分类加法计数原理与分步乘法计数原理公开课

合集下载

分类加法与分步乘法计数原理-PPT

分类加法与分步乘法计数原理-PPT
(1)4+3+2=9(种)
(2)4×3×2=24(种)
20
典例讲评
例4 要从甲、乙、丙3幅不同的画 中选出2幅,分别挂在左、右两边墙上 的指定位置,求共有多少种不同的挂 法?
3×2=6(种)
21
课堂小结
1.分类加法计数原理和分步乘法计数
原理,都是解决完成一件事的方法数的
计数问题,其不同之处在于,前者是针
例2 某班有男生30名,女生24名, 现要从中选出男、女生各一名代表班 级参加朗诵比赛,求共有多少种不同 的选派方法?
30×24=720(种)
19
例3 书架有三层,其中第一层放有4本 不同的计算机书,第二层放有3本不同的 文艺书,第三层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不 同的取法? (2)从书架的第一,二,三层各取1本 书,有多少种不同的取法?
33
开始
子模块1 18条执行路径
子模块2 45条执行路径
A
子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
7371条
结束
178次
34
例5 随着人们生活水平的提高,某 城市家庭汽车拥有量迅速增长,汽车牌 照号码需要扩容.交通管理部门出台了一 种汽车牌照组成方法,每一个汽车牌照 都必须有3个不重复的英文字母和3个不 重复的阿拉伯数字,并且3个字母必须合 成一组出现,3个数字也必须合成一组出 现.那么这种办法共能给多少辆汽车上牌 照?
3种
N=5×4×3=60(种)
40
5. 用5种不同颜色给图中A,B,C,D四 个区域涂色,每个区域只涂一种颜色, 相邻区域的颜色不同,求共有多少种不 同的涂色方法?
54
A C3

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)

第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)
数为A45=120. 故符合题意的四位数一共有960+120=1 080(个). 答案:1 080
角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值

1.1.1《分类加法计数原理与分步乘法计数原理》课件(优秀经典公开课比赛课件)

1.1.1《分类加法计数原理与分步乘法计数原理》课件(优秀经典公开课比赛课件)
步计数原理
[学习目标] 1.通过实例,能总结出分 类加法计数原理、分步乘法计数原理(重 点). 2.正确地理解“完成一件事情” 的含义,能根据具体问题的特征,选择 “分类”或“分步”(易混点). 3.会用 分类加法计数原理或分步乘法计数原理 分析和解决一些简单的实际问题(难点).
05798415
10×10× 10× 10=104 分析: 10× 9 × 8 × 7=5040
变式: 若要求最后4个数字不重复,则又有多少种不同 的电话号码?
例4、 书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放有2本不同的 体育杂志.
(1)从书架上任取1本书,有多少种不同的取法?
2)首先要根据具体问题的特点确定一个分步的标准, 然后对每步方法计数.
例2、设某班有男生30名,女生24名。现要从中选出 男、女生各一名代表班级参加比赛,共有多少种不 同的选法?
例3、浦江县的部分电话号码是05798415××××,后 面每个数字来自0~9这10个数,问可以产生多少个不同
的电话号码? 分析:
区别二
每类办法都能独立完成
这件事情。
每一步得到的只是中间结果,
任何一步都不能能独立完成 这件事情,缺少任何一步也
不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。
各类办法是互斥的、
区别三 并列的、独立的
各步之间是相关联的
课堂练习
如图,从甲地到乙地有2条路,从乙地到丁地 有3条路;从甲地到丙地有4条路可以走,从丙 地到丁地有2条路。从甲地到丁地共有多少种 不同地走法?
不同的二次函数?其中图象过原点的二次函 数有多少个?图象过原点且顶点在第一象限 的二次函数又有多少个?
分类计数与分步计数原理的区别和联系:

6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)

6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)

探究一
探究二
探究三
素养形成
当堂检测
解:(1)分四类:第1类,从一班学生中选1人,有7种选法;第2类,从二班 学生中选1人,有8种选法;第3类,从三班学生中选1人,有9种选法;第4 类,从四班学生中选1人,有10种选法. 由分类加法计数原理知共有不同的选法N=7+8+9+10=34(种). (2)分四步:第1、2、3、4步分别从一、二、三、四班学生中选一 人任组长.
加法计数原理知共有不同的选法
N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.使用两个原理的原则 使用两个原理解题时,一定要从“分类”“分步”的角度入手.“分类”是 对于较复杂应用问题的元素分成互相排挤的几类,逐类解决,用分 类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然 后逐步解决,这时可用分步乘法计数原理. 2.应用两个计数原理计数的四个步骤 (1)明确完成的这件事是什么. (2)思考如何完成这件事. (3)判断它属于分类还是分步,是先分类后分步,还是先分步后分类. (4)选择计数原理进行计算.
探究二探Leabharlann 三素养形成当堂检测
变式训练2要从教学楼的一层走到三层,已知从一层到二层有4个扶 梯可走,从二层到三层有2个扶梯可走,则从一层到三层有多少种不 同的走法? 解:第1步,从一层到二层有4种不同的走法; 第2步,从二层到三层有2种不同的走法. 根据分步乘法计数原理知,从教学楼的一层到三层的不同走法有
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.分类加法计数原理的推广 分类加法计数原理:完成一件事有n类不同的方案,在第1类方案中 有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n 类方案中有mn种不同的方法,那么完成这件事共有 N=m1+m2+m3+…+mn种不同的方法. 2.能用分类加法计数原理解决的问题具有如下特点 (1)完成一件事有若干种方案,这些方案可以分成n类; (2)用每一类中的每一种方法都可以单独完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数.

