第5章 沥青材料

合集下载

第5章 土木工程材料_沥青材料

第5章 土木工程材料_沥青材料

第5章沥青材料本章导学学习目的:沥青是一种典型的有机胶结材料,也是现代高速公路及城市道路的主要路面胶结材料和常用的防水材料;通过本章的学习,重点掌握沥青的主要性能特点,深刻认识沥青性能于环境的关系,为沥青混合料的学习打下基础。

教学要求:结合现代路面工程和屋面防水工程,讲解沥青材料的主要技术性能,重点使学生掌握,沥青性能与组成及环境的关系,并了解沥青防水材料的基本性能。

学习重点:1.通过学习沥青的分类和石油沥青的生产,了解不同生产工艺和基属的沥青的性能特点。

2.重点掌握石油沥青的组成和结构,包括组分组成和胶体结构组成,及其对路用性能的影响。

3.学习掌握石油沥青的重要技术性质的含义、测试方法及所表征的路用性能。

有条件的学员应亲自动手进行三大指标试验,并通过阅读参考文献了解美国SHRP沥青指标体系中对沥青性能的要求。

4.通过阅读参考文献,了解有关沥青老化和改性的知识。

5.结构工程专业的学员还应掌握常用的沥青基防水卷材的基本性能。

提示:沥青材料是目前我国高速公路面层的主要胶结材料,同时也是重要的屋面防水材料,由于沥青属于有机胶凝材料,因此具有与无机胶凝材料明显不同的性能特点和使用注意事项,学习中应注意对比掌握。

5.1沥青的分类与生产5.1.1沥青的分类沥青材料是由一些极其复杂的高分子碳氢化合物和这些碳氢化合物的非金属(氧、硫、氮)的衍生物所组成的黑色或黑褐色的固体、半固体或液体的混合物。

沥青属于有机胶凝材料,与矿质混合料有非常好的粘结能力,是道路工程重要的筑路材料;沥青属于憎水性材料,结构致密,几乎完全不溶于水和不吸水,因此广泛用于土木工程的防水、防潮和防渗;同时沥青还具有较好的抗腐蚀能力,能抵抗一般酸性、碱性及盐类等具有腐蚀性的液体和气体的腐蚀,因此可用于有防腐要求而对外观质量要求较低的表面防腐工程。

对于沥青材料的命名和分类,目前世界各国尚未取得统一的认识。

现就我国通用的命名和分类简述如下:沥青按其在自然界中获得的方式,可分为地沥青和焦油沥青两大类。

沥青混合料组成设计

沥青混合料组成设计

前苏联k 前苏联k法
如以D1表示矿料最大粒径,当矿料粒径按1/2递减时, 如以D1表示矿料最大粒径,当矿料粒径按1/2递减时,其相 D1表示矿料最大粒径 1/2递减时 应的各级粒径尺寸为:D1 :D1、 应的各级粒径尺寸为:D1、
n为粒径尺寸数
为第一档(D1/0.5D1)粒径的重量百分率, 设a1为第一档(D1/0.5D1)粒径的重量百分率,则相应其 余各档的重量百分率为: 余各档的重量百分率为: ……a a2=a1k,a3=a1k2……am=a1km-1, 其中m为粒料分档数目,m=n其中m为粒料分档数目,m=n-1
连续开级配 粗骨料含量增加,混合料可以形成骨架作用, 粗骨料含量增加,混合料可以形成骨架作用,细集料含量 较少, 较少,不能充分填充粗骨料之间的空隙而有较大的空隙 形成一种骨架空隙结构 骨架空隙结构。 率,形成一种骨架空隙结构。 材料的强度主要取决于内摩阻力 粘结力相对是次要的, 强度主要取决于内摩阻力, 材料的强度主要取决于内摩阻力,粘结力相对是次要的, 其热稳性可以显著提高。 其热稳性可以显著提高。 空隙率太大而使路面耐久 性受到影响。 性受到影响。
2.连续级配理论 2.连续级配理论
1)最大密度曲线理论 1)最大密度曲线理论 最大密度曲线是通过试验提出的一种理想曲线。 最大密度曲线是通过试验提出的一种理想曲线。 W.B.Fuller等的研究认为 等的研究认为: W.B.Fuller等的研究认为:固体颗粒按粒度大小有规则地 组合排列,粗细搭配,可以得到密度最大、 组合排列,粗细搭配,可以得到密度最大、空隙最小的混合 料。 初期研究:细集料以下的颗粒级配为椭圆形曲线, 初期研究:细集料以下的颗粒级配为椭圆形曲线,粗集料 为与椭圆曲线相切的直线, 为与椭圆曲线相切的直线,由这两部分曲线组成的级配曲 线可以达到最大密度。 线可以达到最大密度。 简化的“抛物线最大密度理想曲线” 简化的“抛物线最大密度理想曲线”。

