的概念。

以下是一些常见的专升本高数极限例题:
1. 求极限
例:lim x→0 sin x = 1
解:原式=lim x→0 cos x/x = 1
2. 描述极限的性质
例:描述极限的存在性、连续性、可导性等性质。

解:极限的存在性是指在某个范围内,函数值趋近于某个值的现象。

极限的连续性是指如果函数在某一点处的极限存在,那么在其他任意点处极限也存在。

极限的可导性是指函数在极限存在时的导数存在。

3. 解决极限的相关问题
例:求解关于 x 的极限问题,已知 lim x→0 sin x = 1。

解:原式=lim x→0 (cos x - 1)/x = lim x→0 (1/x - 1)/x = lim x→0 (1/x) - lim x→0 1/x = 1 - 1 = 0
通过这些例题,考生可以了解专升本高数极限的概念和相关问题,并且需要熟练掌握极限的性质和解决极限问题的方法和技巧。

高数极限必做150题及答案

极限必做150解答033002020001021111.lim ()x sin tan tan sin tan (1cos )1lim lim 2ln()ln()2ln 2.lim1121lim lim 22()()l x x x x x x x x x ax x x x x x x x a x a x a x x a x a x x x a x a x a→→→→→→→→→---===++----+-===-+-===00002201tan 6.lim(sin lim ln(1)ln(1x x )7.lim secx cosxl x ax ax a x x x x x x mxm nx mx m nx n x x →→→→→→→→→+=+==-==+++-+-=、n 为正整数)=2224222002020ln (1)im lim 1sec (1cos )1..8.lim ln()1111121lim ....2x x x x nxx x x nx x x x x x x x xe e e x n e e e n n x nn n n n n →→→→⎡⎤+-+⎣⎦==-+++⎛⎫---+=+++=+++= ⎪⎝⎭)22(1)22(1)6(1)lim2312li 9.limsinlim(1))lim(1)03210.lim 346lim 1312111.lim 212lim 121n n nnn n n n n n n n n n n nn nn n n n ee n n n e n π→∞→∞→∞→∞+→∞+-+-+→∞→∞→∞=--=-=⎛⎫- ⎪+⎝⎭⎛⎫=-== ⎪+⎝⎭+⎛⎫ ⎪-⎝⎭⎛⎫=+= ⎪-⎝⎭2m 21ln ln lim lim ()2211(2)(2)22(2)(2)2(2)(2)(2)(2200012.lim 13.lim 212lim lim lim 2n n n n n nn a ba bn n n nn nn t t t t t t t t t e ee en e e e t ne e e e e e e t t →∞→∞→∞-→∞++⎝⎭+-→∞+-+-+-→→→=⎝⎭====⎡⎤+-⎢⎥⎣⎦=+--+===令)21lim 1lim 1214.lim 1 (a ln lim ln 15.lim 1n n n n n n nn n n e n a a n a nn eeee →∞→∞→∞→∞→∞⎫⎪⎪-⎝⎭⎝⎭=⎡⎤-⎢⎥⎣⎦=⎛ ⎪+⎝⎭====为整数)=[]211lim21116.lim ln()ln()2ln 1,n17.lim lim (1)lim 1118.lim (1)19.lim ln(1)ln 1lim ln lim n n a bn n n abnn n n nn n n n n n n a a a n n t n e e n e n e a b e n ne n e e nn n n n n n →∞→∞→∞→∞→∞→∞→∞→∞⎡⎤++--⎢⎥⎣⎦=⎛⎫- ⎪⎝⎭⎛⎫=---=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭=+-=+-+⎛⎫== ⎪⎝⎭令同第二题[]211120201ln(1)1120.limln (1)(1)(1)(1)limlim 2ln()(1)21.lim ln(1)ln(1)122lim ln()lim ln(1)lim 2111ln cos 22.limln(1cosx 1)lim li x x x x x x x x x n n x x x x x x x x x x xx xx x x x x xx x →∞→-→-→-→+∞→+∞→+∞→+∞→→+=-+-+-===--++--+==+==---+-==[]2022cos 11m 223.lim (2)ln(2)2(1)ln(1)ln 2lim ln(2)ln(1)ln ln(1)2ln()121lim ln ln 2lim ln(1)221111(1)x x x x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x →→+∞→+∞→+∞→+∞-=-++-++++⎡⎤=+-++-++⎢⎥+⎣⎦+⎡⎤=++=-+=-=⎢⎥+++⎣⎦)00010110112lim 2cot 0sin()cos()44limcos()tan cos()sin()244424.lim26.lim tan()427.lim sin x x x x xx xx x xxx x x x x x x x xe ee eex e e x ππππππ→→→→→→→--→---------→+=====⎡⎤-⎢⎥⎣⎦===()22222221sin cos 1cos 1limlim1tan2sin 1cos limlim12cos cos 2222122lim 1lim 2121cos 28.lim(sin )2129.lim 21x x x x x x xx x x xxxx x x x xxx x x x x x x x x x x eeex e eex x x x eeπππ→→→→→∞→∞+--+→---→∞⎛⎫-+-+⎛⎫- ⎪ ⎪ +-+-⎝⎭⎝⎭+======⎛⎫-+ ⎪+-⎝⎭==132lim 3621122130.lim 212lim(1)2131.lim(12)x xx x x x xx e x x e e x x e →∞⎪-→∞⎛⎫⎪+⎝⎭→∞-→=+⎛⎫⎪-⎝⎭=+=+-=22lim cos1lim()221cos cos sinlim limtancos()cos0002232.lim coscos33.limcosln()ln()2ln134.lim35.limx xx a x axxx xxx ax ax a xaa x a axxe e exae e ex x x x xx xππ→+∞→+∞→→→+∞⎡⎤⎫-⎢⎪⎥-⎭⎣⎦-→----→→+===⎛⎫⎪⎝⎭===++--+同第二题-[]00011211121ln(1)ln(1)ln(1)lim ln(1)lim lim1ln(sec tan)36.limsinln(1sin)cos ln(1sin)ln coslim lim lim137.lim()lim(axax axaxaxx x xxx x xx xxxxbexb b e abee abx x ex xxx x x xx x xx a ax a a∞→+∞→+∞→+∞→→→→+→+∞+→+∞+++=+===++++==+=-=22122111(ln ln) 0005111)lim()ln lim ln ln1(1)138.lim111lim explim explim1(1)139.lim5x xx xx xxxx x x x x xxa bx xx x xxxxx a a ax x x xxaxbxa xb a b a b aexb x xb x x bex-+→+∞→+∞→-→→→→-=-==++⎛⎫+⎪+⎝⎭⎛⎫----===-== ⎪++⎝⎭-=20000tan 30tan 300300240.lim 1111lim lim lim 12222241.lim sin 11lim lim 132142.lim 3ln lim 3ln 43.lim()lim lim x x x x x x x x x x x x x x x x x x x x x a x a a x a x a x e e x e e e e x x x e e x e e x x a x x a a xa a x a a a x a -→--→→→→→→→→→-→→+----==-=+=---=-=-=--==--==-0000100101000()ln ln ln ln 144.lim145.lim11(1)1lim lim 46.lim 2112x 47.lim()11explim explim a a a x x n x n t t xxxx bx x x bx bx a bx x a x a a a a x a x x x x x x x x tt nt n t t a b t ax e ax e e a e x x→→→→→→+→→-=--=----=+-===⎛⎫+ ⎪⎝⎭=++--==+=令令,如题31148.ln 1 n ()ln(1)1()10,[0,)11()[0,)()(0),[0,)11ln(1)0ln(1)ln(1)()32,()(x 1),()n n nf x x xxf x x x xf x f x f x x x x x n nx x x x c c x αβα⎛⎫+< ⎪⎝⎭=+--'=-=≤∈+∞+++∞<∈+∞+-<⇒+<⇒+<=-+=-→证明不等式:其中为正整数解:令当所以在递减 所以即证毕49.设确定及n,使当x 1时,3211111211~()()3233lim 1lim 1lim 1()(1)(1)3(1)(x 1)3(1)lim1lim 1(1)(1)612,c 350.()(),A ()~()l n n x x x n n x x kx x x x x x c x cn x x x cn x cn x n cn Af xg x f x g x x βαβ-→→→--→→-+-=⇒=⇒=--+-+⇒=⇒=--=⇒====→∞解:所以n-2=0,设确定K 及,使当x +,解:1212()im1lim1()~()lim1lim 1()lim11111,,1,224k x x k x x kx f x g x Ax x f x g x Axk A A-→+∞→+∞-→+∞→+∞-=⇒==-=→∞=⇒=⇒===--==-所以k+4。

