一阶系统matlab仿真

合集下载

Matlab系列之Simulink仿真教程

Matlab系列之Simulink仿真教程
Simulink中的所有功 能都通过模块来实现, 用户可以通过组合不 同的模块来构建复杂 的系统模型。
交互式仿真
Simulink支持交互式 仿真,用户可以在仿 真运行过程中进行实 时的分析和调试。
可扩展性
Simulink具有开放式 架构,可以与其他 MATLAB工具箱无缝 集成,从而扩展其功 能。
Simulink的应用领域
指数运算模块
用于实现信号的指数运算。
减法器
用于实现两个信号的减法 运算。
除法器
用于实现两个信号的除法 运算。
对数运算模块
用于实现信号的对数运算。
输出模块
模拟输出模块
用于将模拟信号输出 到外部设备或传感器。
数字输出模块
用于将数字信号输出 到外部设备或传感器。
频谱分析仪
用于分析信号的频谱 特性。
波形显示器
控制工程
Simulink在控制工程领域 中应用广泛,可用于设计 和分析各种控制系统。
信号处理
Simulink中的信号处理模 块可用于实现各种信号处 理算法,如滤波器设计、 频谱分析等。
通信系统
Simulink可以用于设计和 仿真通信系统,如调制解 调、信道编码等。
图像处理
Simulink中的图像处理模 块可用于实现各种图像处 理算法,如图像滤波、边 缘检测等。
用于将时域信号转换为频域信号,如傅里叶变换、 拉普拉斯变换等。
03 时域变换模块
用于将频域信号转换为时域信号,如逆傅里叶变 换、逆拉普拉斯变换等。
04
仿真过程设置
仿真时间的设置
仿真起始时间
设置仿真的起始时间,通 常为0秒。
步长模式
选择固定步长或变步长模 式,以满足不同的仿真需 求。

应用MATLAB控制系统仿真

应用MATLAB控制系统仿真

01
根据系统性能要求,设计比例、积分、微分控制器参数,优化
系统性能。
状态反馈控制器设计
02
通过状态反馈控制器设计,实现系统的最优控制。
鲁棒控制器设计
03
针对不确定性系统,设计鲁棒控制器,提高系统对参数变化的
适应性。
04
控制系统仿真的动态行为,通过建立和求解微 分方程来模拟系统的动态响应。
性能等。
05
Matlab控制系统仿真实 例
一阶系统仿真
总结词:简单模拟
详细描述:一阶系统是最简 单的控制系统,其动态行为 可以用一个一阶微分方程描 述。在Matlab中,可以使用 `tf`函数创建一个一阶传递函 数模型,然后使用`step`函 数进行仿真。
总结词:性能分析
详细描述:通过仿真,可以 观察一阶系统的响应曲线, 包括超调和调节时间等性能 指标。使用Matlab的绘图功 能,可以直观地展示系统的 动态行为。
THANKS FOR WATCHING
感谢您的观看
适用于模拟数字控制系统、采样控制系统等。
实时仿真
01
在实际硬件上实时模拟控制系统的动态行为,通过将
控制算法嵌入到实际控制系统中进行实时仿真。
02
使用Matlab中的`real-time workshop`等工具箱进
行建模和仿真,可以方便地实现实时仿真。
03
适用于模拟实际控制系统、验证控制算法的正确性和
实时仿真
Matlab支持实时仿真,可以在实 际硬件上运行控制算法,进行系 统测试。
02
控制系统数学模型
线性时不变系统
线性时不变系统(LTI)是指系统的输出与输入之间的关系 可以用线性常数来描述的系统。在控制系统中,LTI系统是 最常见的系统类型之一。

一阶倒立摆控制系统设计matlab

一阶倒立摆控制系统设计matlab

一阶倒立摆控制系统设计matlab一、控制系统简介控制系统是指通过对某些物理系统或过程的改变以获取期望输出或行为的一种系统。

其中涉及到了对系统的建模、分析以及控制方法的选择和设计等多方面的问题。

控制系统可以通过标准的数学和物理模型来描述,并可以通过物理或者仿真实验进行验证。

本文将围绕一阶倒立摆控制系统设计和仿真展开。

主要内容包括:1.一阶倒立摆系统简介2.系统建模3.系统分析4.设计控制器5.仿真实验及结果分析一阶倒立摆(controlled inverted pendulum)是一种比较常见的控制系统模型。