第四章 沥青材料解读

第四章 沥青材料解读

Sb f T , t , PI
(3)黏附性
直接影响沥青路面的使用质量和耐久性。 不仅与沥青的性质有关,而且与集料性质(酸碱性)也有关。 一般应优先使用碱性集料,当采用酸性石料时,可掺加 各种抗剥剂来提高黏附性。 试验方法:水煮法和水浸法
(4)老化
沥青在自然因素(热、氧化、光和水)作用下,产生不可逆 的化学变化,导致路用性能劣化,称之为老化。 其组分变化规律为: 油分 树脂 沥青质 饱和分,芳香分(较慢) 胶质(较快) 沥青质
四、石油沥青的结构
1.胶体理论 沥青的胶体结构是以沥青质为胶核,胶质被吸附 其表面,并逐渐向外扩散形成胶团,胶团再分散于芳 香分和饱和分中。 2.胶体结构类型(三种)
a、溶胶型结构
b、溶-凝胶型结构
c、凝胶型结构
溶胶结构:沥青质含量少,饱和分和芳香分、胶质多。 凝胶结构:沥青质含量较多,并有相应数量的胶质形成 胶团,使得胶团的相互移动较困难。 溶-凝胶结构:适中(理想结构)。
六、石油沥青的技术标准
1.道路石油沥青的技术标准 (1)分级:A、B、C三级,适用范围见表4-3; (2)标号:根据针入度划分160号、130号、110号、90号、 70号、50号、30号七个标号。 随着标号增加,沥青的黏度减小(针入度增加),塑性 增加(延度增大),而温度稳定性变差(软化点降低)。
2)煤沥青的技术指标 ⑴ 黏度:用标准黏度计测量。与液体沥青一样。 ⑵ 蒸馏试验馏分含量及残渣性质:测定试样受热时,在规定温度 范围内蒸出的馏分含量,及蒸馏后残留物的含量。 馏分含量的限制控制了煤沥青由于蒸发而老化的安全性; 残渣性质试验保证了煤沥青残渣具有适宜的黏结性。 ⑶ 煤沥青焦油酸含量:导致路面强度降低,且有毒,在沥青中的 含量必须加以限制。 ⑷ 含萘量:萘是有害物且易升华,有毒,能加速老化,萘易使沥 青失去塑性。含量越低越好。 ⑸甲苯不溶物:沥青中不溶于甲苯的物质。 ⑹水分:过量的水分造成沥青损失,易引起火灾。 3.煤沥青与石油沥青的鉴别(见后页表)

沥青和沥青混合料试验检测方法(新)

沥青和沥青混合料试验检测方法(新)

第五章:沥青混合料试验检测技术作为高等级道路路面的主要结构形式之一,沥青混合料路面以其表面平整、坚实、无接逢、行车平稳、舒适、噪音小等优点,在国内外得到广泛的应用。

为了保证高等级公路在高速、安全、经济和舒适四个方面的功能要求,沥青混合料除了要具备一定的力学强度,还要具备高温稳定性、低温抗裂性、耐久性、抗滑性、抗渗性等各项技术要求。

因此道路工程建设过程中,对沥青混合料的各项性能进行准确的检测,以确保沥青路面的工程质量。

本章简略介绍沥青混合料的组成结构和技术性能,重点介绍沥青混合料组成设计方法和技术性能指标的检测方法,同时介绍SMA的设计及检测方法第一节沥青混合料的分类及其技术要求沥青混合料是由适当比例的粗集料、细集料及填料组成的矿质混合料与粘结材料沥青经拌和而成的混合材料,一般我们将沥青混凝土和沥青碎石通称为沥青混合料。

