复数PPT课件

合集下载

复数的概念及复数的几何意义ppt课件

复数的概念及复数的几何意义ppt课件
几何意义
复数的乘法与除法在复平面上表现为向量的旋转与缩放。
复数的乘方与开方
01 02
乘方运算规则
设$z = a + bi$,则$z^n = (a + bi)^n = a^n + C_n^1 a^{n-1} bi + C_n^2 a^{n-2} (bi)^2 + ldots + (bi)^n$,其中$C_n^k$表示组合数 。
复数与三角函数的对应关系
01
复数的三角形式与三角函数有密切联系,通过欧拉公式可以将
三角函数表示为复数的指数形式。
复数在三角函数计算中的应用
02
利用复数的三角形式和欧拉公式,可以方便地计算三角函数的
值,以及解决与三角函数相关的问题。
复数与三角函数的周期性
03
复数的周期性性质与三角函数的周期性相一致,通过复数运算
几何意义
复数的加法与减法在复平 面上表现为向量的合成与 分解。
复数的乘法与除法
乘法运算规则
设$z_1 = a + bi$,$z_2 = c + di$,则$z_1 times z_2 = (ac - bd) + (ad + bc)i$。
除法运算规则
设$z_1 = a + bi neq 0$,$z_2 = c + di$,则$frac{z_2}{z_1} = frac{c + di}{a + bi} = frac{(c + di)(a - bi)}{(a + bi)(a - bi)} = frac{ac + bd}{a^2 + b^2} + frac{bc - ad}{a^2 + b^2}i$。

复数的课件ppt

复数的课件ppt
详细描述
为它们可能包含实部和虚部。利用复数,可以更方便地 表示相位和阻抗,从而简化计算过程。
信号处理中的复数表示
总结词
在信号处理中,复数表示可以方便地 描述信号的频率和振幅信息。
详细描述
在信号处理中,复数是一种常用的数 学工具,用于描述信号的频率和振幅 信息。通过将信号表示为复数形式, 可以方便地进行信号的频谱分析和滤 波等操作。
复数的几何表示
总结词
复数可以通过平面坐标系中的点或向量来表示,其实部为x轴上的坐标,虚部为y轴上的坐标。
详细描述
复数可以通过几何图形来表示,其实部和虚部分别对应平面坐标系中的x轴和y轴上的坐标。在坐标系中,每一个 复数都可以表示为一个点或一个向量,其横坐标为实部,纵坐标为虚部。这种表示方法有助于直观理解复数的意 义和性质。
02
复数的三角形式
复数的三角形式表示
实部和虚部
复数可以表示为实部和虚部的和 ,即$z = a + bi$,其中$a$是实 部,$b$是虚部。
三角形式
复数还可以表示为模和辐角的形 式,即$z = r(costheta + isintheta)$,其中$r$是模, $theta$是辐角。
复数的模和辐角
除法运算
两个复数相除时,可以用乘以共轭复 数的方法化简,即$frac{a+bi}{c+di} = frac{(a+bi)(c-di)}{(c+di)(c-di)} = frac{ac+bd+(bc-ad)i}{c^2+d^2}$ 。
03
复数的应用
电路中的复数表示
总结词
利用复数表示电路中的电压和电流,可以简化计算,方便分 析。

7.2复数的四则运算PPT课件(人教版)

7.2复数的四则运算PPT课件(人教版)

解:(1)A,B,C 三点分别对应复数 1,2+i,-1+2i. 所以O→A,O→B,O→C对应的复数分别为 1,2+i,-1+2i(O 为坐 标原点), 所以O→A=(1,0),O→B=(2,1),O→C=(-1,2). 所以A→B=O→B-O→A=(1,1), A→C=O→C-O→A=(-2,2), B→C=O→C-O→B =(-3,1). 即A→B对应的复数为 1+i,A→C对应的复数为-2+2i,B→C对应的 复数为-3+i.
A.-1-1+i z(1 + i) = 2i , 得
z

