2018年湖南省长沙市中考数学试卷
历届长沙市中考数学试卷(更新到21年)

.
y
CC 1
AA
OO
BB
a ob
O
x
第 11 题图
第 12 题图
13.已知反比例函数 y = 1− m 的图象如图,则 m 的取值范围是
x
第 13 题图
.
14.已知扇形的面积为12π ,半径等于 6,则它的圆心角等于
度.
15.等腰梯形的上底是 4cm,下底是 10 cm,一个底角是 60° ,则等腰梯形的腰长
9.-3 的相反数是
.
长沙历届初中学业水平考试数学试卷 第3页(共 60 页)
10.截止到 2010 年 5 月 31 日,上海世博园共接待 8 000 000 人,用科学记数法表示
是
人.
11.如图,O 为直线 AB 上一点,∠COB=26°30′,则∠1=
度.
12.实数 a、b 在数轴上位置如图所示,则| a |、| b |的大小关系是
18.先化简,再求值:
(
x2 x−3
−
x
9 −
3)
x2
1 +
3x
其中
x
=
1 3
.
19.为了缓解长沙市区内一些主要路段交通拥挤的现状,交警 队在一些主要路口设立了交通路况显示牌(如图).已知立 杆 AB 高度是 3m,从侧面 D 点测得显示牌顶端 C 点和底端 B 点的仰角分别是 60°和 45°.求路况显示牌 BC 的高度.
第 19 题图
20.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上 1、2、3、4.某同学把 这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求 抽出的两张纸片上的数字之积小于 6 的概率.(用树状图或列表法求解)
2018年湖南省长沙市中考数学试题及参考答案案

2018年长沙市初中学业水平考试试卷数学一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(2018湖南长沙中考,1,3分,★☆☆)-2的相反数是()A.-2 B.12-C.2 D.122.(2018湖南长沙中考,2,3分,★☆☆)据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102×105B.10.2×103C.1.02×104D.1.02×1033.(2018湖南长沙中考,3,3分,★☆☆)下列计算正确的是()Aa2+a3=a5B.32221-=C.(x2)3=x5D.m5÷m3=m24.(2018湖南长沙中考,4,3分,★☆☆)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm5.(2018湖南长沙中考,5,3分,★☆☆)下列四个图形中,既是轴对称图形又是中心对称图形的是()6.(2018湖南长沙中考,6,3分,★☆☆)不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()7.(2018湖南长沙中考,7,3分,★☆☆)将下面左侧的平面图形绕轴l旋转一周,可以得到的立体图形是()8.(2018湖南长沙中考,8,3分,★☆☆)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件9.(2018湖南长沙中考,9,3分,★★☆)估计10+1的值()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间10.(2018湖南长沙中考,10,3分,★★☆)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,下图反映了这个过程中,小明离家的距离y与时间x的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min11.(2018湖南长沙中考,11,3分,★★☆)我国南宋著名数学家秦久韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米12.(2018湖南长沙中考,12,3分,★★☆)若对于任意非零实数a,抛物线y=ax2+ax-2a总不经过点P(x0-3,x02-16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个二、填空题(本大题共6个小题,每小题3分,共18分)13.(2018湖南长沙中考,13,3分,★☆☆)化简:1_______.11mm m-=--14.(2018湖南长沙中考,14,3分,★☆☆)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_________度.第14题图15.(2018湖南长沙中考,15,3分,★☆☆)在平面直角坐标系中,将点A′(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是________.16.(2018湖南长沙中考,16,3分,★☆☆)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是_______.17.(2018湖南长沙中考,17,3分,★☆☆)已知关于x的方程x2-3x+a=0有一个根为1,则方程的另一个根为______.18.(2018湖南长沙中考,18,3分,★★☆)如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD的延长线交BC于点C,则∠OCB=______度.第18题图三、解答题(本大题共8个小题,共66分.解答时写出必要的文字说明、证明过程或演算步骤)19.(2018湖南长沙中考,19,6分,★☆☆)计算:()()20180134cos 45π--+.20.(2018湖南长沙中考,20,6分,★☆☆)先化简,再求值:(a+b)2+b(a -b)-4ab ,其中a=2,b=12-.21.(2018湖南长沙中考,21,8分,★☆☆)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如下条形统计图(得分为整数,满分为10分,最低分为6分).请根据图中信息,解答下列问题:(1)本次调查一共抽取了____名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”.请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?第21题图22.(2018湖南长沙中考,22,8分,★★☆)为加快城乡对接,建设全域美丽乡村,某地区对A 、B 两地间的公路进行改建,如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地需途经C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶,已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A 地到B 地大约要走多少千米?(2)开通隧道后,汽车从A 地到B 地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:2 1.413 1.73≈≈,)第22题图23.(2018湖南长沙中考,23,9分,★★☆)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?24.(2018湖南长沙中考,24,9分,★★☆)如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形;(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.第24题图25.(2018湖南长沙中考,25,10分,★★★)如图,在平面直角坐标系xOy中,函数myx(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C、D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.