我国研制出新型超高导电材料
材料界一哥—— 石墨烯(五大应用领域)

材料界“网红一哥”——石墨烯5大应用领域,产业浪潮开启看点:应用领域不断拓展,石墨烯大规模产业化即将开始。
石墨烯属于二维碳纳米材料,具有优秀的力学特性和超强导电性导热性等出色的材料特性,其下游应用主要涵盖基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。
石墨烯的大规模商业应用方向主要分为粉体和薄膜,其中石墨烯粉体目前主要用于新能源、防腐涂料等领域,石墨烯薄膜主要应用于柔性显示和传感器等领域,其中来自新能源的需求超过 70%。
全球石墨烯行业市场规模呈稳步增长态势。
预计到 2020 年末,全球和国内石墨烯行业市场规模分别为 95 亿美元和 200 亿元,中国石墨烯市场规模约占全球石墨烯总市场规模的 30%,并有逐年提高的趋势。
本期的智能内参,我们推荐国信证券的研究报告,揭秘石墨烯的性能特点、产业链概况、下游需求和国内外行业现状。
本期内参来源:国信证券1性能强大的新材料之王石墨烯是 2004 年用微机械剥离法从石墨中分离出的一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,英文名为 Graphene,为一层碳原子构成的二维晶体。
石墨烯与其他有机高分子材料相比,有比较独特的原子结构和力学特性。
石墨烯的理论杨氏模量达 1.0TPa,固有的拉伸强度为 130Gpa,是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,被誉为“新材料之王”、“黑金”。
▲典型的石墨烯结构图▲ 单层石墨烯是其他碳材料的基本元素石墨烯按照层数可分为单层石墨烯、双层石墨烯、少层石墨烯和多层石墨烯。
按照功能化形式可以分为氧化石墨烯、氢化石墨烯、氟化石墨烯等。
按照外在形态、又可分为片、膜、量子点、纳米带或三维状等。
▲石墨烯分类石墨烯具有超强导电性、良好的热传导性、良好的透光性、溶解性、渗透率、高柔性和高强度等出色的材料特性。
它的的应用领域非常广泛,主要集中在基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。
中考物理《新技术新材料》专项练习题(带答案)

C.电炉丝需要将电能转化为内能,超导体的电阻为零,无法将电能转化为内能,故C不符合题意;
D.超导体的电阻为零,可以远距离输电,当电阻为零时,可使导线损耗为零,便可提高传输效率,故D符合题意。
C. 地面控制中心通过超声波与空间站中的航天员通信
D. 核聚变装置“中国环流器二号M”获得核能的方式与核电站相同
12.2023年5月28日,中国生产的大飞机C919实现了商业首飞。下列关于C919飞机的说法中,正确的是( )
A. 飞机加速升空阶段,以机舱舷窗为参照物,飞机是运动的
B. 飞机加速升空阶段,乘客的速度和高度增大,惯性也增大
C. 光伏发电将太阳能转化为电能D. 核电站利用核裂变释放的能量发电
7.镁合金被誉为“21世纪绿色工程材料”,其密度仅有钢铁的四分之一,还具有强度高、导电性好、耐腐蚀等特性。下列物体不适合用该材料制作的是( )
A. 自行车的车架B. 平板电脑外壳
C. 起重机配重D. 仪器中的电子元件
8.北京是唯一举行了夏季与冬季奥运会的城市,在2022年北京冬奥会火炬传递中,火炬质量是同体积钢的 ,是用硬度比钢的硬度大8倍左右的碳纤维复合材料制成,火炬用氢做燃料,燃烧时温度约为 ,运动员手握火炬一点不感到烫手,关于碳纤维材料的性质,下列说法正确的是( )
故选D。
2.汽车的轮胎常由橡胶制成,是由于橡胶具有较好的( )
A. 塑性B. 弹性C. 导热性D. 透气性
