三极管经典教程PPT课件
合集下载
三极管PPT课件

一、三极管的基本结构
2021/6/24
它是通过一定的制作工艺,将两 个PN结结合在一起的器件,两个PN结 相互作用,使三极管成为一个具有控制 电流作用的半导体器件。
三极管可以用来放大微弱的信号
和作为无触点开关。
4
2.1.1 三极管的结构
2021/6/24
三极管的结构模型和符号
5
2.1.1 三极管的结构
2021/6/24
12
2.1.3 三极管的电流分配关系 和电流放大作用
二、三极管的电流分配关系
(1)IC与IE的关系
α
=
IC IE
α 称为共基极直流电流放大系数 ,是
小于1且接近于1的值,一般为0.9-
0.99。
2021/6/24
13
2.1.3 三极管的电流分配关系 和电流放大作用
(2)IC与IB的关系
2021/6/24
24
2.1.4 三极管的伏安特性曲线
二、输出特性曲线
iCf uCEIB常数
2021/6/24
21 25
2.1.4 三极管的伏安特性曲线
(3)饱和区
工作条件:发射结正偏,集电结正偏。
工作特点:
① iC几乎不随iB变化,uCE略有增加,iC迅速上升。
②UCE很小,称之为饱和电压,用UCES表示。
19
2.1.4 三极管的伏安特性曲线
输入特性曲线的讨论:
(1)当UCE<1V时
三极管的发射结、集电结均正偏,此时的三极 管相当于两个PN结的并联,曲线与二极管相似, 所以增大UCE时,输入曲线明显右移。
(2)当UCE≥1V时
发射结正偏、集电结反偏,此时再继续增大
UCE特性曲线右移不明显,不同的UCE输入曲线
三极管PPT教学讲义

收集 载流
基区的少数载流子——ICBO
子
VBB
VCC
电流分配与控制 IE= IEN+ IEP 且有IEN>>IEP IEN=ICN+ IBN 且有ICN>>IBN IC=ICN+ ICBO
IB=IEP+ IBN-ICBO
IE =IC+IB
VBB
VCC
电流分配与控制
• 使晶体管具有电流分配与控制能力的两个重要条件
– ③集电结对非平衡载流子的收集作用漂移为主
4.1.3 三极管各电极的电流关系
集电极电流IC和发射极电流IE之间的关系定义:
ICN/IE
称为共基极直流电流放大系数。
表示集电极收集到的电子电流ICN与总发射极电流IE的比
值。ICN与IE相比,因ICN中没有IEP和IBN,所以 的值小
于1, 但接近1,一般为0.98~0.999 。
BJT 结构
从外表上看两个N区,或两个P区是对称的,实际上: 发射区的掺杂浓度大,发射载流子 集电区掺杂浓度低,且集电结面积大,收集载流子 基区得很薄,控制载流子分配,其厚度一般在几个微米至几十
个微米.
+
BJT的三种组态
CB Common Base :共基极,基 极为公共电极
CE Common Emitter :共发射极, 发射极为公共电极
强,IC增大. JC和JE都正偏, VCES约等于0.3V,
ic VCE=VBE
饱
6和 放
区 4
大
区
2
IC< IB 0
饱和时c、e间电压记为VCES,深 度饱和时VCES约等于0.3V.