第25题图26.(2018湖南长沙中考,26,10分,★★★)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形、矩形、菱形、正方形”中,一定是“十字形”的有___________;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形________“十字形”(填“是”或“不是”);(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB-∠CDB=∠ABD-∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A、C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D 的坐标为(0,-ac).记“十字形”ABCD的面积为S,记△AOB、△COD、△AOD、△BOC的面积分别为S 1,S 2,S 3,S 4,求同时满足下列三个条件的抛物线的解析式:①12S S S =+;②34S S S =+;③“十字形”ABCD 的周长为1210.第26题图1 第26题图22018年长沙市初中学业水平考试数学试卷答案全解全析1. 答案:C解析:由相反数的定义可知,a 的相反数是-a ,则-2的相反数是-(-2)=2,故选C . 考查内容:相反数.命题意图:本题主要考查学生对相反数的定义的识记,难度较低.2. 答案:C解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.整数部分有5位,因此n=5-1=4,a=1.02,即10200=1.02×104,故选C .考查内容:科学记数法.命题意图:本题主要考查学生对用科学记数法表示一个数的掌握,难度较低.3. 答案:D解析:选项A两个单项式不是同类项,不可以合并,故A错误;选项B中原式=2,故B错误;选项C的计算结果是x6故C错误;选项D正确.考查内容:合并同类项;幂的乘方;同底数幂的除法.命题意图:本题主要考查学生对整式的运算及幂的运算性质的掌握,难度较低.4. 答案:B解析:A项,∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B项,8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C项,5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D项,6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B.考查内容:三角形三边关系.命题意图:本题主要考查学生对组成三角形的三边关系的认知,难度较低.5. 答案:A解析:沿某条直线折叠,图形两侧部分可以重合,这种图形称为轴对称图形.绕一个定点旋转180度后的图形能和原图形重合,这种图形称为中心对称图形.由此可对各选项进行判断:A既是轴对称图形又是中心对称图形,正确;B是轴对称图形,错误;C既不是轴对称图形也不是中心对称图形,错误;D不是轴对称图形是中心对称图形,错误.考查内容:轴对称图形;中心对称图形.命题意图:本题主要考查学生对轴对称图形与中心对称图形的识别,难度较低.6. 答案:C解析:20240xx+>⎧⎨-≤⎩①②,解不等式①得x>-2,解不等式②得x≤2,所以不等式组的解集为-2<x≤2,数轴上表示为,故选C.考查内容:解不等式组;数轴表示解集.命题意图:本题主要考查学生对一元一次不等式组的解法及不等式(组)的解集的表示方法,难度较低.易错警示:此类问题容易出错的地方一是在表示解集时没有注意到“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,而导致错误的选择B.二是移项时没有变号.7. 答案:D解析:A是由圆或半圆绕直径旋转一周得到的,故A错误;B是由矩形绕其一边旋转一周得到的,故B错误;C是由三角形绕一边上的高旋转一周得到的,故C错误;D是由左图直角梯形绕轴旋转一周得到的,故D正确.考查内容:平面图形和立体图形的动态关系.命题意图:本题主要考查学生对平面图形和立体图形的认识,难度较低.8. 答案:C解析:A.掷硬币是随机事件,不一定几次正面朝上,故A错误;B.表示降雨可能性为40%,不是降雨时间为40%,故B错误;C.随机事件是指在随机试验中,可能出现也可能不出现的事件,篮球队员投篮一次,可能投中,也可能投不中,故此事件为随机事件,C.正确;D.根据绝对值的定义:实数a的绝对值为它本身(a≥0)或它的相反数(a<0),可知“a是实数,|a|≥0”是必然事件,故D正确.考查内容:事件的概率.命题意图:本题主要考查学生对随机事件的认识,难度较低.9. 答案:C解析:因为9<10<16,所以,<5,因此C选项正确.考查内容:无理数的估算命题意图:本题主要考查学生对无理数的估算能力,难度中等.归纳总结:无理数的估算一般步骤是首先将原数平方,看其在哪两个相邻的平方数之间,运用这种方法可以估计一个带根号的数的整数部分,从而估计其范围.10. 答案:B解析:图中横轴表示小明离家的时间,纵轴表示离家的距离,由图可知:A.吃早餐用的时间为(25-8)min,即17min,故A错误;B.读报用了(58-28)min,即30min,故B正确;C.食堂到图书馆的距离应为(0.8-0.6)km,即0.2km,故C错误;D.从图书馆回家的速度为0.8÷10=0.08km/min,故D错误.考查内容:函数图象.命题意图:本题主要考查学生从函图象中获取信息的能力,难度中等.11. 答案:A解析:将里换算为米为单位,则三角形沙田的三边长为2.5千米,6千米,6.5千米,因为2.52+62=6.52,所以这个三角形为直角三角形,直角边长为 2.5千米和6千米,所以S=12×6×2.5=7.5(平方千米),故选A.考查内容:勾股定理的逆定理;三角形面积.命题意图:本题主要考查学生对勾股定理的逆定理的运用,难度中等.. 12. 答案:B解析:由题意得y=a(x+2)(x -1),总不经过点P (x 0-3,x 02-16),将点P 坐标代入抛物线的解析式,得a(x 0-1)(x 0-4)≠(x 0-+4)(x 0-4)恒成立.①当x 0=1时,得0≠-15,恒成立,代入解析式可得P 1(-2,-15);②x 0=4时,左边=右边=0,不符合题意;③当x 0=-4时,得40a≠0,因为a≠0,所以不等式恒成立,代入解析式可得P 2(-7,0);④当x 0≠1且x 0≠4且x 0≠-4时,a≠00045111x x x +=+--不恒成立.综上所述,存在两个点P 1(-2,-15),P 2(-7,0).考查内容:二次函数.命题意图:本题主要考查学生对二次函数图象上点的坐标特征的理解,难度中等. 13. 答案:1 解析:111m m -=-原式=.考查内容:分式的加减.命题意图:本题主要考查学生对同分母分式加减运算法则的掌握,难度较低.知识拓展:同分母相加减:分母不变,分子相加减.异分母相加减:先通分,同乘以各分母的最小公倍数,再按同分母相加减法则运算.分子、分母是多项式的时候,先将多项式因式分解,便于约分和通分. 14. 答案:90解析:总体的百分比为1,圆心角为360°,“世界之窗”所占百分比为1-30%-10%-20%-15%=25%,所以对应圆心角为360°×25%=90°. 考查内容:扇形统计图.命题意图:本题主要考查学生对扇形统计图的理解,难度较低. 15. 答案:(1,1)解析:由平移性质,向右平移,则横坐标增加,即-2+3=1,向下平移,则纵坐标减小,即3-2=1,故A ′(1,1). 考查内容:平移与坐标变化命题意图:本题主要考查学生对平面直角坐标系中平移点的坐标求法,难度较低.