2i 1+i

2i(1-i) (1+i)(1-i)

2i(12-i)=i(1-i)=1+i.
复数 z=14+ -ii的虚部为________. 解析:z=41- +ii=( (41- +ii) )( (11- -ii) )=3-2 5i=32-52i. 答案:-52
z1z2=__z_2_z1__
结合律
(z1z2)z3=__z_1_(z_2_z_3_) ____
乘法对加法的分配律
z1(z2+z3)=__z_1_z2_+__z_1_z3___
■名师点拨 对复数乘法的两点说明
(1)复数的乘法运算与多项式乘法运算很类似,可仿多项式乘法进行 运算,但结果要将实部、虚部分开(i2 换成-1). (2)多项式乘法的运算律在复数乘法中仍然成立,乘法公式也适用.
复数的四则运算
第七章 复 数
7.2.1 复数的加、减运算及其几何意义
第七章 复 数
考点 复数加法、 减法的运算
复数加法 的几何意义
学习目标 掌握复数代数形式的加法、 减法运算法则 理解复数代数形式的加法、 减法运算的几何意义

复数的基本概念及运算ppt课件

复数的基本概念及运算ppt课件

8.点M是△ABC所在平面内的一点,且满足 AM =
3 4
AB +
1 4
AC
,
则△ABM与△ABC的面积之比为_____.
类似题:《作业手册》P251 选做2
(10分)已知△ABC中, AB = a , AC = b ,对于平面ABC上 任意一点O,动点P满足 OP = OA +λa +λ b ,则动点P的轨. 迹是什么?其轨迹是否过定点,并说明理由.
(1)i4n=1; i4n+1=i; i4n+2=-1 i4n+3=-i
(2)in+in+1+in+2+in+3=0;
(3) (1±i)2=±2i ;
(4) 1 i i, 1 i i; 1i 1 i
(5) 设 ω - 1 3 i 则 22
ω3 1,ω2 ω,ω2 ω 1 0.
EX1:《创新》P213 例3
今晚自修①《作业手册》P315
4. 复数 z = a+bi 的模、共轭复数的概念:
| z | a2 b2
z a bi
5. 复数相等:
a=c
a+bi=c+di (a,b,c,d∈R)
b=d
注意 : 两个虚数不能比较大小!
二、复数的代数形式及运算法则
设 z1 a bi, z2 c di (a,b,c,d R) 加减法:(a bi) (c di) (a c) (b d)i
(2)(3 4i) (1 2i) 2 2i (3)a = 0是复数z = a + bi为纯虚数的必要不充分条件 (4)z = z是复数z R的充要条件 (5)若z z 0,则复数z为纯虚数 (6)任意两个复数不能比较大小 以上说法正确的有 __________

高中数学复数课件

高中数学复数课件

2. 减法:z1 - z2 = (a1 - a2) + (b1 b2)i
3. 乘法:z1 * z2 = (a1 * a2 - b1 * b2) + (a1 * b2 + a2 * b1)i
4. 除法:z1 / z2 = (a1 * a2 + b1 * b2) / (a2^2 + b2^2) + (b1 * a2 a1 * b2) / (a2^2 + b2^2)i
控制系统中的传递函数和稳定 性分析也涉及到复数,是工程 和科学领域的重要数学工具。
04
复数的历史和发展
复数的发展历程
01
02
03
复数概念的产生
起源于16世纪,数学家试 图解决方程的根的问题, 发现了虚数单位i。
复数的早期应用
在电气工程、流体力学等 领域开始使用复数。
复数的普及
19世纪,数学家开始广泛 地研究复数及其性质,并 应用于数学、物理和工程 等领域。
复数的共轭和模长
01
定义
复数的共轭定义为若z=a+bi,则其共轭为z*=a-bi。复数的模长定义为
|z|=sqrt(a^2+b^2)。
02
性质
复数的共轭具有共轭的共轭等于自身、共轭的加法运算等于减法运算等
性质;复数的模长具有模长的平方等于实部和虚部的平方和等性质。
03
计算方法
计算复数的共轭和模长时,可以利用共轭和模长的性质进行计算。
高中数学复数课件
contents
目录
• 复数的基本概念 • 复数的三角形式 • 复数的应用 • 复数的历史和发展 • 复数的扩展知识
01
复数的基本概念
复数的定义