截止区
246
《三极管基本知识》PPT课件

饱和区
4
放
3
2
大
100A
80A 60A 40A
1
区
20A
IB=0
3 6 9 12 UCE(V)
截止区
IC(mA ) 4 3
2
此1区00域A中 :
IB=800,IC=AICEO,U
B称E<为6死0截区A止电区压。,
40A
1
20A
IB=0
3 6 9 12 UCE(V)
二、输出特性
IC(mA )
此区域满
ICBO A
ICBO是集
电结反偏 由少子的 漂移形成 的反向电 流,受温 度的变化 影响。
3.集电极最大电流ICM
集电极电流IC上升会导致三极管的值的下降,
当值下降到正常值的三分之二时的集电极电
流即为ICM。
4.集-射极反向击穿电压
当集---射极之间的电压UCE超过一定的数值时,
三极管就会被击穿。手册上给出的数值是25C、
注意:β和β数值很接近,通常不将他们严格区分。
四、三极管的特性曲线
IB
A RB
V UBE
RP
EB
IC mA
EC
V UCE
实验线路
一、输入特性
IB(A) 80 60 40
20
死区电压,
0.4
硅管0.5V
工作压降: 硅管 UBE0.6~0.7V
0.8 UBE(V)
一、输入特性
输入特性描述的是三极管基极电流IB和发射结两端电压UBE 之间的关系。
nnp发射区集电区基区发射结集电结ecb发射极集电极基极ppn发射区集电区基区发射结集电结ecb发射极集电极基极becnnp基极发射极集电极npn型pnp集电极基极发射极bcepnp型becnpn型becpnp型二极管检测用数字万用表测试二极管时是测量二极管的正向压降
4
放
3
2
大
100A
80A 60A 40A
1
区
20A
IB=0
3 6 9 12 UCE(V)
截止区
IC(mA ) 4 3
2
此1区00域A中 :
IB=800,IC=AICEO,U
B称E<为6死0截区A止电区压。,
40A
1
20A
IB=0
3 6 9 12 UCE(V)
二、输出特性
IC(mA )
此区域满
ICBO A
ICBO是集
电结反偏 由少子的 漂移形成 的反向电 流,受温 度的变化 影响。
3.集电极最大电流ICM
集电极电流IC上升会导致三极管的值的下降,
当值下降到正常值的三分之二时的集电极电
流即为ICM。
4.集-射极反向击穿电压
当集---射极之间的电压UCE超过一定的数值时,
三极管就会被击穿。手册上给出的数值是25C、
注意:β和β数值很接近,通常不将他们严格区分。
四、三极管的特性曲线
IB
A RB
V UBE
RP
EB
IC mA
EC
V UCE
实验线路
一、输入特性
IB(A) 80 60 40
20
死区电压,
0.4
硅管0.5V
工作压降: 硅管 UBE0.6~0.7V
0.8 UBE(V)
一、输入特性
输入特性描述的是三极管基极电流IB和发射结两端电压UBE 之间的关系。
nnp发射区集电区基区发射结集电结ecb发射极集电极基极ppn发射区集电区基区发射结集电结ecb发射极集电极基极becnnp基极发射极集电极npn型pnp集电极基极发射极bcepnp型becnpn型becpnp型二极管检测用数字万用表测试二极管时是测量二极管的正向压降
初三理化生3三极管课件

复合管的组成:多只管子合理连接等效成一只管子。 目的:增大β,减小前级驱动电流,改变管子的类型。
iE iB1(1 1)(1 2 ) 12
不同类型的管子复合 后,其类型决定于T1管。
讨论一
1、分别分析uI=0V、5V时T是工作在截止状态还是导通状态; 2、已知T导通时的UBE=0.7V,若当uI=5V,则β在什么范围内T 处于放大状态,在什么范围内T处于饱和状态?
2K (v V )
n
GS
P
iD Kn (vGS VP )2
3.3 电流源电路
3.3.1 BJT电流源电路
1、 镜像电流源
3、组合电流源
2、 微电流源
3.3.2 FET电流源
1、 JFET电流源 2、 MOSFET镜像电流源 3、 MOSFET多路电流源
3.3.1 BJT电流源电路
1、镜象电流源
晶体管有三个极、三个区、两个PN结。
3.1.2 晶体管电流的可控性
1、 电流可控是如何实现的? 从两个独立的理想二极管一个正偏,一个反偏。来理解….
可控的内部条件发基射区区很浓薄度,最且高杂,质集浓电度区低面积最大
可控的外部条件vBE vCB
V(发射结正偏) ON
0,即v v(集电结反偏)
CE
基准电流
T0 和 T1 特性完全相同。
即β0=β1,ICEO0=ICEO1
I (V V ) R
R
CC
BE
V V ,I I
BE1
BE0
B1
B0
IC1 IC0 IC
IR
IC0
IB0
I B1
IC
2IC
IC 2 IR
代表符号
若 2 时,则IC IR
iE iB1(1 1)(1 2 ) 12
不同类型的管子复合 后,其类型决定于T1管。
讨论一
1、分别分析uI=0V、5V时T是工作在截止状态还是导通状态; 2、已知T导通时的UBE=0.7V,若当uI=5V,则β在什么范围内T 处于放大状态,在什么范围内T处于饱和状态?