归纳拓展:平面直角坐标系象限中的点的坐标关于x 轴,y 轴、原点对称的点坐标的特征如下:点A(a,b)关于x轴的对称点坐标是A1(a,-b);点A(a,b)关于y轴的对称点坐标是A2(-a,b);点A(a,b)关于原点的对称点坐标是A3(-a,-b).16. 答案:1 2解析:掷骰子面朝上的点数共有6种可能的结果,每种结果出现的可能性相同,其中出现偶数的结果有2,4,6三种,因此31 ()62 P==点数为偶数.考查内容:简单事件的概率.命题意图:本题主要考查学生对简单事件的概率的计算的能力,难度较低.17. 答案:2解析:该方程中,a=1,b=-3,设两根为x1,x2,其中x1=1,由一元二次方程根与系数的关系可知,x1+x2=ba-=3,x1=1,所以x2=2.考查内容:一元二次方程根与系数的关系.命题意图:本题主要考查学生对一元二次方程根与系数的关系的运用,难度较低.18. 答案:50°解析:∠A=20°,由圆周角定理,∠O=2∠A=40°,因为BC与⊙O相切,所以OB⊥BC,∠OBC=90°,所以Rt△OBC中,∠OCB=90°-∠O=50°.考查内容:圆周角定理;切线性质;直角三角形.命题意图:本题主要考查学生运用圆周角定理,切线性质求角度的能力,难度中等.19.分析:根据实数的运算法则进行计算解析:原式=1-考查内容:二次根式;零指数幂;特殊三角函数值.命题意图:本题主要考查学生实数运算的运算能力,难度较低.20.分析:根据完全平方公式,合并同类项,化为最简形式,代入求值解析:原式=a2+2ab+b2+ab-b2-4ab=a2-ab.当a=2,b=12-时,原式=4+1=5.考查内容:完全平方公式;合并同类项.命题意图:本题主要考查学生整式化简求值的运算能力,难度较低.21.分析:(1)由条形统计图可得:4+10+15+11+10=50(人);(2)平均数等于所有数字之和除以个数,众数是出现次数最多的那个数,观察条形统计图可得,中位数的计算需要先排序,再找到中间的那个(两个)数进行计算;(3)50名居民的分数是总体的一个样本,由50人中有10人获得“一等奖”得到中奖的频率,以此来估计概率,进而计算500名居民在活动中获得“一等奖”的数量. 解析:(1)50;(2)平均数=(4×6+10×7+15×8+11×9+10×10)÷50=8.26,众数:由图可知得到8分的人数最多,为15人,故众数为8,中位数:共50人,排序后第25、26名的平均数为中位数,(8+8)÷2=8; (3)500×1050=100(份),故有500人时准备100份“一等奖”奖品. 考查内容:频数与总数的关系;平均数;众数;中位数;样本估计总体. 命题意图:本题主要考查学生从条形统计图中获取信息的能力,难度较低.22.分析:(1)过点C 作CD ⊥AB 于点D .在Rt △CBD 中,由BC 和∠B 求得CD 和DB ,再在Rt △ADC 中,由CD 和∠A 求得AC 和AD ,AC +BC 即为开通隧道前汽车要走的距离;(2)由(1)可得AD 和BD 的长度,计算AB =AD +BD 可得开通隧道后汽车要走的距离,进而算出少走的距离.解析:(1)过点C 作CD ⊥AB 于点D .Rt △BCD 中,CD =BCsinB =40(km ),Rt △ACD 中,AC =sin CDA=402,AC +BC =402+80≈136.4(km ). 答:开通前,汽车从A 到B 大约要走136.4km . (2)Rt △BCD 中,BD =BCcosB =403,Rt △ACD 中,AD =tan CDA=40(km ),AB =AD +BD =403+40≈109.2(km ),AC +BC -AB =136.4-109.2=27.2(km ).答:开通隧道后,汽车从A 到B 大约可少走27.2km .第22题解图考查内容:解直角三角形的应用.命题意图:本题主要考查学生运用三角函数解决实际问题的能力,难度中等.23.分析:(1)由打折前和打折后的甲乙粽子数量和总价,列出二元一次方程组,解之可得;(2)按照打折前后的价格计算总价,即可求得节省的钱数.解析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意,得63600500.8400.755200.x yx y+=⎧⎨⨯+⨯=⎩,解得40120. xy=⎧⎨=⎩,答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40×(1-80%)+100×120×(1-75%)=3640元.答:打折后购买这批粽子比不打折节省了3640元.考查内容:二元一次方程组的应用.命题意图:本题主要考查学生运用二元一次方程组知识解决实际问题的能力,难度中等.24.分析:(1)由平行线分线段成比例得到中位线,利用中位线的性质进行求解;(2)平行线性质和题目中已知条件∠BAD=∠CAD得出∠E=∠BAD=∠CAD=∠ACE,进而利用等角对等边得到等腰三角形;(3)设出两圆半径R和r,在外接圆中,构造Rt△BDP,利用勾股定理进行求解,在内切圆中,用两种方法计算△ABC的面积,得到关于内切圆半径r的方程,进而求得两半径的差.解析:(1)解:∵AD是边BC上的中线,∴BD=CD.∵CE∥AD,∴AD为△BCE的中位线,∴CE=2AD=6.(2)证明:∵BD=CD,∠BAD=∠CAD,AD=AD,∴△ABD≌△CAD.∴AB=AC,∴△ABC为等腰三角形.(3)如图,连接BP,BQ,CQ.在Rt△ABD中,AB设⊙P的半径为R,⊙Q的半径为r.在Rt△PBD中,(R﹣3)2+42=R2,解得R=25 6.∴PD=PA﹣AD=256﹣3=76.∵S△ABQ+S△BCQ+S△ACQ=S△ABC,∴12•r•5+12•r•8+12•r•5=12×3×8,解得r=43,即QD=43.∴PQ=PD+QD=76+43=52.答:△ABC的外接圆圆心P与内切圆圆心Q之间的距离为52.第24题解图考查内容:中位线定理;平行线性质;等腰三角形性质;勾股定理;等面积法.命题意图:本题主要考查学生综合运用外接圆和内切圆及平行线性质、等腰三角形性质等知识解决问题的能力,难度较大.25.分析:(1)利用待定系数法求得C、D坐标,可知△DOC为等腰直角三角形,即可求出∠OCD的度数;(2)m已知,点P、C的坐标确定,由相似关系可以得到OM OPOP OC=,则可得到OM的值,因为M在双曲线上,因此设出M的坐标,结合OM的长度解得M的坐标;(3)根据M与P、Q的位置情况分类讨论,用含有x的代数式表示出重叠的面积,使其等于4.1,解方程可知点M的存在性,进而得出结论.解析:解:(1)设直线PQ的解析式为y=kx+b,则有1. km bk b m+=⎧⎨+=⎩,解得11. kb m=-⎧⎨=+⎩,∴y=﹣x+m+1.令x=0,得到y=m+1,∴D(0,m+1),令y=0,得到x=m+1,∴C(m+1,0). ∴OC=OD.∵∠COD=90°,∴∠OCD=45°.(2)设M(a,3a ).∵△OPM ∽△OCP ,∴OP OC =OM OP =PMCP. ∴OP 2=OC •OM .当m =3时,P (3,1),C (4,0), OP 2=32+12=10,OC =4,OM =229a a +, ∴OP OC =104,10=4229a a+. ∴4a 4﹣25a 2+36=0,(4a 2﹣9)(a 2﹣4)=0,a =±32,a =±2.∵1<a <3, ∴a =32或2. 当a =32时,M (32,2),PM =132,CP =2,PM CP =1322≠104(舍弃).当a =2时,M (2,32),PM =52,CP =2,∴PM CP =522=104,成立.∴M (2,32). (3)当m =5时,P (5,1),Q (1,5),设M (x ,5x),l OP :y =15x ,l OQ :y =5x ,当1<x <5时,如图1第25题解图115(,),(,)5x E F x x x ,S =S OAMB -S △OAF -S △OBE =1155252x x x x-⋅-⋅⋅=4.1,化简得,x 4-9x 2+25=0,因为△<0,所以该方程无解. ②当x ≤1时,如图2第25题解图2 S =S △OGH <S △OAM =12S OAMB =2.5,所以不存在 ③当x ≥5时,如图3第25题解图3 S =S △DST <S △OBM =12S 矩形DAMB =2.5,所以不存在, 综上所述,矩形OAMB 与△OPQ 的重叠部分的面积不可能等于4.1.