高中数学一轮复习《复数》课件ppt(29张PPT)

高中数学一轮复习《复数》课件ppt(29张PPT)

解析 1-1 i=1+2 i=12+12i,其共轭复数为12-12i,
∴复数1-1 i的共轭复数对应的点的坐标为12,-12,位于第四象限,故选 D.
答案 D
5.(2019·全国Ⅲ卷)若z(1+i)=2i,则z=( )
A.-1-i
B.-1+i
C.1-i
D.1+i
解析 由 z(1+i)=2i,得 z=12+i i=(21i+(i1)- (1-i)i)=2i(12-i)=i(1-i)=1+i.
D.-
3 2i
解析 (1)∵z=(m2+m-6)+(m-2)i为纯虚数,
∴mm2-+2m≠-0,6=0,解得 m=-3,故选 D.
(2)∵z=1-
3i,∴-zz=z·-z-z2
=(1+|z|23i)2=1+2 43i-3=-12+

23i,∴zz的虚部
为 23.故选 C.
答案 (1)D (2)C
规律方法 1.复数的分类及对应点的位置都可以转化为复数的实部与虚部应该 满足的条件,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式) 组即可. 2.解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
建立平面直角坐标系来表示复数的 数;除了原点外,虚轴
复平面 平面叫做复平面,__x_轴___叫实轴,y 上的点都表示纯虚数,
轴叫虚轴
各象限内的点都表示
虚数
复数的 设O→Z对应的复数为 z=a+bi,则向量 模 O→Z的长度叫做复数 z=a+bi 的模
|z|=|a+bi|=__a_2_+__b_2
2.复数的几何意义
2.(新教材必修第二册 P69 例 1 改编)若复数 z=11++aii为纯虚数,则实数 a 的值为

复数课件ppt免费

复数课件ppt免费

02
复数的应用
Chapter
电路分析中的应用
电路分析中,复数是一种常用的数学工具,用于描述交 流电路中的电压、电流和阻抗等参数。
通过使用复数表示,可以简化计算过程,方便分析和设 计电路。
复数在交流电路分析中的应用包括计算交流阻抗、交流 功率和交流电流等。
信号处理中的应用
在信号处理中,复数常用于表示和处 理信号,如频谱分析和滤波器设计等 。
复数在信号处理中的应用还包括数字 滤波器设计和数字信号处理算法的实 现等。
通过将信号表示为复数形式,可以方 便地进行信号的频域分析和处理,如 傅里叶变换和离散余弦变换等。
控制系统中的应用
在控制系统中,复数常用于描 述系统的传递函数和稳定性等 特性。
通过使用复数表示,可以方便 地分析系统的频率响应和稳定 性,以及设计控制系统的参数 。
实例
$2(cos frac{pi}{3} + i sin frac{pi}{3}) + 1(cos frac{pi}{4} + i sin frac{pi}{4}) = sqrt{3}(cos frac{7pi}{12} + i sin frac{7pi}{12})$。
指数形式的计算
定义
复数指数形式是 $re^{itheta}$,其中 $r$ 是模长,$theta$ 是辐角 。
复数课件ppt免费
目录
• 复数的基本概念 • 复数的应用 • 复数的计算方法 • 复数的历史发展 • 复数的扩展知识
01
复数的基本概念
Chapter
复数的定义
总结词
复数是由实部和虚部构成的数,通常表示为a+bi,其中a是实部,b是虚部,i 是虚数单位。