2K (v V )
n
GS
P
iD Kn (vGS VP )2
3.3 电流源电路
3.3.1 BJT电流源电路
1、 镜像电流源
3、组合电流源
2、 微电流源
3.3.2 FET电流源
1、 JFET电流源 2、 MOSFET镜像电流源 3、 MOSFET多路电流源
3.3.1 BJT电流源电路
1、镜象电流源
晶体管有三个极、三个区、两个PN结。
3.1.2 晶体管电流的可控性
1、 电流可控是如何实现的? 从两个独立的理想二极管一个正偏,一个反偏。来理解….
可控的内部条件发基射区区很浓薄度,最且高杂,质集浓电度区低面积最大
可控的外部条件vBE vCB
V(发射结正偏) ON
0,即v v(集电结反偏)
CE
基准电流
T0 和 T1 特性完全相同。
即β0=β1,ICEO0=ICEO1
I (V V ) R
R
CC
BE
V V ,I I
BE1
BE0
B1
B0
IC1 IC0 IC
IR
IC0
IB0
I B1
IC
2IC
IC 2 IR
代表符号
若 2 时,则IC IR
《三极管教学》课件

五种典型的三极管电路
放大电路
了解放大电路设计和三极管在信 号增强中的应用。
开关电路
探索三极管在开关应用中的工作 原理和电路设计。
电源电路
了解使用三极管的电源电路设计 和稳定性特点。
正弦振荡电路
探索使用三极管产生方波信号的 电路设计原理和应用。
输入与输出特性曲线
简单电路图示例
通过简单的电路图示例,展示三极管在电子电 路中的应用。
分类
按用途分类
了解三极管根据不同用途的分类,如放大电路、开 关电路、电源电路和振荡电路。
按管子类型分类
探索三极管根据不同类型(如NPN和PNP)的分类。
参数
放大系数 最大耐压 最大电流容限 常用参数的典型值
了解三极管的放大倍数和其对电路的影响。 探索三极管能够承受的最大电压。 了解三极管能够承受的最大电流。 介绍一些常用参数的典型数值,并解释其意义。
输出特性曲线
了解三极管输出特性曲线的形状和特点。
输入特性曲线
探索三极管输入特性曲线的影响和设计要点。
直流负载线
了解直流负载线对三极管的偏置点和工作状态的影 响。
交流负载线
探索交流负载线对三极管放大功能的影响。
三极管技术指标测试
测试基本流程和步骤
了解三极管技术指标测试的基本流程和常用步骤。
测试工具和设备
探索使用的测试工具和设备,以及其功能和作用。
三极管的参数选用
选择框图
介绍选择框图的使用方法,帮助选择合适的三极管。
实例讲解
通过实例演示,详细说明如何根据应用需求选择合 适的三极管。
典型三极管应用案例
放大器电路
探索三极管在放大器电路中的应用,如音频放 大。
三极管ppt课件完整版

常见故障现象及诊断方法
诊断方法
测量三极管的耐压值是否降低,观察电路是否有过载现象,若确认 损坏则更换三极管。
故障现象3
三极管漏电流过大。
诊断方法
测量三极管的漏电流是否超过规定值,若过大则检查电路是否存在漏 电现象,并更换三极管。
常见故障现象及诊断方法
故障现象4
三极管热稳定性差。
诊断方法
检查三极管的散热条件是否良好,测量其热稳定性参数是否在规定范围内,若异常则改善散热条件或 更换适合的三极管型号。
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
共基放大电路的特点是输入回路与输出回路共用一个电极,即基极。输入信号加在三极管的发射极和基极之间, 输出信号从集电极取出。由于共基放大电路的输入阻抗低,输出阻抗高,因此具有电压放大倍数大、频带宽等优 点。
共集放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源 。
真加剧。而截止频率则限制了三极管能够放大的信号频率范围。
03
三极管基本放大电路分析
共射放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