一、沥青混合料的分类(一)按结合料分类1.石油沥青混合料:以石油沥青为结合料的沥青混合料。

2.煤沥青混合料:以煤沥青为结合料的沥青混合料。

(二)按施工温度分类1.热拌热铺沥青混合料:简称热拌沥青混合料。

沥青与矿料在热态拌和、热态铺筑的混合料。

2.常温沥青混合料:以乳化沥青或稀释沥青与矿料在常温状态下拌制、铺筑的混合料。

(三)按矿质混合料级配类型分类1.连续级配沥青混合料:沥青混合料中的矿料是按级配原则,从大到小各级粒径都有,按比例相互搭配组成的混合料,称为连续级配沥青混合料。

2.间断级配沥青混合料:连续级配沥青混合料矿料中缺少一个或两个档次粒径的沥青混合料称为间断级配沥青混合料。

(四)按混合料密实度分类1.密级配沥青混凝土混合料:按密实级配原则设计的连续型密级配沥青混合料,但其粒径递减系数较小,设计空隙率3%-6%。

2.半开级配沥青混凝土混合料:按级配原则设计的连续型级配混合料,但其粒径递减系数较大,设计空隙率6%-12%。

3.开级配沥青混凝土混合料:按级配原则设计的连续型级配混合料,但其粒径递减系数较大,设计空隙率大于18%。

第五章_第四节沥青混合料最佳用油量的确定 (1)解析

第五章_第四节沥青混合料最佳用油量的确定 (1)解析

交通科学与工程学院
13
4.2 为什么要确定最佳沥青用量
➢ 沥青用量过多
泛油
2020/10/25
车辙
交通科学与工程学院
推移、拥包
14
4.2 为什么要确定最佳沥青用量
➢对沥青混合料强度影响
= c + (tan
沥青混合料 沥青粘结 集料嵌挤
的强度 c
交 互 沥青性质 作 用
集料性质
2020/10/25
4.在矩形图上绘制出各集料的通过百分率的筛分曲线 5.按照各集料曲线重叠、相接、相离三种情况确定各集料的用量比例 6.合成级配, 7. 校验、调整
矿质混合料组成设计
第四节 沥青混合料最佳沥青用量确定
WHAT
WHY
HOW
2020/10/25
交通科学与工程学院
10
4.1 最佳沥青用量(OAC)
沥青用量
沥青占沥青混合料的比例 油石比:沥青占集料及矿粉之和的比例
2020/10/25
交通科学与工程学院
11
4.2 为什么要确定最佳沥青用量
稳高定色温性
低香温
抗裂性
水温味定性
耐久性
2020/10/25


交通科学与工程学院

12
4.2 为什么要确定最佳沥青用量
➢沥青用量过少
松散
坑槽
2020/10/25
X aM i 100 a Ai
• (2)计算B集料在矿质混合料中的用量,设B集料中占优势粒径的粒径尺寸为j,其含量为 aB(j),混合料M中该粒径要求的分计筛余百分率为aM(j),则B在混合料中的用量(Y)为
Y aM j 100 aB j

第五章 沥青及沥青混凝土

第五章 沥青及沥青混凝土

第五章沥青及沥青混凝土1 概述沥青材料的定义沥青是一种有机胶凝材料,常温下呈黑色或黑褐色的固体、半固体或粘稠性液体。

有良好的憎水性、粘结性和可塑性,能抗冲击荷载的作用,对酸碱盐等化学物质有较强的抗侵蚀能力。

在交通、建筑、水利等工程中,广泛用作路面、防潮、防水和防潮材料。

分类:1、地沥青:①天然沥青(自然形成)②石油沥青2、焦油沥青:①页岩沥青②木沥青③煤沥青沥青建筑材料沥青材料一般情况下却很少单独使用;在工程上使用的沥青必需具有一定的物理性质,如在低温条件下应有弹性和塑性,在高温条件下要有足够的强度和稳定性,在加工和使用时具有抗“老化”能力,与各种骨料和结构表面有较强的粘附力,以及对构件变形的适应性和抗疲劳性等。