数学112《分类加法计数原理与分步乘法计数原理》课件

数学112《分类加法计数原理与分步乘法计数原理》课件

例2.给程序模块命名,需要用3个字符,其中首个字 符要求用字母A~G或U~Z,后两个要求用数字1~9, 问最多可以给多少个程序命名?
分析:要给一个程序模块命名,可以分三个步骤:第一步, 选首字符;第二步,先中间字符;第三步,选末位字符。
解:首字符共有7+6=13种不同的选法, 中间字符和末位字符各有9种不同的选法
例5.计算机编程人员在编
开始
写好程序以后要对程序进
行测试。程序员需要知道
到底有多少条执行路(即 子模块1 程序从开始到结束的线),18条执行路径 以便知道需要提供多少个
子模块2 45条执行路径
子模块3 28条执行路径
测试数据。一般的,一个
A
程序模块又许多子模块组
成,它的一个具有许多执
行路径的程序模块。问: 这个程序模块有多少条执
解:(1)5名学生中任一名均可报其中的任一项,因此每 个学生都有4种报名方法,5名学生都报了项目才能算完成
这一事件故报名方法种数为4×4×4×4×4= 45 种 .
(2)每个项目只有一个冠军,每一名学生都可能获得 其中的一项获军,因此每个项目获冠军的可能性有5种
故有n=5×5×5×5= 54 种 .
子模块3 28条执行路径
而第步可由子模块1
A
或子模块2或子模块3
来完成;第二步可由
子模块4或子模块5来 完成。因此,分析一
子模块4 38条执行路径
子模块5 43条执行路径
条指令在整个模块的
执行路径需要用到两
个计数原理。
结束
2)在实际测试中,程序 员总是把每一个子模块看 成一个黑箱,即通过只考 察是否执行了正确的子模 块的方式来测试整个模块。18条子执模行块路1 径 这样,他可以先分别单独 测试5个模块,以考察每 个子模块的工作是否正常。 总共需要的测试次数为:

公开课分类加法计数原理与分步乘法计数原理课件

公开课分类加法计数原理与分步乘法计数原理课件
公开课分类加法计数 原理与分步乘法计数 原理课件
• 分类加法计数原理 • 分步乘法计数原理 • 分类加法计数原理与分步乘法计
数原理的比较 • 公开课总结与展望
目录
01
分类加法计数原理
定义与理解
定义
分类加法计数原理是指将一个问题分成若干个互斥的子问题,每个子问题有一 个明确的解决策略,然后将这些子问题的解合并起来得到原问题的解。
分类加法计数原理的实例
实例1
在组合数学中,将一个复杂组合问题 分解为若干个简单的组合问题,然后 分别计算这些简单问题的解,最后将 这些解相加得到原问题的解。
实例2
在统计学中,将一个复杂统计问题分 解为若干个简单的统计问题,然后分 别计算这些简单问题的解,最后将这 些解相加得到原问题的解。
02
分步乘法计数原理
解析
根据分步乘法计数原理,学生可以选择不同的交通方式有$m_1$种方法,选择不 同的住宿方式有$m_2$种方法,因此总共有$m_1 times m_2$种不同的春游方 案。
03
分类加法计数原理与分步乘
法计数原理的比较
两者之间的联系
分类加法计数原理和分步乘法计数原 理都是基本的计数原理,用于解决组 合数学中的计数问题。
定义与理解
定义
分步乘法计数原理是指完成一件事情,需要分成$n$个步骤,做第$1$步有$m_1$种不同的方法,做第$2$步有 $m_2$种不同的方法,……,做第$n$步有$m_n$种不同的方法,则完成这件事情有$m_1 times m_2 times ldots times m_n$种不同的方法。
理解
理解
分类加法计数原理的核心思想是将复杂问题分解为简单问题,然后分别解决这 些简单问题,最后将结果合并。

6.1分类加法计数原理与分步乘法计数原理课件(人教版)