利用三极管的电流放大作用,将输入信号放大并输出。输入信号加在三极管的基 极和发射极之间,输出信号从集电极取出,经过耦合电容与负载相连。
共基放大电路组成及工作原理
偏置电路类型及其作用
固定偏置电路
01
提供稳定的基极电流,使三极管工作在放大区。
分压式偏置电路
02
通过电阻分压为基极提供合适的偏置电压,使三极管具有稳定
的静态工作点。
集电极-基极偏置电路
03
利用集电极电阻的压降为基极提供偏置电压,适用于某些特殊
三极管ppt课件

(4) 集电极的反向电流
ICN
因可集见电:结反偏,故基区本
身I的B=少IBN数-I载CB流O 子-电子和集
电区本身的少数载流子-空 穴I也C=要IC发N+生IC漂BO移运动形成
IBN ICBO
电I流B+IICCB=OIBN+ICN=IEN
最新版整理ppt
IE=IEN+IEP
32- 11
4 双极结型三极管及放大电路基础
4.发射结反偏且,: V集CC电>结VB正B 偏
倒置状态
倒置状态是一种非工作状态。 最新版整理ppt
7
7
4 双极结型三极管及放大电路基础
4.1 半导体三极管(BJT)
4.1.2 放大状态下BJT的工作原理
2.处于放大状态的BJT内部载流子的运动
(1)形成发射极电流IE
c
ba.基发区射向区发向射基区扩注散入空电穴子 形成发射极电流IEEPN::
因基因可发区发见射的射:结多区正数I外E=偏载接IE,流电空N+子源间IE空的P电穴荷 b 因区向负发变发极射薄射,所区,区扩以杂扩散电质散运源浓。动负度扩加极远散强不远到, Rb 大漂发断于移射向基运区发区动后射的减被区杂弱电提质.源供浓负电度极子故拉, : 发子走 I从I故EE射向PN,而:。。I区基形形EI=E的区成成NIE>多扩N发发>+>数散I射射IEE载。P极极P≈流I电电EN子流流电最新版整理ppVt BB
基极(b)
集电极(c)
集电结(Jc)
箭头代表发射结正偏时
流过发射结电流的实际方向。
最新版整理ppt
32- 4
4 双极结型三极管及放大电路基础
4.1 半导体三极管(BJT)
三极管ppt课件

生变化。
晶体管截止频率影响
晶体管的截止频率限制了其放大高频信号 的能力,当输入信号频率接近或超过截止 频率时,晶体管放大倍数急剧下降。
负载效应影响
在高频段,负载效应对信号产生较大的影 响,使得输出信号的幅度和相位发生变化 。
05
三极管功率放大电路设计 与应用
功率放大电路类型及特点
甲类功率放大电路
采用单电源供电,输出端通过大容量电容与负载耦合,具 有电路简单、成本低等优点,但电源功率利用率较低且存 在较大的非线性失真。
集成功率放大器简介与应用
集成功率放大器概述
将功率放大电路与必要的辅助电路集成在同一芯片上,具 有体积小、重量轻、可靠性高等优点。
集成功率放大器的应用
广泛应用于音响设备、电视机、计算机等电子设备中,用 于驱动扬声器、耳机等负载,提供足够的输出功率和良好 的音质效果。
工作点设置在截止区,主要用于高频功率放大,效率很高但非线性失 真严重。
OCL和OTL功率放大电路设计实例
要点一
OCL(Output Capacitor Less )功…
采用双电源供电,输出端与负载直接耦合,具有低失真、 高效率等优点,但需要较大的电源功率和输出电容。
要点二
OTL(Output Transformer Less…
02
三极管基本放大电路
共射放大电路组成及原理
组成
输入回路、输出回路、耦合电容、直 流电源
特点
电压放大倍数大,输出电阻较大,输 入电阻适中
原理
利用三极管的电流放大作用,将输入 信号放大并
共基放大电路组成及原理
01
02
03
组成
输入回路、输出回路、耦 合电容、直流电源
晶体管截止频率影响
晶体管的截止频率限制了其放大高频信号 的能力,当输入信号频率接近或超过截止 频率时,晶体管放大倍数急剧下降。