7.1复数的概念PPT课件(人教版)

7.1复数的概念PPT课件(人教版)
若a, b, c, d R,
a bi c di
典型例题
例2 已知(2 x 1) i y (3 y)i ,其中x, y R
求 x与y.
解:根据复数相等的定义,得方程组
讲 课
2x 1 y 1 (3 y)
解得 x 5 , y 4
2



启 强
8
巩固练习
⑴已知 x y x 2y i 2x 5 3x y i ,
2.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”C
的( )
(A)必要不充分条件 (B)充分不必要条件
(C)充要条件
(D)不充分不必要条件
3.已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所
对应的点位于第二、四象限,求实数m的取值范
围.

m 3 m 2或1 m 2
y 5
5
O
x
–5
16
巩固练习 已知复数z=(m2+m-6)+(m2+m-2)i
求证:对一切实数m,此复数所对应的点不可 能位于第四象限.
解题思考:
表示复数的点所 转化 复数的实部与虚部所满
在象限的问题
足的不等式组的问题
(几何问题)
(代数问题)





启 强
17
课堂小结
知识点:
1.虚数单位i的引入; 复数的代数情势:
7.1 复数的概念
复数的几何意义
新课引入 数系的扩充与复数的概念
自然数 用图形表示数集包含关系:

23?

正有理数
的 扩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解: (1)当 m 10,即 m1时,复数z 是实数.
(2)当 m 10,即 m1时,复数z 是虚数.
(3)当 m 1 0
m
1
0
即m1时,复数z 是
纯虚数.
练习:当m为何实数时,复数 Z m 2 m 2 ( m 2 1 ) i是
(1)实数;(2)虚数 ;(3)纯虚数.
(1)m1; (2)m1; (3)m2.
4、复数相等
如果两个复数的实部和虚部分别相等,那么我们就
说这两个复数相等.即如果 a,b,c,dR ,那么
a b i c d i a c ,b d
特别地,a+bi=0 a0,b0. 注: 两个复数(除实数外)只能说相等或不相 等,而不能比较大小.
5、共轭复数
实部相等,虚部互为相反数的两个复数 互为共轭复数.