6.1分类加法计数原理与分步乘法计数原理课件(人教版)
第六章 计数原理
6.1 分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法 计数原理.(重点) 2.会用这两个原理分析和解决一些简 单的实际计数问题.(难点)
1.核糖核酸(RNA)分子有碱基按一定顺序排列而成。 已知碱基有4种,但由成百上千个碱基组成的RNA分 子的种数非常巨大。为什么?
B 果将这 2 个新节目插人节目单中,那么不同的插法种数为( )
A.12
B.20
C.36
D.120
解析:利用分步计数原理,第一步插入第一个新节目,有 4 种方法,第二步插 入第二个新节目,此时有 5 个空,故有 5 种方法.因此不同的插法共有 45 20 种.故选 B.
2.如图,用 4 种不同的颜色对 A,B,C,D 四个区域涂色,要求相邻的两个区
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
解:这名同学可以选择 A,B 两所大学中的一所. 在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法. 因为没有一个强项专业是两所大学共有的, 所以根据分类加法计数原理, 这名同学可能的专业选择种数为 N 5 4 9 .
完成一件事需要两个步骤,做第 1 步有 m 种不同的方
法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N
=m×n种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到,A,B
两所大学各有一些自己感兴趣的强项专业,如下表.
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学Biblioteka 例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程 序模块命名?

第十章 第一节 分类加法计数原理与分步乘法计数原理 课件(共30张PPT)

第十章 第一节 分类加法计数原理与分步乘法计数原理  课件(共30张PPT)
主,难度将会变小.
学科素养: 数学建模、数学抽象.
知识·分步落实
⊲学生用书 P165
两个计数原理
分类加法计数原理
分步乘法计数原理
条 完成一件事有两__类__不__同__方__案__,在第 1 完成一件事需要两__个__步__骤__,做
件 类方案中有 m 种不同的方法,在第 2 第 1 步有 m 种不同的方法,做
法,所以由分步乘法计数原理得直线有 5×4=20(条).]
4.书架的第 1 层放有 4 本不同的语文书,第 2 层放有 5 本不同的数学书, 第 3 层放有 6 本不同的体育书.从第 1,2,3 层分别各取 1 本书,则不同的 取法种数为________.
解析: 由分步乘法计数原理知,从第 1,2,3 层分别各取 1 本书,不 同的取法共有 4×5×6=120(种).
(2)区域 3 有 4 种选法,区域 1 有 3 种选法,区域 2 有 2 种选法,区域 4 从区域 1,2 所选颜色中选有 2 种选法,区域 5 可选剩下的一种和区域 1,2 所选被区域 4 选剩下的一种,有 2 种选法,共有 4×3×2×2×2=96 种.
答案: 144;96
用分步乘法计数原理解决问题的三个步骤
类方案中有 n 种不种的方法
第 2 步有 n 种不同的方法
结 完成这件事共有 N=m__+__n_种不同的 完成这件事共有 N=_m_·_n_种不
论 方法
同的方法
[注意] 分类的关键在于要做到“不重不漏”;分步的关键在于要正确 设计分步的程序,即合理分类,准确分步.在分类与分步之前要确定题目中 是否有特殊条件限制.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于 其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立, 分步完成”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为一天中乘火车有3种走法,乘汽车有2种走法,每 一种走法都可以从甲地到乙地,所以共有:3+2=5(种)
1、分类计数原理(加法原理)
做一件事情,完成它可以有n类 办法,在第一类办法中有m1种不同的 方法,在第二类办法中有m2种不同的 方法,……,在第n类办法中有mn 种不同的方法。那么完成这件事共 有N=m1+m2+…+mn 种不同的方法。
计数原理
导入新课 实际问题
从甲地到乙地有3条路,从乙地到丁地有2条路; 从甲地到丙地有3条路,从丙地到丁地有4条路, 问:从甲地到丁地有多少种走法?
甲地
乙地
丙地
丁地
要回答这个问题,就要用到计数的两个基本原理
分类计数原理与分步计数原理.
分类计数原理与分步计数原理
问题一:从甲地到乙地,可以乘火车, 也可以乘汽车,一天中,火车有3班,汽车 有2班.那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种不同的走法?
从甲地到乙 地有3条路, 从乙地到丁地 有2条路;从 甲地到丙地有 3条路,从丙 地到丁地有4 条路,问:从 甲地到丁地有 多少种走法?
实际问题




练习 如图,一蚂蚁沿着长方体的棱,从一个顶点 爬到相对的另一个顶点的最近路线共有多少条?
D1
A1 D
A
C1
B1 C
B解:如图,ຫໍສະໝຸດ 总体上看,如,蚂蚁从顶点A爬到顶例3:
某班级有男三好学生5人,女三好学生4人
(1)从中任选一人去领奖, 有多少种不同 的选法?
(2) 从中任选男、女三好学生各一人去参 加座谈会,有多少种不同的选法?
例4:某城市电话号码由8位组 成,其中从左边算起的第1位只用 6或8,其余7位可以从前10个自然 数0,1,2,…,9中任意选取,允
例2:
两个袋子里分别装有40个红球与60个白球, 从中取一个白球和一个红球,有多少种取法?
解:取一个白球和一个红球可以分成
两步来完成:
60
第一步从装白球的袋子里取一个白球,

