蚀刻用腐蚀液与配方比例
蚀刻技术

注意:不锈钢材料的成份不同所采用的蚀刻液配方也应不同。
钛金板蚀刻液配方: 在腐蚀之前,先用氢氟酸或用氟化钠水溶液少量盐酸擦洗
把表面钛金膜去掉,再用7至11不锈钢腐蚀液蚀刻。
铁蚀刻液配方:
12 硝酸 25%
三氯化铁45°Be 25%
水 50%
蚀刻温度: 30-50度 赞同0| 评论 2011-12-23 21:38 标牌探索者 | 四级
金属标牌种类繁多,制作步骤也不尽同。现以金属蚀刻牌为例,其制作工序大体如下:
8 浓盐酸 586毫升/升
浓硝酸 80.5毫升/升
氯化镍 9.6克/升
三氯化铁 344.5克/升
水 加水到一升。
蚀刻铝铭牌,通常采用三氯化铁与硫酸铜的混合液,ห้องสมุดไป่ตู้型的配方如下
硫酸铜水溶液:600mL
三氯化铁水溶液:400mL
工业硫酸:16mL
不锈钢蚀刻液配方:
7 浓盐酸 210克/升
浓硝酸 200克/升
氢氟酸 17%
蚀刻温度: 30-50度
11 三氯化铁(40-45)°Be 65%
双氧水 10%
氢氟酸 25%
蚀刻温度: 24-60度
9 三氯化铁(45-48)°Be 65%
蚀刻温度: 30-50度
10 三氯化铁(30-42)°Be 67%
双氧水 16%
1、板材下料。
2、版面处理。
3.、制作掩膜和背面保护、修版。
4、蚀刻。
5、脱模。
6、上漆、除漆。
7、清理版面或烘烤。
8、罩光。
9、质检、包装、入库。
附部分蚀刻液配方

附部分蚀刻液配方
附部分蚀刻液配方:
(一)化学腐蚀主要用强酸、混合酸、酸+盐或碱+盐的混合物。
黄铜蚀刻液配方:
1 三氯化铁(25-45)°Be 80-85 %
浓盐酸 15-20%
蚀刻温度:30-40度
缺点:腐蚀液无法再生,有污染。
用于铝箔
蚀刻时,铝箔上常有少量黄色残留物,难以清洗。
2 氯化铜 5 %
浓盐酸 10%
双氧水 25%
水 60%
蚀刻温度30-40度
优点:用双氧水使氯化亚铜氧化再生并可回收
3 氯化铜 15 %
氨水 10-20%
蚀刻温度: 40-60度
PH 9.5-9.8
4 浓盐酸 20-50%
水 20-80%
蚀刻温度: 40-50度
5 磷酸 80-85%
蚀刻温度: 40-60度
6 氢氧化钠 10-20%
水 80-90 %
不锈钢蚀刻液配方:
7 浓盐酸 210克/升
浓硝酸 200克/升
冰醋酸 20克/升
氢氟酸 200克/升
磷酸氢二钠 12个结晶水 12克/升水 358克/升
蚀刻温度: 30-50度
8 浓盐酸 586毫升/升
浓硝酸 80.5毫升/升
氯化镍 9.6克/升
三氯化铁 344.5克/升
水加水到一升。
蚀刻温度:24-60度
9 三氯化铁(45-48)°Be 65%蚀刻温度:30-50度
10 三氯化铁(30-42)°Be 67%双氧水 16%。
蚀刻铜牌技术

蚀刻铜牌技术铜板化学蚀刻液:选用较纯的三氯化铁配成30波氏度溶液,流动腐蚀。