因此在工程上使用的沥青材料通常都是改性沥青和沥青混合料。

(一)改性沥青改性沥青是指按工程需要的物理特性,对沥青材料进行人工改造,使其满足工程要求的沥青材料。

改性方法通常有掺配法、填充、乳化。

(二)沥青混合料沥青混合料是沥青与级配合适的矿物质材料拌和均匀配制成建筑沥青材料。

常见的沥青混合料有沥青混凝土、沥青砂浆、沥青胶(又称玛碲脂)及沥青嵌缝油膏等,主要用于铺路、水工防渗及建筑防水。

7.1石油沥青一、石油沥青石油沥青是石油原油经蒸馏等方法提炼出各种轻质油(如汽油、煤油和柴油等)及润滑油以后的残留物,或再经加工而得的产品。

一石油沥青的组成和结构1、石油沥青的组分石油沥青是由许多高分子碳氢化合物及其非金属(主要为氧、硫、氮等)衍生物组成的复杂混合物。

它是石油中分子量最大、组成和结构是为复杂的部分。

化学组分分析就是将沥青分离为物理化学性质相近,而且与沥青性质又有一定联系的几个组。

石油沥青的化学组分有三组分和四组分两种分析法。

石油沥青三组分分析法:油分、树脂(沥青胶质)、沥青质。

四组分分析法:饱和分,芳香分,胶质和沥青质。

(1)油分:淡黄色至红褐色的油状液体,是沥青中分子量最小和密度最小的组分,在170℃较长时间加热时会挥发,能溶于多种有机溶剂,但不溶于酒精。

沥青材料

沥青材料
挥发、氧化、裂化、聚合等一系列物理及化学变化,使沥青的 化学组成及性质相应地发生变化,称为沥青加热稳定性。
2)试验:按规定要进行对沥青的加热质量损失和加热后残渣
性质的试验
•对于道路石油沥青(黏稠沥青):沥青的薄膜加热试验
•对于液体石油沥青:液体石油沥青蒸馏试验 测定: 1.质量损失百分率 2.针入度 3.延度(25℃)(cm) 4.延度(15℃)(cm)
1.三组分分析法 油分、树脂、沥青质 油分:使沥青具有流动性 树脂:提高沥青的塑性和粘附性
酸性树脂:是一种表面活性物质,能增强沥青与砂质材料表 面的粘附性 。
沥青质:提高沥青的粘性、耐热性,但能降低沥青的塑性
2.四组分分析法 沥青质、饱和分、芳香分、胶质 3.沥青的含蜡量(对路面性能的影响) 高温时,石蜡变软,导致沥青路面的高温稳定性降 低,出现车辙,另一方面,低温会使沥青变脆硬,导致路 面低温抗裂性降低,出现裂缝,且蜡会使石料与沥青之间 的粘附性降低,使路面石子与沥青产生剥落,石蜡的存在 还会降低沥青路面的抗滑性能。
抗腐蚀性


二、乳化沥青 1.概述
1)定义:石油沥青与水在乳化剂、稳定剂等的作用下,经乳化 加工制的的均匀沥青产品,在常温下具有较好的流动性。 2)优点: ①冷态施工,操作方便,节约能源 ②可在潮湿地基上施工(与湿集料拌和,具有足够的黏结力) ③ 无毒、无臭、施工安全,环保、污染少 3)缺点: ①稳定性差,贮存期不超过半年(贮存期长易产生分层) ②修筑路面成型期长
四、石油沥青的结构
1.胶体理论 沥青的胶体结构是以沥青质为胶核,胶质被吸附 其表面,并逐渐向外扩散形成胶团,胶团再分散于芳 香分和饱和分中。 2.胶体结构类型(三种)
a、溶胶型结构
b、溶-凝胶型结构