有60种
第二步从装红球的袋子里取一个红球,
40 个
有40种
共60*40=2400
练习 一个三位密码锁,各位上数字由0,1,2,3,4,5, 6,7,8,9十个数字组成,可以设置多少种三位数的 密码(各位上的数字允许重复)?首位数字不为0的 密码数是多少?首位数字是0的密码数又是多少?
许数字重复。试问:该城市最多 可装电话多少?
练习1
1、书架的第1层放有4本不同的计算机书, 第2层放有3本不同 的文艺书,第3层放有2 本不同的体育书. (1)从书架上任取1本书,有多少种不同
的取法? 4+3+2=9(种)
(2)从书架的第1、2、3层各取1本书,有
多少种不同的取法?4 ×3 ×2=24(种)
(1)从书架上任取一本,有多少种取法? 分类 10+9+8
(2)从书架上任取语数外各一本,有多少种取法? 分步 10×9×8
3、在所有的两位数中,个位数字大于十位数字的两 位数共有多少个?分类(按十位分) 8+7+6+5+4+3+2+1
4.某中学的一幢5层教学楼共有3处楼梯,问从1楼到 5楼共有多少种不同的走法?分步 3×3×3×3
分析: 按密码位数,从左到右 依次设置第一位、第二位、第三
位, 需分为三步完成; 第一步, m1 = 10; 第二步, m2 = 10; 第三步, m3 = 10. 根据乘法原理, 共可以设置 N = 10×10×10 = 103 种三位数的密码。
分类计数与分步计数原理的区别和联系:
联系
区别一
加法原理
条,由B村去C村的道路有2条。从A村
经B村去C村,共有多少种不同的走法?


A村
中 南
B村 南 C村
解: 从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有3种方法, 所以 从A村经 B村去C村共有 3 ×2 = 6
种不同的方法。
问题3:用前6个大写英文字母和1~9个阿拉伯
例1:两个袋子里分别装有40个红球,60个白
球,从中任取一个球,有多少种取法?
解:取一个球的方法可以分成两类:
一类是从装白球的袋子里取一个白球
40 个
有40种取法;
另一类是从装红球的袋子里取一个红球
有60种取法。
60 个
因此取法种数共有 40+60=100(种)
问题2:如图,由A村去B村的道路有3
数字,以A1,A2,,B1,B2的方式给教室的座位编 号.
1
A1
1
2
A2
2
3
A3
3
4
A4
4
A
5
A5 9种
B
5 9种
6
A6
6
7
A7
7
8
A8
8
9
A9
9
6 × 9 =54
2、分步计数原理 (乘法原理)
做一件事情,完成它需要分成n个 步骤,做第一步有m1种不同的方法, 做第二步有m2种不同的方法,……, 做第n步有mn种不同的方法,那么完 成这件事有N=m1×m2×…×mn种不 同的方法。
乘法原理
分类计数原理和分步计数原理,回答的都是关于
完成一件事情的不同方法的种数的问题。 完成一件事情共有n类 完成一件事情,共分n个 办法,关键词是“分类” 步骤,关键词是“分步”
区别二
每类办法都能独立完成
这件事情。
每一步得到的只是中间结果,
任何一步都不能独立完成 这件事情,缺少任何一步也
不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。
2、由数字1,2,3,4,5,6 可以组成多少个四位数?(各位 上的数字不重复)
6 ×5 ×4 ×3=360(个)
3、一种号码锁有4个拨号盘, 每个拨号盘上有从0到9共10个数 字, 这4个拨号盘可以组成多少 个四位数字的号码?
10 ×10 ×10 ×10=10 4
注意
有些较复杂的问题往往不是单纯 的“分类”“分步”可以解决的, 而要将“分类”“分步”结合起来 运用.一般是先“分类”,然后再 在每一类中“分步”, 综合应用分 类计数原理和分步计数原理.请看 下面的例题:
各类办法是互斥的、
区别三 并列的、独立的
各步之间是相关联的
点评:
加法原理看成“并联电路”;
m1
A
m2
B
……
mn
乘法原理看成“串联电路”
A m1
B m2 …... mn
判断下列用分类 还是分步原理,并说出式子 1、从5名同学中选出正副班长各一名,则不同的任职 方案有多少种? 分步 5×4
2、三层书架上,上层放着10本不同的语文书,中层 放着9本不同的数学书,下层放着8本不同的英语书,
相关文档
最新文档