考查内容:待定系数法;反比例函数;相似三角形;一元二次方程;分类讨论;坐标运算. 命题意图:本题主要考查学生综合运用反比例函数、相似三角形等知识解决问题的能力,难度较大.26.分析:(1)根据特殊四边形对角线的性质可知;(2)构造矩形,将OE 转化为对角线,利用圆周角定理得到AC ⊥BD ,即四边形ABCD 是“十字形”,利用勾股定理,得到AC 、BD 和OE 之间的直接关系,根据已知条件通过运算可得OE 的取值范围;(3)由二次函数表达式可表示出A 、B 、C 点的坐标,结合点D 坐标,表示出S ,S 1,S 2,S 3,S 4,利用12S S S =34S S S =c 的一元二次方程,解方程可得.解析:(1)①菱形,正方形;②不是(2)由题可得∠ADB +∠CBD =∠ABD +∠CDB ,∠CBD =∠CAD ,∠CDB =∠CAB ,∠ADB +∠CAD =∠ABD +∠CAB ,180°-AED =180°-AEB ,所以∠AED =∠AEB =90°,即AC ⊥BD ,过点O 作OM ⊥AC 于点M ,ON ⊥BD 于点N ,连接OA ,OD ,则OA =OD =1,OM 2=OA 2-AM 2,ON 2=OD 2-DN 2,AM =12AC ,DN =BD ,四边形OMEN 为矩形,所以ON =ME ,OE 2=OM 2+ME 2,所以OE 2=OM 2+ON 2=2-14(AC 2+BD 2),又因为6≤AC 2+BD 2≤7,所以2-74≤OE 2≤2-32,即14≤OE 2≤12,所以12≤OE ≤22(OE >0).第26题解图 (3)由题()(),0,0,,,0,0,22b b A B c C D ac a a ⎛⎫⎛⎫--∆-+∆- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,因为a >0,c >0所以2b AO a +∆=,BO =-c ,2b CO a -+∆=,DO =-ac ,AC =a∆,BD =-ac -c ,()1122S AC BD ac c a ∆=⋅⋅=-+⋅,()abc OB AO S 4211+∆-=⋅⋅=,()4212b c OD CO S -∆-=⋅⋅=,()4213b c OD AO S +∆-=⋅⋅=,()abc OB CO S 4214-∆-=⋅⋅=,又因为12S S S =+,34S S S =+,可得a=1,所以S =-c ∆,因为12S S S =+,所以S=S 1+S 2+212S S ,可得b=0,所以A(c ,0),B(0,c),C(-c ,0),D(0,-c),所以四边形ABCD 为菱形,,所以AD=310,又因为AD 2=c 2-c ,得到(c -10)(c +9)=0,所以c 1=-9,c 2=10(舍去),所以抛物线的解析式为:y =x 2-9.考查内容:特殊四边形;圆周角定理;勾股定理;坐标运算;二次函数;一元二次方程. 命题意图:本题主要考查学生综合运用特殊四边形、圆、二次函数等知识解决代数几何综合N M题的能力,难度较大.。
2018年长沙中考数学试题及答案(高清版)(K12教育文档)

2018年长沙中考数学试题及答案(高清版)(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年长沙中考数学试题及答案(高清版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年长沙中考数学试题及答案(高清版)(word版可编辑修改)的全部内容。
2018年长沙中考数学试题及答案(高清版)。
2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。
x=2B。
x=-2C。
x1=2,x2=-2D。
x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。
(x-2)^2+7B。
(x-2)^2-1C。
(x+2)^2+7D。
(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。
变小B。
变大C。
不变D。
以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。
5/4B。
4/5C。
3/5D。
4/37.下列性质中正方形具有而矩形没有的是()A。
对角线互相平分B。
对角线相等C。
对角线互相垂直D。
四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。
12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。
13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。
15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。
2018年湖南省长沙市中考数学试卷

注意事项:2018 年长沙市初中学业水平考试试卷 数学1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和 座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共 26 个小题,考试时量 120 分钟,满分 120 分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本大 题共 12 个小题,每小题 3 分,共 36 分)1、 -2 的相反数是A 、 -2B 、 - 1 2C 、 2D 、 122、据统计, 2017 年长沙市地区生产总值约为10200 亿元,经济总量迈入”万亿俱乐部”,数据10200 用科学记数法表示为A 、 0.102⨯105 3、下面计算正确的是B 、10.2 ⨯10 3C 、1.0.2 ⨯10 4D 、10.2 ⨯10 5A 、 a 2 + a 3 = a 5B 、 3 2 - 2 2 = 1C 、 (x 2 )3 = x 5D 、 m 5 ÷ m 3 = m 2 4、下列长度的三条线段,能组成三角形的是A 、 4cm ,5cm ,9cmB 、8cm ,8cm ,15cmC 、5cm ,5cm ,10cmD 、 6cm ,7cm ,14cm5、下列四个图形中,既是轴对称图形又是中心对称图形的是 A 、B 、C 、D 、6、不等式20240x x +>⎧⎨-≤⎩的 解 集 在 数 轴 上 表 示 正 确 的 是A 、B 、C 、D 、0 0 7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是A 、B 、C 、D 、 8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨 C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a ≥ 0 ”是不可能事件 9、估计 10 + 1 的值A 、在 2 和 3 之间B 、在 3 和 4 之间C 、在 4 和 5 之间D 、在 5 和 6 之间10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离 y 与时间 x 之间的对应关系.根据图像下列说法正确 的是A 、小明吃早餐用了 25 minC 、食堂到图书馆的距离为 0.8km B 、小明读报用了30 minD 、小明从图书馆回家的速度为 0.8km / min11、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中 小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别 为 5 里,12 里,13 里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1 里=500 米,则该沙 田的面积为A 、7.5 平方千米B 、15 平方千米C 、75 平方千米D 、750 平方千米12、若对于任意非零实数 a ,抛物线 y = ax 2 + ax - 2a 总不经过点 P (x - 3,x 2 -16),则符合条件的点 P A 、有且只有 1 个B 、有且只有 2 个C 、至少有 3 个D 、有无穷多个二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)m 1 13、化简 - = 。