为了加快蚀刻速度,建议把铜板加热到50度左右。
下面介绍一种快速蚀刻方法(这个就是要注意在工作台上方安装一台抽风机,以吸收反应产生的有毒气体,保证人身安全):铜牌蚀字1(工具及原料:准备白铁剪刀一把,钢尺一把,划线钢针一把,火炉铬铁,焊锡、焊锡液,不干胶一卷刻刀一把毛笔一支,黑油手套一双,抛光膏一块,抛光机一台。
2(配方:蚀铜液:7份高浓度硝酸,3份高浓度盐酸焊锡液:9份盐酸,适量锌块3(操作流程:(1)铜板的裁剪首先根据所需铜牌的设计大小在整张0(5MM,1(0MM的铜板上用钢针和直尺划出铜牌的大小尺寸方形,长方形或圆形、扇形等,然后按线裁剪下来,确定铜牌边框厚度和周长,均匀地按线剪下铜条,铜条也叫边带。
(2)焊接边带我们把裁好的铜板周边焊上整卷的边带让其铜板显出厚度,如果铜板面积较大,我们还可以用增加焊接背面边带的经纬格来加强结构的合理性和牢固性,在准备焊接时首先把铜质做的溶铁放入火炉中加热,烙铁的形状是一头为尖形,一头为鸭嘴形,尖形的一方是在窄小的边带底角进行使用鸭嘴形的一方是焊宽松的边带,它为主焊,边带一定平齐铜板焊接,边焊边按边对齐焊接齐直角的时候,请不弯边带,应把它剪下来,按90?再焊另一条边带,这时比整条边带要弯成的90?要美得多,没有弧角,焊锡液用笔笔醮在焊缝两边,起到清洗铜板油污和助焊作用,增加焊接质量,焊毕边带用细花锉把毛边整理一下,到满意为止。
(3)封团不干胶带,复写字样把焊毕边带的铜板表面除去油污,然后再局部或全部地封闭起来,把字样安放好,下面放上一张兰色或红色复写纸把原字复成双勾形体,然后用刻刀和钢尺把字雕空,并揭开线内字体(这是制凹字的做法)把全部要做的字都雕好后,这时由于刻刀力量的不均,字体的某些周边,会发生微小的松动,这时如果涂蚀铜液,蚀出的字肯定有毛边不齐,影响原件效果,所以雕毕空心字后,还应在火炉中微微地把铜板反面加点温让不干胶达到最大的粘度,再认真地用手压一遍胶带,排出空气,以免在蚀铜过程中发生胶带翘起,产生漏蚀现象,出现废品,凸字的制作方法与上述反之,把凸起的字体用胶带保护起来,进行大面积的蚀刻,上述讲的胶带就是封纸箱的黄色胶带。
铝蚀刻液配方

铝蚀刻液配方
背景
铝蚀刻液是一种利用酸类腐蚀剂刻蚀铝及其合金金属表面而生成的液体,它被广泛应
用于各种表面处理工艺,尤其是在印刷电路板制造、电子零件制造、仪器零部件的制造和
金属使用的微型外型各阶段,具有重要的应用价值。
配方
铝蚀刻配方包括下列成分:
1.硫酸:硫酸是主要的腐蚀性剂,它可以有效的腐蚀铝和合金表面。
用量约为25-35%;
2.氯化钠:可以提高腐蚀能力和速度,用量约为10-20%;
3.氟化物:具有抑制和减缓腐蚀速度的作用,用量约为0.1%;
4.氧化还原剂:用于改善液体的稳定性,用量约为0.1-0.3%;
5.水:用于调节液体的密度,用量约为50-60%;
6.抗污剂:可以抑制沉积物的沉积,用量约为0.1-0.2%;
7.非离子表面活性剂:可以抑制静电和可增加腐蚀速度,用量约为0.01-0.02%;8.