路基路面工程第五章 沥青路面幻灯片PPT

路基路面工程第五章  沥青路面幻灯片PPT

➢ 沥青混合料高温稳定性评价方法:
• 单轴压缩试验
简单剪切试验
• 马歇尔试验
轮辙试验
• 蠕变试验
➢ 沥青路面高温稳定性技术标准
沥青路面车辙的技术指标
容许车辙深度标准
沥青混合料永久变形指标
轮辙试验标准
动稳定度建议标准
➢ 沥青路面车辙防治措施:
• 失稳型车辙:集料级配要有足够的粗颗粒;沥青结合料具有足 够的粘度;集料外表沥青膜具有足够的厚度;
➢ 提高沥青路面水稳定性的措施:
➢ 完善路面构造排水系统。 ➢ 沥青材料选择。 ➢ 集料选择。 ➢ 施工时保持集料枯燥,无杂质,拌和充分,摊铺时不
产生离析,碾压时保证到达压实要求等。
5.3.4 沥青路面疲劳性能
弹性状态的路面材料承受重复应力作用时,可能在低于静载一 次作用下的极限应力值时出现破坏,这种材料强度的降低现象 称为疲劳。
➢ 抗拉强度
直接拉伸试验
间接拉伸试验
当材料的抗拉强度缺乏以抵抗上述拉应力时,路面构造就会产 生拉伸断裂。
➢ 抗弯拉强度
1
=
Pl bh 2
5.3 沥青路面稳定性与耐久性
5.3.1 沥青路面高温稳定性
➢ 车辙的形成机理及影响因素:
• 初始阶段的压密过程
• 沥青混合料的侧向流动
• 矿料的重新排列及矿料骨架的破坏
• 间接拉伸试验 • 直接拉伸试验
➢ 沥青路面低温开裂的预防措施:
• 使用稠度较低、针入度较大的沥青,同时应满足夏季的要求; • 选用温度敏感性低的沥青有利于减小沥青路面的温度裂缝; • 采用吸水率低的集料, • 控制沥青用量在马歇尔最正确用量±5%范围内,但同时也应
保证高温稳定性; • 采用应力松弛性能良好的聚合物改性沥青等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)树脂
为黄色至黑褐色粘稠状物质,分子量600~
1000,密度为1.0~1.1g/cm3。树脂中绝大部 分属于中性树脂。中性树脂能溶于三氯甲烷、 汽油和苯等有机溶剂,它赋予沥青以良好的 粘结性、塑性和可流动性。
树脂含量增加,石油沥青的延度和粘结力等
品质愈好。
(3)沥青质 沥青质为深褐色至黑色固态来自定形物质(固第 5 章
沥青材料
第一节
1 石油沥青
沥青
石油沥青是由许多高分子碳氢化合物及其非
金属(主要为氧、硫、氮等)衍生物组成的 极其复杂的混合物。是由石油原油经分馏出 各种轻质油(如汽油、柴油等)及润滑油以
后的残留物经加工而成的产品。
1.1 石油沥青的化学组分
将沥青中化学成分及性质极为接近,并且与
地区应用的沥青应考虑沥青的脆点。
沥青的软化点愈高,脆点愈低,则沥青的
温度敏感性越小。
(4)大气稳定性
石油沥青在热、阳光、氧气和潮湿等大气
因素的长期综合作用下抵抗老化的性能, 称为大气稳定性。也是沥青材料的耐久性。 在大气因素的综合作用下,沥青中各组分 会发生不断递变,低分子化合物将逐步转 变成高分子物质,即油分和树脂逐渐减少, 而沥青质逐渐增多。石油沥青随着时间的 进展,流动性和塑性将逐渐减小,硬脆性 逐渐增大,直至脆裂。这个过程称为石油 沥青的“老化”。所以大气稳定性即为沥 青抵抗老化的性能。
(1)溶胶结构
沥青质含量较少,胶团间完全没有引力或引
力很小,在外力作用下随时间发展的变形特 性与粘性液体一样。直馏沥青的结构多为溶 胶结构。
(2)
凝胶结构
凝胶结构沥青质含量很多,胶团间有引力形成
立体网状结构,沥青质分散在网格之间,在外 力作用下弹性效应明显。氧化沥青多属于凝胶 结构。
球(直径9.53mm,质量3.5g),浸入水或
甘油中,以规定的速度升温(5℃/min),
当沥青软化下垂至规定距离(25.4mm)时
的温度即为其软化点,以摄氏度(℃)计。
另外,沥青的脆点是反映温度敏感性的另
一个指标,它是指沥青从高弹态转到玻璃
态过程中的某一规定状态的相应温度,该
指标主要反映沥青的低温变形能力。寒冷
物理力学性质有一定关系的成分,划分为若 干个组,这些组就称为“化学组分”。
沥青中各组分的主要特性(三组分法) (1)油分 油分为淡黄色至红褐色的油状液体,是沥青 中分子量最小和密度最小的组分,密度介于 0.7~1.0g/cm3之间。在170°C较长时间加 热,油分可以挥发。油分能溶于石油醚、44 二硫化碳、三氯甲烷、苯、四氧化碳和丙酮 等有机溶剂中,但不溶于酒精。 油分赋予沥青以流动性。
油沥青中分子量最大的。它降低石油沥青的粘结 力。
石油沥青中还含有蜡,它会降低石油沥青的粘结
性和塑性,同时对温度特别敏感(即温度稳定性 差)。所以蜡是石油沥青的有害成分。
1.2 石油沥青的胶体结构 油分、树脂和地沥青质是石油沥青的三大 组分,其中油分和树脂可以互相溶解,树 脂能浸润沥青质,并在沥青质的超细颗粒 表面形成树脂薄膜。 石油沥青的结构是以沥青质为核心,周围 吸附部分树脂和油分的互溶物形成胶团, 无数胶团分散在油分中而形成胶体结构。 根据沥青中各组分的相对比例不同,胶体 结构可分为溶胶型、凝胶型和溶凝胶型三 种类型。
粘稠石油沥青的针入度是在规定温度
(25℃)条件下,以规定质量(100g)
的标准针,在规定时间(5s)内贯入
试样中的深度来表示,单位以1/10mm
计算。针入度反映了石油沥青抵抗剪切 变形的能力。针入度值越小,表明粘度 越大。
粘度是将一定量的液体沥青,在某温度
下经一定直径的小孔流出50cm3所需的 时间,以秒表示。常用符号“CdtT”表 示粘度,其中d为小孔直径(mm), t为试样温度,T为流出50 cm3沥青的 时间。d有10、5、3mm三种,t通 常为25℃或60℃。
(3)温度敏感性