湖南省长沙市2018年中考数学试题及答案

注意事项:2018 年长沙市初中学业水平考试试卷 数学1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和 座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共 26 个小题,考试时量 120 分钟,满分 120 分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本大 题共 12 个小题,每小题 3 分,共 36 分)1、 -2 的相反数是A 、 -2B 、 - 1 2C 、 2D 、 122、据统计, 2017 年长沙市地区生产总值约为10200 亿元,经济总量迈入”万亿俱乐部”,数据10200 用科学记数法表示为A 、 0.102⨯105 3、下面计算正确的是B 、10.2 ⨯10 3C 、1.0.2 ⨯10 4D 、10.2 ⨯10 5A 、 a 2 + a 3 = a 5B 、 3 2 - 2 2 = 1C 、 (x 2 )3 = x 5D 、 m 5 ÷ m 3 = m 2 4、下列长度的三条线段,能组成三角形的是A 、 4cm ,5cm ,9cmB 、8cm ,8cm ,15cmC 、5cm ,5cm ,10cmD 、 6cm ,7cm ,14cm5、下列四个图形中,既是轴对称图形又是中心对称图形的是 A 、B 、C 、D 、6、不等式20240x x +>⎧⎨-≤⎩的 解 集 在 数 轴 上 表 示 正 确 的 是A 、B 、C 、D 、0 0 7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是A 、B 、C 、D 、 8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨 C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a ≥ 0 ”是不可能事件 9、估计 10 + 1 的值A 、在 2 和 3 之间B 、在 3 和 4 之间C 、在 4 和 5 之间D 、在 5 和 6 之间10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离 y 与时间 x 之间的对应关系.根据图像下列说法正确 的是A 、小明吃早餐用了 25 minC 、食堂到图书馆的距离为 0.8km B 、小明读报用了30 minD 、小明从图书馆回家的速度为 0.8km / min11、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中 小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别 为 5 里,12 里,13 里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1 里=500 米,则该沙 田的面积为A 、7.5 平方千米B 、15 平方千米C 、75 平方千米D 、750 平方千米12、若对于任意非零实数 a ,抛物线 y = ax 2 + ax - 2a 总不经过点 P (x - 3,x 2 -16),则符合条件的点 P A 、有且只有 1 个B 、有且只有 2 个C 、至少有 3 个D 、有无穷多个二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)m 1 13、化简 - = 。
2018年湖南省长沙市中考数学试题含答案(pdf版)
注意事项: 2018 年长沙市初中学业水平考试试卷 数学1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和 座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共 26 个小题,考试时量 120 分钟,满分 120 分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本大 题共 12 个小题,每小题 3 分,共 36 分)1、 -2 的相反数是A 、 -2B 、 - 1 2C 、 2D 、 122、据统计, 2017 年长沙市地区生产总值约为10200 亿元,经济总量迈入”万亿俱乐部”,数据10200 用科学记数法表示为A 、 0.102⨯105 3、下面计算正确的是B 、10.2 ⨯10 3C 、1.0.2 ⨯10 4D 、10.2 ⨯10 5A 、 a 2 + a 3 = a 5B 、 3 2 - 2 2 = 1C 、 (x 2 )3 = x 5D 、 m 5 ÷ m 3 = m 2 4、下列长度的三条线段,能组成三角形的是A 、 4cm ,5cm ,9cmB 、8cm ,8cm ,15cmC 、5cm ,5cm ,10cmD 、 6cm ,7cm ,14cm5、下列四个图形中,既是轴对称图形又是中心对称图形的是 A 、B 、C 、D 、6、不等式20240x x +>⎧⎨-≤⎩的 解 集 在 数 轴 上 表 示 正 确 的 是A 、B 、C 、D 、0 0 7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是A 、B 、C 、D 、 8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨 C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a ≥ 0 ”是不可能事件 9、估计 10 + 1 的值A 、在 2 和 3 之间B 、在 3 和 4 之间C 、在 4 和 5 之间D 、在 5 和 6 之间10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离 y 与时间 x 之间的对应关系.根据图像下列说法正确 的是A 、小明吃早餐用了 25 minC 、食堂到图书馆的距离为 0.8km B 、小明读报用了30 minD 、小明从图书馆回家的速度为 0.8km / min11、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中 小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别 为 5 里,12 里,13 里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1 里=500 米,则该沙 田的面积为A 、7.5 平方千米B 、15 平方千米C 、75 平方千米D 、750 平方千米12、若对于任意非零实数 a ,抛物线 y = ax 2 + ax - 2a 总不经过点 P (x - 3,x 2 -16),则符合条件的点 P A 、有且只有 1 个B 、有且只有 2 个C 、至少有 3 个D 、有无穷多个二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)m 1 13、化简 - = 。
2018年湖南省长沙市中考数学试题(含答案解析版).(优选.)