碱性调节剂:可以使液体的pH值增加,从而提高液体的酸性,用量约为0.05%。
使用
铝蚀刻液通常可以通过封闭式贴装法或喷射法来施加,而且它也可以用于金属表面的
室温蚀刻,如钛、铁、铜、铅、锡、锑和锆等,也可以用于聚百事烯、不饱和聚酯、尼龙、氟塑料等塑料的表面蚀刻。
保养
1.定期检查及维护:定期检测液体的腐蚀性、稳定性和浓度的变化,及时将无法使用
的液体淘汰换新;
2.液体温度控制:定期检查铝蚀刻液的温度是否符合要求,确保液体正常运行;
3.液体清洗:定期清洗液体中的沉积物,避免污垢对蚀刻速度的程度;
4.添加补充剂:随着蚀刻剂的使用,定期对液体进行补充剂的添加,以延长液体的使
用寿命。
自制电路板蚀刻液配方

电路板蚀刻液一、三氯化铁蚀刻液在印制电路、电子和金属精饰等工业中广泛采用三氯化铁蚀刻铜、铜合金及铁、锌、铝等。
这是由于它的工艺稳定,操作方便,价格便宜。
但是,近些年来,由于它再生困难,污染严重,废液处理困难等而正在被淘汰。
因此,这里只简单地介绍。
三氯化铁蚀刻液适用于网印抗蚀印料、液体感光胶、干膜、金等抗蚀层的印制板的蚀刻。
但不适用于镍、锡、锡—铅合金等抗蚀层。
1.蚀刻时的主要化学反应三氯化铁蚀刻液对铜箔的蚀刻是一个氧化-还原过程。
在铜表面Fe3+使铜氧化成氯化亚铜。
同时Fe3+被还原成Fe2+。
FeCl3+Cu →FeCl2+CuClCuCl具有还原性,可以和FeCl3进一步发生反应生成氯化铜。
FeCl3+CuCl →FeCl2+CuCl2Cu2+具有氧化性,与铜发生氧化反应:CuCl2+Cu →2CuCl所以,FeCl3蚀刻液对Cu的蚀刻时靠Fe3+和Cu2+共同完成的。
其中Fe3+的蚀刻速率快,蚀刻质量好;而Cu2+的蚀刻速率慢,蚀刻质量差。
新配制的蚀刻液中只有Fe3+,所以蚀刻速率较快。
但是随着蚀刻反应的进行,Fe3+不断消耗,而Cu2+不断增加。
当Fe3+消耗掉35%时,Cu2+已增加到相当大的浓度,这时Fe3+和Cu2+对Cu的蚀刻量几乎相等;当Fe3+消耗掉50%时,Cu2+的蚀刻作用由次要地位而跃居主要地位,此时蚀刻速率慢,即应考虑蚀刻液的更新。
在实际生产中,表示蚀刻液的活度不是用Fe3+的消耗量来度量,而是用蚀刻液中的含铜量(g/l)来度量。
因为在蚀刻铜的过程中,最初蚀刻时间是相对恒定的。
然而,随着Fe3+的消耗,溶液中含铜量不断增长。
当溶铜量达到60g/l时,蚀刻时间就会延长,当蚀刻液中的Fe3+消耗40%时,溶铜量达到82.40g/1时,蚀刻时间便急剧上升,表明此时的蚀刻液不能再继续使用,应考虑蚀刻液的再生或更新。
一般工厂很少分析和测定蚀刻液中的含铜量,多以蚀刻时间和蚀刻质量来确定蚀刻液的再生与更新。
蚀刻用腐蚀液与配方比例

蚀刻用腐蚀液与配方比例刻蚀基础(转载)湿式蚀刻技术最早的蚀刻技术是利用特定的溶液与薄膜间所进行的化学反应来去除薄膜未被光阻覆盖的部分,而达到蚀刻的目的,这种蚀刻方式也就是所谓的湿式蚀刻。
因为湿式蚀刻是利用化学反应来进行薄膜的去除,而化学反应本身不具方向性,因此湿式蚀刻过程为等向性,一般而言此方式不足以定义3微米以下的线宽,但对于3微米以上的线宽定义湿式蚀刻仍然为一可选择采用的技术。
湿式蚀刻之所以在微电子制作过程中被广泛的采用乃由于其具有低成本、高可靠性、高产能及优越的蚀刻选择比等优点。
但相对于干式蚀刻,除了无法定义较细的线宽外,湿式蚀刻仍有以下的缺点:1) 需花费较高成本的反应溶液及去离子水;2) 化学药品处理时人员所遭遇的安全问题;3) 光阻附着性问题;4) 气泡形成及化学蚀刻液无法完全与晶圆表面接触所造成的不完全及不均匀的蚀刻;5) 废气及潜在的爆炸性。