19.人眼对观察到的景物有暂时的“记忆”,在外界景物消失后,视神经对它的印象还会延续0.1s左右,这种特征叫视觉暂留.例如在一张白色卡片纸的正、反面分别画上鸟笼和鸟,让卡片纸快速旋转,当正、反两面交替出现在眼前的时间间隔在0.1s之内时,人眼就能看到鸟在笼中的现象(图甲)。
导电性最好的材料

导电性最好的材料在现代科技发展的背景下,导电性材料的应用日益广泛,其在电子、通信、能源等领域扮演着重要的角色。
而在众多导电性材料中,有一些材料的导电性能表现得尤为突出,被广泛应用于各个领域。
本文将介绍一些导电性最好的材料,并探讨它们的特点和应用。
首先,碳纳米管是一种导电性能极好的材料。
碳纳米管具有优异的导电性和热导性,其导电性能甚至可以媲美铜和银。
碳纳米管具有极高的载流子迁移率和热导率,因此被广泛应用于电子器件、纳米电子学、传感器等领域。
同时,碳纳米管还具有优异的力学性能,具有很高的拉伸强度和弹性模量,因此也可以用于制备高强度的复合材料。
其次,石墨烯也是一种导电性最好的材料。
石墨烯是由碳原子以sp2杂化形式排列而成的二维晶体结构,具有优异的导电性和热导性。
石墨烯的载流子迁移率高达200,000 cm2/(V•s),是铜的100倍以上。
石墨烯还具有极高的强度和弹性模量,因此被广泛应用于柔性电子器件、导电材料、透明导电膜等领域。
石墨烯的出现,为导电性材料的研究和应用带来了革命性的突破。
此外,金属纳米线也是一种导电性能极好的材料。
金属纳米线具有极高的载流子迁移率和导电性能,是铜的数倍甚至数十倍。
金属纳米线可以制备成柔性透明导电膜,被广泛应用于柔性显示器、太阳能电池、触摸屏等领域。
金属纳米线的出现,为柔性电子器件的发展提供了新的可能性。
综上所述,碳纳米管、石墨烯和金属纳米线都是导电性最好的材料,它们具有优异的导电性能和力学性能,被广泛应用于电子、通信、能源等领域。
随着科技的不断进步,相信导电性材料会迎来更加美好的发展前景。
材料科学的最新研究成果

材料科学的最新研究成果材料科学作为一门重要的科学学科,探究了材料的物理、化学、结构和性能等方面,对于推动社会科技进步、促进经济社会发展起到至关重要的作用。
随着科技的不断发展,材料科学的研究也在不断推进。
下面,本文将为大家介绍材料科学的最新研究成果。
一、新型透明导电膜材料透明导电膜广泛应用于电子产品、光电器件等领域,目前常用的透明导电膜材料主要有氧化锌、氧化铟锡等。
然而,这些传统材料存在着导电性、稳定性等方面的问题。
近年来,材料科学家又研发出了一种新型透明导电膜材料——氮掺杂二氧化钛(N-TiO2),该材料的透过率高达90%以上,具有优异的导电性和光催化活性,是一种可持续利用的绿色材料。
二、柔性可穿戴电子材料随着科技的发展,越来越多的电子设备向着轻、薄、柔性、可穿戴的方向发展。
而这就需要寻找具有柔性、高强度、高导电性等特点的材料来制造硬件设备。
当前,在材料科学领域,柔性可穿戴电子材料是一个热门研究方向。
材料科学家成功研制出了一种柔性石墨烯电容器,它不仅可以承受弯曲,弹性恢复率高,而且电容量大,响应速度快,是柔性可穿戴电子领域可持续发展的重要材料。
三、新型锂离子电池材料锂离子电池正逐渐取代传统的铅酸电池、镍氢电池和镉镍电池,成为目前可重复充电、长寿命、高能量密度、环保的电池。
然而,锂离子电池的制造成本较高,且安全性差,它们往往无法满足人们对电池寿命、能耗、性能的要求。
在材料科学领域,科学家们正在研究开发新型锂离子电极材料,如硅复合材料、锰酸锂材料、氧化钒材料等,这些材料具有更高的能量密度、更长的使用寿命和更高的安全性。
四、新型染料敏化太阳能电池染料敏化太阳能电池已经成为了最具发展前景的太阳能电池之一。
在染料敏化太阳能电池中,染料起至关重要的作用,决定了电池的光吸收、电子传递和光电转换效率。