最新文件---- 仅供参考------已改成word文本------ 方便更改注意事项:2018 年长沙市初中学业水平考试试卷数学1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量120分钟,满分120分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本大题共12个小题,每小题3分,共36分)1、(长沙市)-2 的相反数是A、-2B、-12 C、2D、122、(长沙市)据统计, 2017 年长沙市地区生产总值约为10200 亿元,经济总量迈入”万亿俱乐部”,数据10200用科学记数法表示为A、0.102⨯1053、下面计算正确的是B、10.2 ⨯10 3C、1.0.2 ⨯10 4D、10.2 ⨯10 5A、a2 +a 3 =a 5B、3 2 - 2 2 = 1C、(x 2 )3=x 5D、m5 ÷m 3 =m 24、下列长度的三条线段,能组成三角形的是A、459cm B、8815cmC、5510cmD、6714cm5、下列四个图形中,既是轴对称图形又是中心对称图形的是A 、B 、C 、D、6、不等式20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是A、B、C、D、0 0 7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是A 、B 、C 、D 、8、下面说法正确的是A 、任意掷一枚质地均匀的硬币10 次,一定有 5 次正面朝上B 、天气预报说”明天降水概率为 40% ”,表示明天有 40% 的时间在下雨C 、“篮球队员在罚球线上投筐一次,投中”为随机事件D 、“ a 是实数, a ≥ 0 ”是不可能事件9、估计 10 + 1 的值 A 、在 2 和 3 之间 B 、在 3 和 4 之间 C 、在 4 和 5 之间 D 、在 5 和 6 之间 10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离 y 与时间 x 之间的对应关系.根据图像下列说法正确 的是A 、小明吃早餐用了 25 min C 、食堂到图书馆的距离为 0.8kmB 、小明读报用了30 minD 、小明从图书馆回家的速度为 0.8km / min11、我国南宋著名数学家秦九韶的著作《数书九章》里记载A 、7.5 平方千米 B 、15 平方千米 C 、75 平方千米 D 、750 平方千米 12、若对于任意非零实数 a ,抛物线 y = ax 2 + ax - 2a 总不经过点 P (x - 3,x 2- 16),则符合条件的点 P A 、有且只有 1 个 B 、有且只有 2 个 C 、至少有 3 个 D 、有无穷多个 二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) m 1 13、化简 -= 。
2020中考数学试题分项版解析汇编(第02期)专题2.2 不等式(含解析)
专题2.2 不等式一、单选题1.【山东省聊城市2018年中考数学试卷】已知不等式,其解集在数轴上表示正确的是()A. B.C. D.【答案】A点睛:此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键. 2.【四川省眉山市2018年中考数学试题】已知关于x的不等式组仅有三个整数解,则a的取值范围是().A.≤a<1 B.≤a≤1 C.<a≤1 D. a<1【答案】A【解析】分析:根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案.详解:由x>2a-3,由2x>3(x-2)+5,解得:2a-3<x≤1,由关于x的不等式组仅有三个整数:解得-2≤2a-3<-1,解得≤a<1,故选:A.点睛:本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.【湖北省恩施州2018年中考数学试题】关于x的不等式的解集为x>3,那么a的取值范围为()3.A. a>3 B. a<3 C.a≥3 D.a≤3【答案】D点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.【台湾省2018年中考数学试卷】如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A. 112 B. 121 C. 134 D. 143【答案】C点睛:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.5.【湖北省襄阳市2018年中考数学试卷】不等式组的解集为()A. x> B. x>1 C.<x<1 D.空集【答案】B【解析】【分析】先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.【详解】解不等式2x>1-x,得:x>,解不等式x+2<4x-1,得:x>1,则不等式组的解集为x>1,故选B.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【湖北省孝感市2018年中考数学试题】下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【答案】B点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.7.【湖北省荆门市2018年中考数学试卷】已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B. 4<m<7 C.4≤m≤7 D. 4<m≤7【答案】A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.8.【广西钦州市2018年中考数学试卷】若m>n,则下列不等式正确的是()A. m﹣2<n﹣2 B. C. 6m<6n D.﹣8m>﹣8n【答案】B【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9.【湖南省湘西州2018年中考数学试卷】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【解析】【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组的解集在数轴上表示如下:故选C.【点睛】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.10.【湖南省长沙市2018年中考数学试题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】C点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【吉林省长春市2018年中考数学试卷】不等式3x﹣6≥0的解集在数轴上表示正确的是()A. B. C. D.【答案】B【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】3x﹣6≥0,3x≥6,x≥2,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确求出不等式的解集是解此题的关键.12.【广西壮族自治区贵港市2018年中考数学试卷】若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B. a<﹣3 C. a>3 D.a≥3【答案】A【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.二、填空题13.【贵州省铜仁市2018年中考数学试题】一元一次不等式组的解集为_____.【答案】x>﹣1【解析】分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.详解:,由①得:x>-1,由②得:x>-2,所以不等式组的解集为:x>-1.故答案为x>-1.点睛:主要考查了解一元一次不等式组,解题的关键是熟练掌握解不等式的一般步骤和确定不等式组解集的公共部分.14.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.15.【黑龙江省哈尔滨市2018年中考数学试题】不等式组的解集为_____.【答案】3≤x<4.【解析】分析:先求出每个不等式的解集,再求出不等式组的解集即可.详解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.点睛:本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.16.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】不等式组的解集是_____.【答案】x<3.【解析】分析:首先把两个不等式的解集分别解出来,再根据“大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解”的原则,把不等式的解集求解出来.详解:由(1)得,x<4,由(2)得,x<3,所以不等式组的解集为:x<3.故答案为:x<3.点睛:本题考查不等式组的解法,一定要把每个不等式的解集正确解出来.17.【北京市2018年中考数学试卷】用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】 2 3 -1点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.18.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.19.【山东省菏泽市2018年中考数学试题】不等式组的最小整数解是__________.【答案】0【解析】分析:分别解不等式,找出解集的公共部分,找出嘴角整数解即可.