它的系统模型简单,有利于系统学习和掌握。

一般而言,一阶倒立摆系统是由一个竖直的支杆和一个质量为$m$的小球组成的。

假设球只能在竖直方向上运动,当球从垂直平衡位置偏离时,支杆会向相反的方向采取动作,使得小球可以回到平衡位置附近。

为了控制一阶倒立摆系统,我们首先需要对其进行建模。

由于系统并不是非常复杂,所以建模过程相对简单。

假设支杆长度为$l$,支杆底端到小球的距离为$h$,支杆与竖直方向的夹角为$\theta$,小球的质量为$m$,地球重力为$g$,该系统的拉格朗日方程可以表示为:$L =\frac{1}{2}m\dot{h}^{2}+\frac{1}{2}ml^{2}\dot{\theta}^{2}-mgh\cos{\theta}-\frac{1}{2}I\dot{\theta}^{2}$$I$表示支杆的惯性矩,它可以通过支杆的质量、长度以及截面积等参数计算得出。

$h$和$\theta$分别表示小球和支杆的位置。

我们可以通过拉格朗日方程可以得出系统的动力学方程:$b$表示摩擦系数,$f_{c}$表示对支杆的控制力。

由于一阶倒立摆会发生不稳定的倾斜运动,即未受到外部控制时会继续倾斜。

我们需要对系统加上控制力,使得系统保持在稳定的位置上。

在进行控制器设计之前,我们需要对系统进行分析,以便更好地了解系统在不同条件下的特性表现。

一阶倒立摆模糊控制matlab仿真

一阶倒立摆模糊控制matlab仿真

一阶倒立摆模糊控制仿真实验分析报告%mainclearclose all%load table.matglobal Table;global RULE;global UCenter;global Width;global num;global RuleMatch; %前件匹配方式0 取小;1乘积global Defuzzy; %反模糊化方法0: COG ; 1:COA; 2:MAXglobal g0;global g1;global h;x=[0.4,0,0];RuleMatch = 1; %前件匹配方式0 取小;1乘积Defuzzy = 0;%反模糊化方法0: COG ; 1:COA; 2:MAXg0=1.5;g1=0.1;h=1;% u=0;% Table = u;% [m,n]=size(u);% num = (m-1)/2;%u=[];RULE =[2, 2, 2, 1, 0; ...2, 2, 1, 0,-1;...2, 1, 0,-1,-2;...1, 0,-1,-2,-2;...0,-1,-2,-2,-2];%% RULE =[2,2,1,1,0; ...% 2,1,1,0,-1;...% 1,1,0,-1,-1;...% 1,0,-1,-1,-2;...% 0,-1,-1,-2,-2];RULE=RULE + 3*ones(size(RULE));%原始的%UCenter=[-20,-10,0,10,20];%改进的%UCenter=[-25,-15,0,15,25];UCenter=[-20,-15,0,15,20];Width(1)=(UCenter(5)-UCenter(4))/2;Width(2)=(UCenter(5)-UCenter(3));Width(3)=(UCenter(4)-UCenter(3))*2;Width(4)=Width(2);Width(5)=Width(1);x=x';[t,y]= ode45('P_Pendulum',[0,5],x);% [t,y]= ode45('P_Pendulum_tab',[0,10],x);% y2=y.*y;% inty = intnum(t,y2)%% int_e2 = inty(1)+inty(2);% int_u2 = inty(3);%int_y2 = sum(y.^2);%int_e2 = int_y2(1)+int_y2(2);%int_u2 = int_y2(3);figuresubplot(2,1,1)plot(t,y(:,1 ),'r',t,y(:,2),'k')%xlabel('t(sec)')% str1 = sprintf('x(0)=[%2.2f,%2.2f]',x(1),x(2)); % Title(str1,'Interpreter','latex','fontsize',14)%% str1=sprintf('t(sec)---index:$\\int{e^{T}(t)e(t)dt}=$ %f', int_e2);%str1 = '$\int{e^2}dt$'% text(6,0,str1,'Interpreter','latex','fontsize',14)%% xlabel(str1,'Interpreter','latex','fontsize',14)legend('x1(rad)', 'x2(rad/s)')title('输出隶属函数中心值:[-20,-15,0,15,20]')subplot(2,1,2)plot(t,y(:,3),'r')xlabel('t(sec)')ylabel('u(N)')% str1=sprintf('t(sec)--index:$\\int{u^{2}(t)dt}$= %f', int_u2);% %H = Title(str1,'Interpreter','latex','fontsize',14)% xlabel(str1,'Interpreter','latex','fontsize',14)% inverted pendulum stabilized% program on 2006,10,26function xdot = P_Pendulum(t,x)global RULE;global UCenter;global step;global k;global Kc;global QQ;global Width;global RuleMatch; %前件匹配方式0 取小;1乘积global Defuzzy; %反模糊化方法0: COG ; 1:COA; 2:MAXglobal g0;global g1;global h;M = 1;m =0.5;g = 9.8;l = 0.5;a = 1/(m+M);%计算隶属度mu_e= emembershipdegree(-x(1)*g0);mu_de = demembershipdegree(-x(2)*g1);%pausemu_e_id = find(mu_e>0);mu_de_id = find(mu_de>0);eLen= length(mu_e_id);deLen = length(mu_de_id);mu_pre= zeros(1,4);fuzzy_out = zeros(1,4);weight = zeros(1,4);in =1;%规则匹配for (i=1:eLen)for(j=1:deLen)switch RuleMatchcase 0%前件采用取小推理mu_pre(in)= min(mu_e(mu_e_id(i)),mu_de(mu_de_id(j)));case 1%前件采用乘积推理mu_pre(in)= mu_e(mu_e_id(i))*mu_de(mu_de_id(j));end%计算规则匹配度fuzzy_out(in) = RULE(mu_e_id(i),mu_de_id(j));in=in+1;endendnRule = eLen *deLen;u = 0;summu =0;%反模糊化for(i=1:nRule)switch Defuzzycase 0%按照重心法计算(COG)weight(i)= Width(fuzzy_out(i))*(mu_pre(i)-mu_pre(i)*mu_pre(i)/2);case 1% 按照中心平均法weight(i)=mu_pre(i);case 2% 取大法(大中求中)[max_v,max_id] = max(mu_pre);weight(max_id)=1;endu = weight(i)*UCenter(fuzzy_out(i))+u;summu =summu + weight(i);end%u=0;u=h*u/summu;if (u>20)u=20;endif (u<-20)u=-20;endt% if(t>2.5 && t<2.6 )% u=u+20;% end% if (u>20)% u=20;% end%% if (u<-20)% u=-20;% end% xdot(1)=x(2);% xdot(2)=(g*sin(x(1))-a*m*l*x(2)*x(2)*sin(2*x(1))/2-a*cos(x(1))*x(3))/(4*l/3-a*m*l*cos(x(1))*cos(x(1))); % xdot(3)=-100*x(3)+100*u;% x(3) = u;xdot(1)=x(2);xdot(2)=(g*sin(x(1))-a*m*l*x(2)*x(2)*sin(2*x(1))/2-a*cos(x(1))*x(3))/(4*l/3-a*m*l*cos(x(1))*cos(x(1))); xdot(3)=-100*x(3)+100*u;xdot = xdot';y=zeros(1,5);if (x<= -pi/2)y(1) =1 ;elseif (x<=-pi/4)y(1) = abs(x+pi/4)/(pi/4);y(2) = 1-abs(x+pi/4)/(pi/4); elseif (x<= 0)y(2) = 1-abs(x+pi/4)/(pi/4);y(3) = 1- abs(x)/(pi/4);elseif (x<=pi/4)y(3) = 1- abs(x)/(pi/4);y(4) = 1-abs(x-pi/4)/(pi/4); elseif (x<=pi/2)y(4) = 1-abs(x-pi/4)/(pi/4);y(5) = abs(x-pi/4)/(pi/4);elseif (x>pi/2)y(5) =1;endfunction y = demembershipdegree(x) y=zeros(1,5);if (x<= -pi/4)y(1) =1 ;elseif (x<=-pi/8)y(1) = abs(x+pi/8)/(pi/8);y(2) = 1-abs(x+pi/8)/(pi/8); elseif (x<= 0)y(2) = 1-abs(x+pi/8)/(pi/8);y(3) = 1- abs(x)/(pi/8);elseif (x<=pi/8)y(3) = 1- abs(x)/(pi/8);y(4) = 1-abs(x-pi/8)/(pi/8); elseif (x<=pi/4)y(4) = 1-abs(x-pi/8)/(pi/8);y(5) = abs(x-pi/8)/(pi/8);elseif (x>pi/4)y(5) =1;endy=zeros(1,5); if (x<= -30) y(1) =0 ; elseif (x<=-20)y(1) = 1-abs(x+20)/(10); elseif (x<=-10)y(1) = 1-abs(x+20)/(10); y(2) = 1-abs(x+10)/(10); elseif (x<= 0)y(2) = 1-abs(x+10)/(10); y(3) = 1- abs(x)/(10); elseif (x<=10)y(3) = 1- abs(x)/(10); y(4) = 1-abs(x-10)/(10); elseif (x<=20)y(4) = 1-abs(x-10)/(10); y (5) = 1-abs(x-20)/(10); elseif (x>30) elseif (x<=30)y(5) = 1-abs(x-20)/(10); elseif (x>30) y(5) =0; end不同的推理方式,反模糊化方法初始值:x0=[0.1 0]’t(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )不同的初始条件前件隶属度函数计算方法:乘积模糊蕴含关系计算方法:取小 反模糊化方法:COGt(sec)u (N )t(sec)u (N )t(sec)u (N )t(sec)u (N )结论:当初始角达到一定程度时,控制力趋向饱和,系统不稳定。