材料科学家们研究发现,通过改变染料的化学结构,可以提高电池的光电转换效率,同时也可以提高电池的稳定性和寿命,这些新型染料敏化太阳能电池能够大幅提高太阳能电池的能量转换效率,具有良好的发展前景。
材料科学中的超级导电性材料

材料科学中的超级导电性材料超级导电性材料是指具有比铜更高导电性能的材料。
这些材料在材料科学中具有极大的价值,因为它们可以被用于高速电子设备、高温超导电性设备和磁场传感器等领域。
本文将详细介绍超级导电性材料的种类和应用。
一、金属材料金属是超级导电性材料的经典代表。
在室温下,铜的电导率为58.4×106 S/m,但银(Ag)和金(Au)等金属的导电率超过了铜,因此它们具有超导电性。
此外,在极低温度下,一些金属例如铝(Al)和铉(Ce)也具有超导电性。
金属材料的超导电性主要应用于高速电子设备。
例如,在微电子学中,金或银纳米线电极的电阻性能显著提高,因此使用金属材料作为导体材料具有出色的效果。
二、有机材料相比于金属材料,有机材料在制备和成本方面更有优势。
在有机材料中,聚苯乙烯(PS)具有显著的超导性能。
此外,通过在有机材料中掺杂化合物或添加其他材料,如碳纳米管(CNT)和石墨烯(Gn),也可以制备出具有超导性的有机材料。
基于有机材料的超导性,可以制备出柔性电路、电子纸和智能穿戴设备等领域的应用,这些领域对于综合性能的要求更高。
三、二维材料二维材料具有独特的电子结构,因此被认为是超级导电性材料的候选材料之一。
石墨烯是最具代表性的二维材料之一。
它在理论上具有无限高的电子迁移率和卓越的超导电性能,因此非常适合用于高速电子设备制备。
除了石墨烯,二硫化钼(MoS2)等其他二维材料也被发现具有超导性能。
这些材料的导电性能甚至比铜高出数倍。
因此,它们在微电子学及石墨烯电荷传输场效应晶体管等领域具有广泛应用。
四、复合材料未来的超级导电材料将基于各种综合性能,因此复合材料是一种有前途的超级导电性材料。
通过在金属或二现类材料中掺杂二硫化钼等二维材料,可以制备出表现出更高导电性能的复合材料。
复合材料的应用范围更为广泛。
例如,在高温超导电性设备中,可以使用复合材料以提高其高温超导性能;在磁测仪和磁场传感器中,复合材料可以制备出大面积高灵敏度传感器。
导电最好的材料

导电最好的材料在现代科技领域,导电材料是一种非常重要的材料,它们可以在电子、通讯、能源等领域发挥重要作用。
导电材料是一种能够传导电流的材料,它们可以通过导电性能来实现电子设备的正常工作。
在众多导电材料中,有一些材料具有更好的导电性能,本文将介绍一些导电最好的材料。
首先,碳纳米管是一种导电性能非常优秀的材料。
碳纳米管具有优异的导电性能和机械性能,其导电性能远远超过铜和铝等传统金属材料。
碳纳米管具有很高的载流子迁移率和热导率,可以在微电子器件中发挥重要作用。
由于碳纳米管的独特结构和优异性能,它被认为是一种非常理想的导电材料。
其次,石墨烯也是一种导电性能非常出色的材料。
石墨烯是一种由碳原子构成的二维晶格结构,具有非常优异的导电性能和热导率。
石墨烯具有高达200,000S/cm的电导率,是铜的数倍,而且还具有非常好的柔韧性和透明性。
由于石墨烯的独特性能,它被广泛应用于柔性电子、光电子等领域。
除了碳基材料外,金属材料中的银也是一种导电性能非常优秀的材料。
银具有很高的电导率和热导率,是一种非常理想的导电材料。
在电子器件中,银材料可以作为导线、电极等部件,发挥重要作用。
由于银的优异导电性能,它被广泛应用于电子、通讯等领域。
此外,导电聚合物也是一种导电性能较好的材料。
导电聚合物是一种将导电性能与聚合物材料相结合的材料,它具有较好的导电性能和机械性能。
导电聚合物可以通过掺杂导电填料或者控制分子结构来实现导电性能,可以在柔性电子、光电子等领域发挥重要作用。