湿式蚀刻过程可分为三个步骤:1) 化学蚀刻液扩散至待蚀刻材料之表面;2) 蚀刻液与待蚀刻材料发生化学反应;3) 反应后之产物从蚀刻材料之表面扩散至溶液中,并随溶液排出(3)。
三个步骤中进行最慢者为速率控制步骤,也就是说该步骤的反应速率即为整个反应之速率。
大部份的蚀刻过程包含了一个或多个化学反应步骤,各种形态的反应都有可能发生,但常遇到的反应是将待蚀刻层表面先予以氧化,再将此氧化层溶解,并随溶液排出,如此反复进行以达到蚀刻的效果。
如蚀刻硅、铝时即是利用此种化学反应方式。
湿式蚀刻的速率通常可藉由改变溶液浓度及温度予以控制。
溶液浓度可改变反应物质到达及离开待蚀刻物表面的速率,一般而言,当溶液浓度增加时,蚀刻速率将会提高。
而提高溶液温度可加速化学反应速率,进而加速蚀刻速率。
除了溶液的选用外,选择适用的屏蔽物质亦是十分重要的,它必须与待蚀刻材料表面有很好的附着性、并能承受蚀刻溶液的侵蚀且稳定而不变质。
而光阻通常是一个很好的屏蔽材料,且由于其图案转印步骤简单,因此常被使用。
介绍一种腐蚀液的简易配法

介绍一种腐蚀液的简易配法
腐蚀液是一种特殊的溶液,主要用来在工业上进行金属表面腐蚀性测试,也可以用来氧化金属表面上的污垢。
腐蚀液的配制,最简单的方式就是将牛顿冰碱溶液和硫酸加入适量的水中,搅拌后牛顿冰碱溶液的比例在1:5~5:5,硫酸的比例在2:10~2:20之间。
搅拌均匀后得到的混合腐蚀液即可使用。
同时,根据被测物质不同,也可以添加其他物质来改变腐蚀液的性质。
然而,在未经试验和测定的情况下,应小心使用腐蚀液,以防止被测金属物料被坏损,腐蚀液本身也可能对人体健康有害。
借助腐蚀液,可以对被测受金属快速而准确地检测易腐蚀程度,还能用来去除表面的污垢,保证表面的洁净无暇。
但同时也要牢记,使用腐蚀液必须要按照精确的配置比例,小心使用,以防被腐蚀物料被损坏,也不要滥用腐蚀液,更不能用腐蚀液伤害他人。
蚀刻用腐蚀液与配方比例

刻蚀基础(转载)湿式蚀刻技术最早的蚀刻技术是利用特定的溶液与薄膜间所进行的化学反应来去除薄膜未被光阻覆盖的部分,而达到蚀刻的目的,这种蚀刻方式也就是所谓的湿式蚀刻。
因为湿式蚀刻是利用化学反应来进行薄膜的去除,而化学反应本身不具方向性,因此湿式蚀刻过程为等向性,一般而言此方式不足以定义3微米以下的线宽,但对于3微米以上的线宽定义湿式蚀刻仍然为一可选择采用的技术。
湿式蚀刻之所以在微电子制作过程中被广泛的采用乃由于其具有低成本、高可靠性、高产能及优越的蚀刻选择比等优点。
但相对于干式蚀刻,除了无法定义较细的线宽外,湿式蚀刻仍有以下的缺点:1) 需花费较高成本的反应溶液及去离子水;2) 化学药品处理时人员所遭遇的安全问题;3) 光阻附着性问题;4) 气泡形成及化学蚀刻液无法完全与晶圆表面接触所造成的不完全及不均匀的蚀刻;5) 废气及潜在的爆炸性。
湿式蚀刻过程可分为三个步骤:1) 化学蚀刻液扩散至待蚀刻材料之表面;2) 蚀刻液与待蚀刻材料发生化学反应;3) 反应后之产物从蚀刻材料之表面扩散至溶液中,并随溶液排出(3)。
三个步骤中进行最慢者为速率控制步骤,也就是说该步骤的反应速率即为整个反应之速率。
大部份的蚀刻过程包含了一个或多个化学反应步骤,各种形态的反应都有可能发生,但常遇到的反应是将待蚀刻层表面先予以氧化,再将此氧化层溶解,并随溶液排出,如此反复进行以达到蚀刻的效果。
如蚀刻硅、铝时即是利用此种化学反应方式。
湿式蚀刻的速率通常可藉由改变溶液浓度及温度予以控制。
溶液浓度可改变反应物质到达及离开待蚀刻物表面的速率,一般而言,当溶液浓度增加时,蚀刻速率将会提高。
而提高溶液温度可加速化学反应速率,进而加速蚀刻速率。