高数极限经典60题分步骤详解

高数极限经典60题分步骤详解1.求极限lim(sinn+1-sinn)/(n→∞)。

为了解决这个问题,我们需要运用三角函数和差化积公式,将式子进行转化,然后求出极限。

具体过程如下:sinn+1-sinn=2cos(n+1+n)/(sin^2(n+1)+sin^2(n))2cos(n+1+n)/(sin^2(n+1)+sin^2(n))(sin()/sin())2cos(n+1+n)/(sin^2(n+1)+sin^2(n))(n→∞)2cos因为当n→∞时,sin()/n+1+n→0,而cos是有界函数,有界函数与无穷小的乘积仍然是无穷小,所以原式极限为0.2.令Sn=∑(k/(k+1)!),求极限limSn(n→∞)。

我们可以将Sn的式子变形,得到Sn=1-1/(n+1)。

然后求出极限即可。

具体过程如下:k/(k+1)!)=1/(k!)-1/((k+1)!)k/(k+1)!)=1/1!-1/2!+1/2!-1/3!+。

+1/n!-1/(n+1)!1-1/(n+1)!因此,limSn=lim(1-1/(n+1!))=1.3.求极限lim(1+2q+3q^2+4q^3+。

+nq^(n-1)),其中q<1且q≠0.我们可以将Sn的式子变形,得到qSn=1q+2q^2+3q^3+。

+(n-1)q^(n-1)+nq^n1-q)Sn=(1+q+q^2+q^3+。

+q^(n-1))-nq^n1-q)Sn=(1-q^n)/(1-q)-nq^nSn=[(1-q)/(1-q)^2]-nq^n/(1-q)当q<1且n→∞时,q^n→0,1+q+q^2+q^3+。

+q^(n-1)→1/(1-q),因此limSn=lim[(1-q)/(1-q)^2]-lim(nq^n/(1-q))1/(1-q)^2因此,极限为1/(1-q)^2.注:关于lim(1+2q+3q^2+4q^3+。

+nq^(n-1))/(q→0),当n→∞时,q^n→0,1+2q+3q^2+4q^3+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档