①解决实际问题的需要 由于计数的需要产生了自然数;为了表示具
有相反意义的量的需要产生了整数;由于测量的 需要产生了有理数;由于表示量与量的比值(如 正方形对角线的长度与边长的比值)的需要产生 了无理数(既无限不循环小数)。
②解方程的需要。
为了使方程 x+5=3 有解,就引进了负数; 为了使方程 3x=5 有解,就要引进分数;为了 使方程 x2=2 有解,就要引进无理数。
二、实数集的进一步扩展
——— 数集的第四次扩展(R→?) 问题2 : 解方程 x²= - 2
x 2i,x2i
问题3 解方程 (x +1)²=-2
x 12 i,x 12 i
二、复数
1、复数的概念
形如a+bi(a,b∈R)的数叫做复数. 其中i是虚数单位. 全体复数所成的集合叫做复数集,C表示
C{abi|a,b R }
复数 z=a+bi(a,b∈R) 的共轭复数记作
z, 即zabi (a,bR)
三、复数的有关性质
1 、 zab为 i 实 b 数 0
2 、 za b为 i 纯 a虚 0 且 b 数 0 3 、 z a b c i d a i c 且 b d 4 、 z a b 0 i a 0 且 b 0
2、复数的代数形式 通常用字母 z 表示,即
zabi(aR,bR)
实部 虚部
i 其中 称为虚数单位.
3、复数的分类及其关系
复数
abi
0(a0, b0)
实数 (b0)
非 0 实 (a数 0 , b0 )
(a,bR)
纯虚 (a0 数 , b0 )
虚数 (b0)
非纯(虚 a0, 数 b0)
NZ QRC
例1.辨析:
1.下列命题中的假命题是(D)
(A)在复平面内,对应于实数的点都在实 轴上;
(B)在复平面内,对应于纯虚数的点都在 虚轴上;
(C)在复平面内,实轴上的点所对应的复 数都是实数;
(D)在复平面内,虚轴上的点所对应的复 数都是纯虚数.
2.“a=0”是“复数a+bi (a , b∈R)是纯虚数”的( )
Z(a,b)
b ---复数平面(简称复平面)
a
o x x轴---实轴 y轴------虚轴
一一对应
复数z=a+bi(a,b∈R)
平 面 向 量 O Z
y
z=a+bi
Z(a,b)
b
a
ox
向 量 O Z 的 模 叫 做 复 数 z a b i 的 模 , 记 为 z 或 a b i .
zabia2b2
解:由 m m22m m2600 得m32或 mm21
m ( 3 , 2 ) (1 ,2 )
表示复数的点所 转化 复数的实部与虚部所满
在象限的问题
足的不等式组的问题
(几何问题)
(代数问题)
一种重要的数学思想:数形结合思想
复数的几何意义(二)
一一对应
复数z=a+bi
直角坐标系中的点Z(a,b)
一一对应
5、zab与 i zab为 i 共扼复数
例1. 判断下列各数, 哪些是实数?哪些是虚数? 若是虚数请指出实部与虚部.
(1) 32i; (2) 1 3i; 2
(3) 31i; (4) 0.2i; 2
(5) 21
(6) i2;
例2.实数m取什么值时,复数 z m 1 (m 1 )i是 (1)实数? (2)虚数?(3)纯虚数?
引进无理数后,我们已经能使方程x2=a(a>0) 永远有解,但是,这并没有彻底解决问题, 当a<0 时,方程 x2=a 在实数范围内无解。
为了使方程 x2=a(a<0) 有解,就必须把实数概 念进一步扩大,这就必须引进新的数。
二、实数集的进一步扩充
——— 数集的第四次扩充(R→?)
问题1: 对于一元二次方程 x2 10没有实数根.
平面向量 O Z
一一对应
y
z=a+bi
Z(a,b)
b
a
ox
复数的绝对值 (复数的模) 的几何意义:
(A)必要不充分条件 (B)充分不必要条件
(C)充要条件
(D)不充分不必要条件
3.“a=0”是“复数a+bi (a , b∈R)所对应的点在虚轴
上”的( )
(A)必要不充分条件 (B)充分不必要条件
(C)充要条件
(D)不充分不必要条件
例2. 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对 应的点位于第二象限,求实数m允许的取值范围.
x2 1
引入一个新数 i ,使得该数的平方等于-1
即 i2 = -1
所以方程 x²= -1 的解为 x = i 或 x = - i
虚数单位 i
引入一个新数 i, 叫i 做虚数单位,并规定:
(1)它的平方等于 -1,即 i2 1.
(2)实数可以与它进行四则运算,进行四则运算 时,原有的加、乘运算律仍然成立.
例3. 设x,y∈R,并且 2x–1+xi=y–3i+yi,求 x,y.
解 2 x : 1 x iy 3 i yi
即 (2 x 1 ) x iy (y 3 )i
由两个复数相等的定义得:2x
x 1 y y3
解得: x4,y7
实数的几何意义
在几何上,我们用 什么来表示实数?
实数可以用数轴上 的点来表示.
一一对应
实数
数轴上的点
(数)
(形)
类比实数的表示,
可以用什么来表示复数?
zabi(a,bR)
实部 虚部
一个复数由什么 唯一确定?
5、复数的几何意义
有序实数对(a,b)
一一对应
复数z=a+bi(a,b∈R)
直角坐标系中的点Z(a,b)
(数)
(形)
z=a+bi
y 建立了平面直角坐标系 来表示复数的平面
相关文档
最新文档