除了溶液的选用外,选择适用的屏蔽物质亦是十分重要的,它必须与待蚀刻材料表面有很好的附着性、并能承受蚀刻溶液的侵蚀且稳定而不变质。
而光阻通常是一个很好的屏蔽材料,且由于其图案转印步骤简单,因此常被使用。
但使用光阻作为屏蔽材料时也会发生边缘剥离或龟裂的情形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刻蚀基础(转载)湿式蚀刻技术最早的蚀刻技术是利用特定的溶液与薄膜间所进行的化学反应来去除薄膜未被光阻覆盖的部分,而达到蚀刻的目的,这种蚀刻方式也就是所谓的湿式蚀刻。
因为湿式蚀刻是利用化学反应来进行薄膜的去除,而化学反应本身不具方向性,因此湿式蚀刻过程为等向性,一般而言此方式不足以定义3微米以下的线宽,但对于3微米以上的线宽定义湿式蚀刻仍然为一可选择采用的技术。
湿式蚀刻之所以在微电子制作过程中被广泛的采用乃由于其具有低成本、高可靠性、高产能及优越的蚀刻选择比等优点。
但相对于干式蚀刻,除了无法定义较细的线宽外,湿式蚀刻仍有以下的缺点:1) 需花费较高成本的反应溶液及去离子水;2) 化学药品处理时人员所遭遇的安全问题;3) 光阻附着性问题;4) 气泡形成及化学蚀刻液无法完全与晶圆表面接触所造成的不完全及不均匀的蚀刻;5) 废气及潜在的爆炸性。
湿式蚀刻过程可分为三个步骤:1) 化学蚀刻液扩散至待蚀刻材料之表面;2) 蚀刻液与待蚀刻材料发生化学反应;3) 反应后之产物从蚀刻材料之表面扩散至溶液中,并随溶液排出(3)。
三个步骤中进行最慢者为速率控制步骤,也就是说该步骤的反应速率即为整个反应之速率。
大部份的蚀刻过程包含了一个或多个化学反应步骤,各种形态的反应都有可能发生,但常遇到的反应是将待蚀刻层表面先予以氧化,再将此氧化层溶解,并随溶液排出,如此反复进行以达到蚀刻的效果。
如蚀刻硅、铝时即是利用此种化学反应方式。
湿式蚀刻的速率通常可藉由改变溶液浓度及温度予以控制。
溶液浓度可改变反应物质到达及离开待蚀刻物表面的速率,一般而言,当溶液浓度增加时,蚀刻速率将会提高。
而提高溶液温度可加速化学反应速率,进而加速蚀刻速率。
除了溶液的选用外,选择适用的屏蔽物质亦是十分重要的,它必须与待蚀刻材料表面有很好的附着性、并能承受蚀刻溶液的侵蚀且稳定而不变质。
而光阻通常是一个很好的屏蔽材料,且由于其图案转印步骤简单,因此常被使用。
但使用光阻作为屏蔽材料时也会发生边缘剥离或龟裂的情形。
边缘剥离乃由于蚀刻溶液的侵蚀,造成光阻与基材间的黏着性变差所致。
解决的方法则可使用黏着促进剂来增加光阻与基材间的黏着性,如Hexamethyl-disilazane (HMDS)。
龟裂则是因为光阻与基材间的应力差异太大,减缓龟裂的方法可利用较具弹性的屏蔽材质来吸收两者间的应力差。
蚀刻化学反应过程中所产生的气泡常会造成蚀刻的不均匀性,气泡留滞于基材上阻止了蚀刻溶液与待蚀刻物表面的接触,将使得蚀刻速率变慢或停滞,直到气泡离开基材表面。
因此在这种情况下会在溶液中加入一些催化剂增进蚀刻溶液与待蚀刻物表面的接触,并在蚀刻过程中予于搅动以加速气泡的脱离。
以下将介绍半导体制程中常见几种物质的湿式蚀刻:硅、二氧化硅、氮化硅及铝。
5-2-1 硅的湿式蚀刻在半导体制程中,单晶硅与复晶硅的蚀刻通常利用硝酸与氢氟酸的混合液来进行。
此反应是利用硝酸将硅表面氧化成二氧化硅,再利用氢氟酸将形成的二氧化硅溶解去除,反应式如下:Si + HNO3 + 6HF à H2SiF6 + HNO2 + H2 + H2O上述的反应中可添加醋酸作为缓冲剂(Buffer Agent),以抑制硝酸的解离。
而蚀刻速率的调整可藉由改变硝酸与氢氟酸的比例,并配合醋酸添加与水的稀释加以控制。