负载效应影响
在高频段,负载效应对信号产生较大的影 响,使得输出信号的幅度和相位发生变化 。
05
三极管功率放大电路设计 与应用
功率放大电路类型及特点
甲类功率放大电路
采用单电源供电,输出端通过大容量电容与负载耦合,具 有电路简单、成本低等优点,但电源功率利用率较低且存 在较大的非线性失真。
集成功率放大器简介与应用
集成功率放大器概述
将功率放大电路与必要的辅助电路集成在同一芯片上,具 有体积小、重量轻、可靠性高等优点。
集成功率放大器的应用
广泛应用于音响设备、电视机、计算机等电子设备中,用 于驱动扬声器、耳机等负载,提供足够的输出功率和良好 的音质效果。
工作点设置在截止区,主要用于高频功率放大,效率很高但非线性失 真严重。
OCL和OTL功率放大电路设计实例
要点一
OCL(Output Capacitor Less )功…
采用双电源供电,输出端与负载直接耦合,具有低失真、 高效率等优点,但需要较大的电源功率和输出电容。
要点二
OTL(Output Transformer Less…
02
三极管基本放大电路
共射放大电路组成及原理
组成
输入回路、输出回路、耦合电容、直 流电源
特点
电压放大倍数大,输出电阻较大,输 入电阻适中
原理
利用三极管的电流放大作用,将输入 信号放大并
共基放大电路组成及原理
01
02
03
组成
输入回路、输出回路、耦 合电容、直流电源
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021
电流放大系数
共 射 电 流 放 大 系 数
iB b +
c + iC
vCE
vBE - e -
VCC
VBB
共射极放大电路
直流电流放大系数
=IC / IB | vCE =const 交流电流放大系数 =IC/IBvCE=const
2021
电流放大系数
共
基
电
流
直流电流放大系数
放 大
α=IC/IE
vCCEE = 0V vCE
0V
1V
iB b +
c + iC
vCE
vBE - e -
VCC
VBB
共射极放大电路
2021
BJT的特性曲线
2. 输出特性曲线 输出电流与输出电压间的关系曲线
iCv=CfB(vCEvC )EiB=vcBoE nst
输饱出和特区性:曲vCE线<v的BE 三的个区区域域,: 发射结正偏,集电结正 偏。 iC明显受vCE控制 的截区放止域大区,区:但:i不此B=随时0的i,B的输发增出射曲结线正以 加下而偏的增,区大集域。电。在结此饱反时和偏,区。,i发C不射随结 可和近vC集似E变电认化结为,均v但C反E随保偏i持B。的不i增C只大有而很
V C1.3V,V B0.6V
V CV B1.30.60.7V A -集电极
VA6VVB,VC
管子为NPN管
C-基极,B-发射极
另一例题参见P30 2.2.2-1
2021
§2.2.3 三极管的主要参数
三极管的参数是 用来表征管子性 能优劣适应范围 的,是选管的依 据,共有以下三 大类参数。
电流放大系数 极间反向电流 极限参数
系 数
交流电流放大系数
α=ΔiC/ΔiE
2021
α与β间的关系
ic
ib
(1 ie)ie
1
1
2021
极间反向电流
(1) 集电极基极间反向饱和电流ICBO
发射极开路时,集电结的反向饱和电流。
(2) 集电极发射极间的反向饱和电流ICEO
ICEO=(1+ )I C BIOCBO c
即输出特性u曲A b
较大的Δi三E 极管A基V区的
如(1mA) 电流传递作用
V V
O I
ΔVO= ΔiCRL
(较大)
ΔiC(较大)
如(0.98mA)
2021
电压放大倍数
两个要点
三极管的放大作用,主要是 输 入依电靠压它的的变IE化能,通是过通基过区其传输, 改 变然输后入顺电利流到,达再集通电过极输而入实现