综上所述,碳纳米管、石墨烯、银和导电聚合物都是导电性能非常优秀的材料。
它们在电子、通讯、能源等领域发挥着重要作用,是现代科技领域不可或缺的材料。
随着科技的不断进步,相信会有更多导电性能优秀的材料出现,为人类社会的发展带来更多的惊喜和便利。
中国人在超导体领域的贡献

中国人在超导体领域的贡献
中国人在超导体领域做出了许多重要的贡献。
以下列举了一些具有代表性的贡献:
1. 高温超导体:中国科学家在1986年成功合成了世界上第一个高温超导体,即铋钡钡钛氧化物。
这一发现在超导体领域引起了巨大轰动,为开展高温超导研究打下了基础。
2. 超导磁体:中国科学家在设计、制造和应用超导磁体方面取得了重要进展。
超导磁体在医学成像(如核磁共振成像)、加速器、磁悬浮交通等领域具有广泛应用。
3. 超导电力技术:中国在超导电力技术方面也取得了突破。
中国建成了世界上首个超导电力电缆示范工程,通过利用超导材料的低电阻特性,实现了输电损耗的大幅减少。
4. 超导电子器件:中国科学家在超导电子器件的研制方面也做出了许多贡献。
他们开发出了高性能的超导量子干涉器件、超导量子比特和超导快速电子器件等。
5. 超导材料研究:中国长期致力于超导材料的研究,不断寻找新的高温超导材料和优化传统的低温超导材料。
这为超导体的应用和性能提高提供了基础。
总的来说,中国科学家在超导体领域做出了努力和贡献,推动了超导技术的发展和应用。
他们的研究不仅有助于提高能源利用效率、推动电力输送技术的进步,还在医学、电子器件等领域展示了巨大的潜力。
《贵金属-MXene纳米复合材料的研制及性能研究》

《贵金属-MXene纳米复合材料的研制及性能研究》贵金属-MXene纳米复合材料的研制及性能研究一、引言近年来,贵金属/MXene纳米复合材料由于其优异的电、磁、光等性能,在能源储存、催化、生物医疗等领域具有广泛的应用前景。
本文旨在研制贵金属/MXene纳米复合材料,并对其性能进行深入研究。
二、贵金属/MXene纳米复合材料的研制1. 材料选择与制备贵金属(如金、银、铂等)具有优异的导电性、催化性能和生物相容性,而MXene作为一种新型二维材料,具有高导电性、高强度和高化学稳定性等特点。
因此,选择贵金属和MXene作为复合材料的组成成分。
制备过程中,首先合成MXene纳米片,然后通过化学还原法或光还原法将贵金属纳米粒子负载在MXene纳米片上,形成贵金属/MXene纳米复合材料。
2. 制备工艺优化为提高贵金属/MXene纳米复合材料的性能,对制备工艺进行优化。
通过调整贵金属前驱体的浓度、反应温度、反应时间等参数,以及采用表面活性剂、还原剂等辅助手段,实现对贵金属纳米粒子的尺寸、形貌和分布的控制。
三、性能研究1. 电学性能贵金属/MXene纳米复合材料具有优异的电学性能。
通过测量复合材料的电导率、电阻率等参数,发现其电学性能随贵金属含量的增加而提高。
此外,MXene的高导电性和二维结构有利于提高电子传输速度和减少电子传输过程中的能量损失。
2. 催化性能贵金属/MXene纳米复合材料在催化领域具有广泛应用。
通过测试复合材料对某些有机反应的催化活性,发现其催化性能优于单一贵金属或MXene。
这主要是由于贵金属和MXene之间的协同作用,以及纳米级粒子提供的大量活性位点。
3. 稳定性与生物相容性MXene的高化学稳定性和生物相容性使得贵金属/MXene纳米复合材料在生物医疗领域具有潜在应用价值。
通过测试复合材料在生理环境中的稳定性以及与生物体的相互作用,发现其具有良好的生物相容性和较低的生物毒性。
四、结论本文成功研制了贵金属/MXene纳米复合材料,并对其性能进行了深入研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般来说增加导电性,有两个方法。