在某些应用中,常利用蚀刻溶液对于不同硅晶面的不同蚀刻速率加以进行(4)。
例如使用氢氧化钾与异丙醇的混合溶液进行硅的蚀刻。
这种溶液对硅的(100)面的蚀刻速率远较(111)面快了许多,因此在(100)平面方向的晶圆上,蚀刻后的轮廓将形成V型的沟渠,如图5-2所示。
而此种蚀刻方式常见于微机械组件的制作上。
2 二氧化硅的湿式蚀刻在微电子组件制作应用中,二氧化硅的湿式蚀刻通常采用氢氟酸溶液加以进行(5)。
而二氧化硅可与室温的氢氟酸溶液进行反应,但却不会蚀刻硅基材及复晶硅。
反应式如下:SiO2 + 6HF à H2 + SiF6 + 2H2O由于氢氟酸对二氧化硅的蚀刻速率相当高,在制程上很难控制,因此在实际应用上都是使用稀释后的氢氟酸溶液,或是添加氟化铵作为缓冲剂的混合液,来进行二氧化硅的蚀刻。
氟化铵的加入可避免氟化物离子的消耗,以保持稳定的蚀刻速率。
而无添加缓冲剂氢氟酸蚀刻溶液常造成光阻的剥离。
典型的缓冲氧化硅蚀刻液(BOE : Buffer Oxide Etcher)(体积比6:1之氟化铵(40%)与氢氟酸(49%))对于高温成长氧化层的蚀刻速率约为1000Å/min。
在半导体制程中,二氧化硅的形成方式可分为热氧化及化学气相沉积等方式;而所采用的二氧化硅除了纯二氧化硅外,尚有含有杂质的二氧化硅如BPSG等。
然而由于这些以不同方式成长或不同成份的二氧化硅,其组成或是结构并不完全相同,因此氢氟酸溶液对于这些二氧化硅的蚀刻速率也会不同。
但一般而言,高温热成长的氧化层较以化学气相沉积方式之氧化层蚀刻速率为慢,因其组成结构较为致密。
5-2-3 氮化硅的湿式蚀刻氮化硅可利用加热至180°C的磷酸溶液(85%)来进行蚀刻(5)。
其蚀刻速率与氮化硅的成长方式有关,以电浆辅助化学气相沉积方式形成之氮化硅,由于组成结构(SixNyHz相较于Si3N4) 较以高温低压化学气相沉积方式形成之氮化硅为松散,因此蚀刻速率较快许多。
但在高温热磷酸溶液中光阻易剥落,因此在作氮化硅图案蚀刻时,通常利用二氧化硅作为屏蔽。
一般来说,氮化硅的湿式蚀刻大多应用于整面氮化硅的剥除。
对于有图案的氮化硅蚀刻,最好还是采用干式蚀刻为宜。
5-2-4 铝的湿式蚀刻铝或铝合金的湿式蚀刻主要是利用加热的磷酸、硝酸、醋酸及水的混合溶液加以进行(1)。
典型的比例为80%的磷酸、5%的硝酸、5%的醋酸及10%的水。
而一般加热的温度约在35°C-45°C左右,温度越高蚀刻速率越快,一般而言蚀刻速率约为1000-3000 Å /min,而溶液的组成比例、不同的温度及蚀刻过程中搅拌与否都会影响到蚀刻的速率。
蚀刻反应的机制是藉由硝酸将铝氧化成为氧化铝,接着再利用磷酸将氧化铝予以溶解去除,如此反复进行以达蚀刻的效果。
在湿式蚀刻铝的同时会有氢气泡的产生,这些气泡会附着在铝的表面,而局部地抑制蚀刻的进行,造成蚀刻的不均匀性,可在蚀刻过程中予于搅动或添加催化剂降低接口张力以避免这种问题发生电浆蚀刻简介自1970年代以来组件制造首先开始采用电浆蚀刻技术,对于电浆化学新的了解与认知也就蕴育而生。
在现今的集成电路制造过程中,必须精确的控制各种材料尺寸至次微米大小且具有极高的再制性,而由于电浆蚀刻是现今技术中唯一能极有效率地将此工作在高良率下完成,因此电浆蚀刻便成为集成电路制造过程中的主要技术之一。