温度敏感性是指粘滞性和塑性随温度升降而变化
的性能。由于沥青是一种高分子非晶态热塑性物
质,故没有一定的熔点。

沥青的粘滞性和塑性随温度变化而变化。 石油沥 青中地沥青质含量较多时,其温度敏感性较小。 在工程中使用时往往加入滑石粉、石灰石粉等矿 物填料,以减小其温度敏感性。沥青中含蜡量较 多时,则会产生温度较高(60℃左右)时发生流
淌,在温度较低时又易变硬开裂。
温度敏感性以软化点表示。
由于沥青材料从固态至液态有一定的变态
间隔,故规定以其中某一状态作为从固态
转变到粘流态的起点,相应的温度则称为
沥青的软化点。
沥青软化点一般采用环球法测定:
把沥青试样装入规定尺寸(直径15.88mm,
高6mm)的铜环内,试样上放置一标准钢
(2)塑性
塑性指石油沥青在外力作用下产生变形而
不破坏,除去外力后,仍能保持变形后的 形状的性质。沥青的塑性对冲击振动荷载 有一定吸收能力,并能减少摩擦时的噪声, 故沥青是一种优良的道路路面材料。 石油沥青的塑性用延度表示。延度愈大, 塑性愈好。延度测定是把沥青制成“8” 字形标准试件,置于延度仪内25℃水中, 以 5cm/min的速度拉伸,用拉断时的伸长 度来表示,单位用cm计。(P142 图4-10)
体粉末),分子量1000以上,密度大于1 g/ cm3,不溶于酒精、正戊烷,但溶于三氯甲烷 和二硫化碳,染色力强,对光的敏感性强, 感光后就不能溶解。
沥青质是决定石油沥青温度敏感性、粘性的
重要组成部分,其含量愈多,则软化点愈高, 粘性愈大,即愈硬脆。
石油沥青中还含2~3%的沥青碳和似碳物,是石
(3)溶——凝胶结构
介于溶胶与凝胶之间,并有较多的树脂,胶
团间有一定吸引力,在常温下受力变形的最 初阶段呈现出明显的弹性效应,当变形增加 到一定数值后,则变为有阻尼的粘性流动。
大部分优质道路沥青均配成溶~凝胶型结构,
具有粘弹性和触变性,故亦称弹性溶胶。
1.3 石油沥青的技术性质 (1)粘滞性 石油沥青的粘滞性又称粘性 粘滞性应以绝对粘度表示,但因其测定方 法较复杂,故工程中常用条件粘度来表示 粘滞性。 对粘稠(半固体或固体)石油沥青用针入 度表示,对液体石油沥青则用粘滞度表示。
相关文档
最新文档