的。故要保证此传输,一方 电流面的要传满输足去内控部制条输件出,电即压发射 的 变区化掺, 所杂以浓度是要一远种大电于流基控区掺 制器杂要件满浓。足度外,基部区条要件薄,;即另发一射方结面
变小。线的对性反于增向小大电功,流率且。硅iC管, iB
一般vCES=0.2V。
iB
b +
VcC+E =ViCBE
vCE
vBE - e -
VCC
VBB
共射极放大电路
2021
如何判断三极管的电极、管型和材料
当三极管在电路中处于放大状态时
发射结处于正向偏置,且对于硅管 |VBE|=0.7V,锗管|VBE|=0.2V;
(当1) 当vCvEC>E=10VV以时,后相,当由于于发集射结电的结正的向反伏偏安特电性压曲可线以。在单位时 (间2) 内当集将电所结有进到入达反偏集状电态结时边,上vC的B=载vC流E 子- v拉BE随到着集v电CE的极增,大故而iC增 大不,随集v电CE结变的化反,偏所加以强。同由样于的基v区BE的下宽的度i调B不制效变应,,特基性区曲变窄线,几基区 复乎合重减叠少。,同样的vBE下 IB减小,特性曲线右移。
§2.2.1 三极管的结构和工作原理
分类
按频率分有高频管、低频管 按功率分有小、中、大功率管 按材料分有硅管、锗管
按结构分有NPN型和PNP型
2021
国产三极管的命名方式
3DG6
三 表高设 极 示频计 管 器管序
件号 材 料 和 极 性
A:PNP锗材料 B:NPN锗材料 C:PNP硅材料 D:NPN硅材料
2021
三极管内载流子的传输过程
动画2-1
2021
三极管内载流子的传输过程
在三集极电另管结外内2上3,有.基电集1存两为.区发子电在种双集射在区载极漂电区流基型收移区子三向区集运参本极基中扩动与管身区的散,导,存注扩过由电记在入散来,此为的电故与的B形J少称子复T电成此子合子电种,流三I极CB管O
集电结处于反向偏置,且|VCB|>1V;
NPN管集电极电位比发射极电位高, PNP管集电极电位比发射极电位低。
2021
例 题
一个BJT在电路中处于 正常放大状态,测得A、 B和C三个管脚对地的直 流电位分别为6V,0.6V, 1.3V。试判别三个管脚 的极名、是硅管还是锗 管?NPN型还是PNP型?
2021
三极管三个电极间的分配关系
IE=IBN+ICN IB=IBN-ICBO IC=ICN+ICBO
2021
IE=IB+IC
三极管的放大作用
正向时PN结电 流与电压成指
数关系
iE=IE+ΔiE iC=iE=IC+ΔiC
+ ΔVI
-
ec
+
b
RL ΔVO
iB=IB+△iB _
较小ΔVI 如(20mV)
正偏,集电结要反偏。
2021
§2.2.2 三极管的特性
三极管在电路中的连接方式
共发射极连接
共基极连接
共集电极连接
2021
三极管的特性曲线
概 念 特性曲线是 指各电极之 间的电压与 电流之间的 关系曲线
输入特性曲线 输出特性曲线
2021
BJT的特性曲线
1. 输入特性曲线 输入电流与输入电压间的关系曲线 iB=f(vBE) vCE=const (以共射极放大电路为例)
2021
三极管的不同封装形式
金属封装 塑料封装
大功率管
中功率管
2021
三极管的结构
半导体三极管的结构示意集图电如极下,图用所C示或。c 它有两种 表发示射(极类E,m型发i用t:tN射eErP)或区N;e型和PNP型集。电区表示(Collector)。
基区 基发极射,结用(BJe或) b表示021
结构特点:
• 发射区的掺杂浓度最高; • 集电区掺杂浓度低于发射区,且面积大; • 基区很薄,一般在几个微米至几十个微米,且
掺杂浓度最低。
管芯结构剖面图
2021
三极管的电流分配与放大作用
正常放大时外加偏置电压的要求
be结正 偏
bc结反偏
发射结应加正向电压(正向偏置) 集电结应加反向电压(反向偏置) 问:若为PNP管,图中电源极性如何?