详解:解不等式①,得解不等式②,得原不等式组的解集为原不等式组的最小整数解为0.故答案为:0.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.20.【贵州省贵阳市2018年中考数学试卷】已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.21.【黑龙江省龙东地区2018年中考数学试卷】若关于x的一元一次不等式组有2个负整数解,则a 的取值范围是_____.【答案】﹣3≤a<﹣2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.【详解】,∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.22.【河南省2018年中考数学试卷】不等式组的最小整数解是_____.【答案】-2点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.三、解答题23.【湖南省怀化市2018年中考数学试题】解不等式组,并把它的解集在数轴上表示出来.【答案】不等式组的解为:2<x≤4,在数轴上表示见解析.【解析】分析:分别解两不等式,进而得出公共解集.详解:解①得:x≤4,解②得:x>2,故不等式组的解为:2<x≤4,其解集在数轴上表示为:点睛:此题主要考查了解一元一次不等式组的解法,正确掌握基本解题思路是解题关键.24.【上海市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.25.【黑龙江省大庆市2018年中考数学试卷】某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【答案】(1)每个排球的价格是60元,每个篮球的价格是120元;(2)m=20时,购买排球、篮球总费用的最大,购买排球、篮球总费用的最大值为6000元.【解析】【分析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.【详解】(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是60元,每个篮球的价格是120元;【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,弄清题意,找准备等量关系列出方程组、找准不等关系列出不等式是解题的关键.26.【湖南省湘西州2018年中考数学试卷】某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.27.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.28.【湖南省郴州市2018年中考数学试卷】解不等式组:,并把解集在数轴上表示出来.【答案】﹣4<x≤0,在数轴上表示见解析.【解析】【分析】先分别求出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【详解】解不等式①,得:x>﹣4,解不等式②,得:x≤0,则不等式组的解集为﹣4<x≤0,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.29.【云南省昆明市2018年中考数学试题】(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【答案】(1)每立方米的基本水价是2.45元,每立方米的污水处理费是1元;(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米【解析】分析:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米.点睛:本题考查学生的应用能力,解题的关键是根据题意列出方程和不等式.30.【黑龙江省哈尔滨市2018年中考数学试题】春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B 型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?【答案】(1)每个A型放大镜和每个B型放大镜分别为20元,12元;(2)最多可以购买35个A型放大镜.【解析】分析:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.点睛:本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.31.【浙江省台州市2018年中考数学试题】解不等式组:【答案】原不等式组的解集为3<x<4.【解析】分析:根据不等式组的解集的表示方法:大小小大中间找,可得答案.详解:解不等式①,得x<4,解不等式②,得x>3,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为3<x<4.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.32.【江苏省徐州巿2018年中考数学试卷】解不等式组,并写出它的所有整数解.【答案】不等式组的整数解哟﹣1、0、1、2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.33.【浙江省宁波市2018年中考数学试卷】某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根据题意得,,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.34.【湖北省孝感市2018年中考数学试题】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元;(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元. 【解析】分析:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量-a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.35.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.详解:==3(x+1)-(x-1)=2x+4,,解①得:x≤1,解②得:x>-3,故不等式组的解集为:-3<x≤1,把x=-2代入得:原式=0.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.36.【湖南省邵阳市2018年中考数学试卷】某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【答案】(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.【详解】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得,解得x=120,经检验,x=120是所列方程的解,当x=120时,x+30=150,答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥,∵a是整数,∴a≥14,答:至少购进A型机器人14台.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.37.【山东省烟台市2018年中考数学试卷】为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?【答案】(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。
2018年中考数学试卷及答案
2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意事项: 1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和 座位号; 2、必须在答题卡上答题,在草稿纸、试题卷上答题无效; 3、答题时,请考生注意各大题号后面的答题提示; 4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁; 5、答题卡上不得使用涂改液、涂改胶和贴纸; 6、本学科试卷共26个小题,考试时量120分钟,满分120分。 一、选择题(在下列各题的四个选项中,只有一项是符合题意的。请在答题卡中填涂符合题意的选项。本大 题共12个小题,每小题3分,共36分)
2
C、75 平方千米
D、750 平方千米
0
12、若对于任意非零实数a ,抛物线 y ax ax 2a 总不经过点
P x
A、有且只有1 个 B、有且只有2 个 C、至少有3 个 D、有无穷多个
2 3,x 0 16 ,则符合条件的点P
二、填空题(本大题共6个小题,每小题3分,共18分) 13、化简
16、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1 到6 的点数,掷得面朝上的点数为偶数的概率 为 。
2
17、已知关于x 的方程x 3 x a 0 有一个根为1,则方程的另一个根为
。
18、 如图, 点 A,B,D 在⊙O 上,A 20 ,BC 是⊙O 的切线,B 为切点,OD 的延长线交BC 于点C , 则OCB 度。
22、为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建。如图,A,B两地之间有 一座山,汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶, 已知BC=80千米,∠A=45 ,∠B=30 。 (结果精确到 0.1千米,参考数据: 2 1.414, 3 1.732 ) (1)开通隧道前,汽车从A地到B地大约要走多少千米? (2)开通隧道后,汽车从A地到B地大约可以少走多少千米?