电浆蚀刻主要应用于集成电路制程中线路图案的定义,通常需搭配光阻的使用及微影技术,其中包括了1) 氮化硅(Nitride)蚀刻:应用于定义主动区;2) 复晶硅化物/复晶硅(Polycide/Poly)蚀刻:应用于定义闸极宽度/长度;3) 复晶硅(Poly)蚀刻:应用于定义复晶硅电容及负载用之复晶硅;4) 间隙壁(Spacer)蚀刻:应用于定义LDD宽度;5) 接触窗(Contact)及引洞(Via)蚀刻:应用于定义接触窗及引洞之尺寸大小;6) 钨回蚀刻(Etch Back):应用于钨栓塞(W-Plug)之形成;7) 涂布玻璃(SOG)回蚀刻:应用于平坦化制程;8) 金属蚀刻:应用于定义金属线宽及线长;9) 接脚(Bonding Pad) 蚀刻等。
影响电浆蚀刻特性好坏的因素包括了:1) 电浆蚀刻系统的型态;2) 电浆蚀刻的参数;3) 前制程相关参数,如光阻、待蚀刻薄膜之沉积参数条件、待蚀刻薄膜下层薄膜的型态及表面的平整度等。
5-3-2 何谓电浆?基本上电浆是由部份解离的气体及等量的带正、负电荷粒子所组成,其中所含的气体具高度的活性,它是利用外加电场的驱动而形成,并且会产生辉光放电(Glow Discharge)现象。
蚀刻用的电浆中,气体的解离程度很低,通常在10-5-10-1之间,在一般的电浆或活性离子反应器中气体的解离程度约为10-5-10-4,若解离程度到达10-3-10-1则属于高密度电浆。
5-3-3 电浆形成之原理电浆的产生可藉由直流(DC)偏压或交流射频(RF)偏压下的电场形成,如图5-3所示,而在电浆中的电子来源通常有二:一为分子或原子解离后所产生的电子,另一则为离子撞击电极所产生的二次电子(Secondary Electron),在直流(DC)电场下产生的电浆其电子源主要以二次电子为主,而交流射频(RF)电场下产生的电浆其电子源则以分子或原子解离后所产生的电子为主。
在电浆蚀刻中以直流方式产生辉光放电的缺点包含了:1) 需要较高的功率消耗,也就是说产生的离子密度低;2) 须要以离子撞击电极以产生二次电子,如此将会造成电极材料的损耗;3) 所需之电极材料必须为导体。
如此一来将不适用于晶圆制程中。
在射频放电(RF Discharge)状况下,由于高频操作,使得大部份的电子在半个周期内没有足够的时间移动至正电极,因此这些电子将会在电极间作振荡,并与气体分子产生碰撞。
而射频放电所需的振荡频率下限将视电极间的间距、压力、射频电场振幅的大小及气体分子的解离位能等因素而定,而通常振荡频率下限为50kHz。
一般的射频系统所采用的操作频率大都为13.56MHz。
相较于直流放电,射频放电具有下列优点:1) 放电的情况可一直持续下去而无需二次电子的发射,当晶圆本身即为电极的一部份时,这点对半导体材料制程就显得十分重要了;2) 由于电子来回的振荡,因此离子化的机率大为提升,蚀刻速率可因而提升;3) 可在较低的电极电压下操作,以减低电浆对组件所导致之损坏;4) 对于介电质材料同样可以运作。
现今所有的电浆系统皆为射频系统。
另外值得一提的是在射频系统中一个重要的参数是供给动力的电极面积与接地电极面积之比。
5-3-4 等效电子及离子温度存在于电浆中的电场分别施力于带正电荷之离子与代负电荷之电子,F=E*q ,而加速度a=F/M,由于离子质量远大于电子,因此电子所获得的加速度与速度将远大于离子,以致电子的动能远大于离子,电子与离子间处于一非平衡状态。
从气体动力论中,得知Ekinetic = (3/2) kT,由此可知,等效电子温度远大于等效离子温度,如此可视为“热” 电子处于“冷” 电浆之中。
因此电子能够在低温的状态下提供一般在高温下才能使分子解离所需要的能量。
在一般蚀刻用的电浆中,等效的电子温度约为10000 - 100000°K。
5-3-5 电浆蚀刻中的基本物理及化学现象在干式蚀刻中,随着制程参数及电浆状态的改变,可以区分为两种极端的性质的蚀刻方式,即纯物理性蚀刻与纯化学反应性蚀刻。