第一是把电子变多,第二是让电子跑的快些。
但在传统材料中,这两者很难同时达到。
这主要是由于电子数目多的情况下,电子会因为费米面的增大而大大增加散射几率,这其中一些大角度的背散射就会让电子的运动南辕北辙,从而降低迁移率,限制了材料导电性的进一步增强。
最近,修发贤课题组成功合成了砷化铌的纳米带。
测量发现,砷化铌纳米带在具有很高电子浓度的情况下仍然具有超高的迁移率。
为了进一步确认是什么原因导致了砷化铌纳米带具有超高的电导率,中国科学院合肥物质科学研究院强磁场科学中心副研究员张警蕾等人利用稳态强磁场实验装置,系统地研究了砷化铌纳米带的量子振荡。
得益于较高的测试磁场(最高使用场为32T),研究团队观测到一系列由费米弧表面态构成的量子振荡。
通过对这些量子振荡分析,研究人员发现砷化铌中的这种费米弧表面态具备低散射率的特性,即使在较高电子浓度的情况下,体系仍然保持低散射几率。
这些实验结果证明了砷化铌超高导电的机制源自外尔半金属特有的费米弧结构。
值得指出的是,和常规的量子现象不同,费米弧这一特性即使在室温仍然有效。
这一发现为材料科学寻找高性能导体提供了一个可行思路。
利用这种特殊的电子结构,可以在提高电子数量的同时,降低电子散射,从而实现优异的导电特性,这在降低电子器件能耗等方面有潜在应用。
该研究工作由复旦大学、中科院强磁场科学中心、南京大学、加州大学戴维斯分校、昆士兰大学、北京工业大学、苏黎世联邦理工学院、爱尔兰三一学院等多家单位合作完成。
修发贤为通讯作者,复旦大学博士生张成为第一作者,复旦大学本科生倪卓亮、强磁场中心张警蕾、复旦大学博士生袁翔为共同第一作者。
该研究在强磁场中心的实验部分得到了中科院科研仪器设备研制项目、中科院青年促进会、合肥物质科学技术中心创新项目培育基金等的支持。
碳基纳米盘可协同抑制肿瘤生长
记者3月21日从中科院强磁场科学中心获悉,该中心王辉研究员与华盛顿大学Miqin Zhang教授等合作,在癌症碳基药物载体方面取得新进展。
他们制备出一种类红细胞纳米载体——多功能荧光介孔碳基纳米盘。
相关研究结果日前发表在国际期刊《先进健康材料》上。
纳米尺度的药物输送载体因其响应型的药物释放、多模型的体内成像以及复合治疗的协同效应,近年来在生物医学领域展现了极高的应用前景。
科研人员以调控药物输送载体的形貌结构为出发点,利用金属有机分子为前驱体,采用溶剂热法和酸腐蚀等手段制备出“多功能荧光介孔碳基纳米盘”。
与此前已有的碳基纳米球相比,碳基纳米盘展现了更高的体外肿瘤细胞摄取率与体内肿瘤组织聚集率。
同时,碳基纳米盘还展现了波长调控的荧光成像能力和较高的抗癌药物载药率,如阿霉素,达到94.78wt%。
由于亲水性的表面性质和近红外光热转换性质,碳基纳米盘实现了pH/近红外刺激响应的药物释放能力。
体内治疗结果显示,碳基纳米盘可以同时实现癌症的光热治疗与药物化疗,展现了抑制肿瘤生长的协同型效应。
我国研制出新型超高导电材料据媒体报道,材料领域国际顶级期刊《自然·材料》,发表复旦大学修发贤团队最新研究论文《外尔半金属砷化铌纳米带中的超高电导率》,制备出二维体系中具有目前已知最高导电率的外尔半金属材料-砷化铌纳米带,电导率是铜薄膜的一百倍,石墨烯的一千倍。
业内表示,导电材料是电子工业的基础,现在最主要的材料是铜,而当铜变得很薄,进入二维尺度时,导电性迅速变差,功耗大幅度增加。
这是制约芯片等集成电路技术进一步发展的重要瓶颈。
新材料砷化铌不仅具有极高的电导率,同时,区别于超导材料只能在超低温下应用,它的高电导机制即使在室温下仍然有效。
这一发现在降低电子器件能耗等方面有重大价值。
铌具有热导率好、熔点高、耐腐蚀性好等优点,用途广泛,相关公司受关注。
比锂离子电池蓄电能力强?镁电池又有
新进展
中国粉体工业 2019 No.2 46。