第10 题图 第14 题图 第18 题图 三、解答题(本大题共8个小题,第19,20题每小题6分,第21,22题每小题8分,第23,24题每小题9 分,第 25,26题每小题10分,共66分,解答应写出必要的文字说明、证明过程或演算步骤) 19、计算: 1
2018
8 3 4 cos 45 。
m 1 m 1 m 1
。
14、某校九年级准备开展春季研学活动。对全年级学生各自最想去的活动地点进行了调查,把调查结果制成 如下扇形统计图,则“世界之窗”对应扇形的圆心角为 度。 15、在平面直角坐标系中,将点A 2, 3 向右平移3 个单位长度,再向下平移2 个单位长度,那么平移后对 应的点A 的坐标为 。
m (m 为常数,m 1 ,x 0 )的图象经过点P(m ,1) x
和Q( 1 ,m ) ,直线PQ与x 轴,y 轴分别交于C,D两点,点M(x ,y )是该函数图象上的一个动点,过点 M 分别作x 轴和 y 轴的垂线,垂足分别为A,B。 (1)求∠OCD的度数; (2)当m 3 , 1 x 3 时,存在点M使得△OPM∽△OCP,求此时点M的坐标; (3)当m 5 时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由。
0
20、先化简,再求值:a b ba b 4ab ,其中a 2 ,b
2
1
2
。
21、为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫 战”的环保知识有奖问答活动,并用得到的数据绘制了如下条形统计图(得分为整数,满分为10分,最低 分 为6分) 。请根据图中信息,解答下列问题: (1)本次调查一共抽取了 名居民; (2)求本次调查获取的样本数据的平均数、众数和中位数; (3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖,请你根据调查活动, 帮社 区工作人员估计需准备多少份“一等奖”奖品?
A、在2 和3 之间 B、在3 和4 之间 C、在4 和5 之间 D、在5 和6 之间 10、小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回 家.下图反映了这个过程中,小明离家的距离y 与时间x 之间的对应关系.根据图像下列说法正确 的 是 A、小明吃早餐用了25 min C、食堂到图书馆的距离为0.8km B、小明读报用了 30 min D、小明从图书馆回家的速度为0.8km / min
4
D、 10.2 10 5 D、m 5 m 3 m 2
B、3 2 2 2 1
C、x 2
3
x5
4、下列长度的三条线段,能组成三角形的是 A、4cm, 5cm, 9cm B、 8cm, 8cm, 15cm C、 5cm, 5cm, 10cm 5、下列四个图形中,既是轴对称图形又是中心对称图形的是
1、2 的相反数是 A、2
B、
2、 据统计,2017 年长沙市地区生产总值约为 10200 亿元,经济总量迈入” 万亿俱乐部” ,数据 10200 用科学记数法表示为 A、0.102105 3、下面计算正确的是 A、a 2
D、
1 2
B、 10.2 10
3
C、 1.0 .2 10
D、6cm, 7cm, 14cm
A、
B、
C、
D、
x20 6、不等式 的 解 集 在 数 轴 上 表 示 正 确 的 是 2 x 4 0
A、
B、
C、
D、
7、将下面左侧的平面图形绕轴l 旋转一周,可以得到的立体图形是
A、
B、
C、
D、
8、下面说法正确的是 A、任意掷一枚质地均匀的硬币 10 次,一定有5 次正面朝上 B、天气预报 说”明天降水概率为40% ”,表示明天有40% 的时间在下雨 C、 “篮球队员在 罚球线上投筐一次,投中”为随机事件 D、 “a 是实数, a 0 ”是不可能事件 9、估计 10 1 的值
11、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目: “问有沙田一块,有三斜,其中 小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别 为 5 里,12 里, 13 里,问这块沙田面积有多大?题中的 “里 ”是我国市制长度单位, 1 里=500 米,则该沙 田 的面积为 A、7.5 平方千米 B、15 平方千米
S1 S 2 ② S S3 S 4 ③“十字形”ABCD的周长为 12 10
26、我们不妨约定:对角线互相垂直的凸四边形叫做“十字形。 (1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有 ②在凸四边形ABCD中,AB=AD且CB CD,则该四边形 “十字形。 (填“是”或“不是)
;
(2)如图1, A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点, AC与BD交于点E,∠ADB∠CDB=∠ABD-∠CBD,当6 AC 2 BD 2 7 时,求OE的取值范围; (3)如图2,在平面直角坐标系xOy 中,抛物线 y ax 2 bx c (a , b , c 为常数, a 0 , c 0 )与x 轴 交于点A,C两点(点A在点C的左侧) ,B 是抛物线与 y 轴的交点,点D的坐标为(0, ac ) 。记“十字形” ABCD的面积为S ,记△AOB,△COD,△AOD,△BOC的面积分别为S1 ,S 2 ,S3 ,S 4 。求同时满足下列三个 条件的抛物线解析式: ① S
23、随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动, 对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折。已知打折前,买6盒甲品牌 粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需5200元。 (1)打折前甲、乙两种品牌粽子每盒分别为多少元? (2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少 钱?
24、如图, 在ABC 中,AD 是边BC 上的中线,BAD CAD ,CE//AD ,CE 交BA 的延长线于点E , BC 8 ,AD 3 。 (1)求CE 的长; (2)求证:ABC 为等腰三角形; (3)求ABC 的外接圆圆心P 与内切圆圆心Q 之间的距离。
25、如图,在平面直角坐标系xOy 中,函数 y