matlab 一阶系统 z 变换

matlab 一阶系统 z 变换

一阶系统的z变换在matlab中的应用1. 概述z变换是数字信号处理中常用的一种数学工具,用于将连续时间信号转换为离散时间信号。

在matlab中,z变换可以通过一些函数和工具实现,特别是在一阶系统中,z变换可以起到非常重要的作用。

2. 一阶系统的传递函数一阶系统是指系统的阶数为1的系统,在控制系统和信号处理中有着广泛的应用。

一阶系统的传递函数一般可以表示为:H(z) = (b0 + b1 * z^-1) / (1 + a1 * z^-1)其中,b0、b1、a1为系统的系数,z^-1表示z的倒数。

一阶系统的传递函数可以通过z变换来进行仿真和分析。

3. Matlab中的z变换在matlab中,可以使用zpk、tf和c2d等函数来进行z变换的操作。

其中,zpk函数用于创建或转换零极点模型,tf函数用于创建传递函数模型,c2d函数用于进行连续时间到离散时间的转换。

4. 一阶系统的z变换示例接下来,我们通过一个具体的示例来介绍一阶系统在matlab中的z变换操作。

假设我们有一个一阶系统的传递函数为:H(s) = 1 / (s + 1)我们首先可以使用tf函数来创建传递函数模型:Hs = tf([1], [1, 1])接下来,我们可以使用c2d函数将连续时间系统转换为离散时间系统:Ts = 0.1 离散化时间间隔Hz = c2d(Hs, Ts, 'tustin') 使用tustin方法进行离散化通过以上操作,我们就可以得到一阶系统在离散时间下的传递函数Hz。

5. 仿真分析在得到离散时间下的传递函数后,我们可以使用zpk函数来创建或转换零极点模型,并进行进一步的仿真分析。

我们可以使用zpk函数来获得离散时间下的零极点模型:[z, p, k] = zpkdata(Hz, 'v') 获取零点、极点和增益disp('离散时间下的零点:')disp(z)disp('离散时间下的极点:')disp(p)通过分析离散时间下的零极点,我们可以对系统的稳定性和动态特性进行评估和分析。

一阶系统及二阶系统时域特性MatLab仿真实验报告

一阶系统及二阶系统时域特性MatLab仿真实验报告

实验一 一阶系统及二阶系统时域特性MatLab 仿真实验一、实验目的1、使学生通过实验中的系统设计及理论分析方法,帮助学生进一步理解自动控制系统的设计与分析方法。

2、熟悉仿真分析软件。

3、利用Matlab 对一、二阶系统进行时域分析。

4、掌握一阶系统的时域特性,理解常数T 对系统性能的影响。

5、掌握二阶系统的时域特性,理解二阶系统重要参数对系统性能的影响。

二、实验设备计算机和Matlab 仿真软件。

三、实验内容1、一阶系统时域特性 一阶系统11)(+=Ts s G ,影响系统特性的参数是其时间常数T ,T 越大,系统的惯性越大,系统响应越慢。

Matlab 编程仿真T=0.4,1.2,2.0,2.8,3.6,4.4系统单位阶跃响应。

2、二阶系统时域特性a 、二阶线性系统 16416)(2++=s s s G 单位脉冲响应、单位阶跃响应、单位正弦输入响应的 Matlab 仿真。

b 、下图为具有一微分负反馈的位置随动系统框图,求出系统的闭环传递函数,根据系统瞬态性能指标的定义利用Matlab 分别计算微分反馈时间常数τ为0,0.0125,0.025时系统的上升时间、峰值时间、最大超调量和调整时间。

C 、二阶线性系统3612362++s s ξ,当ξ为0.1,0.2,0.5,0.7,1.0,2.0时,完成单位阶跃响应的Matlab 仿真,分析ξ值对系统响应性能指标的影响。

四、实验要求1、进入机房,学生要严格遵守实验室规定。

2、学生独立完成上述实验,出现问题,教师引导学生独立分析和解决问题。

3、完成相关实验内容,记录程序,观察记录响应曲线,响应曲线及性能指标进行比较,进行实验分析4、分析系统的动态特性。

5、并撰写实验报告,按时提交实验报告。

五、Matlab 编程仿真并进行实验分析1、一阶系统时域特性实验代码:运行曲线:实验分析:由上图分析可知,一阶系统时间常数越大,图像图线越晚达到常值输出,即时间常数T影响系统参数,时间常数越大,系统的惯性越大,系统响应越慢。

MATLAB-计算机仿真_3-1

MATLAB-计算机仿真_3-1

X(t)
Xn
1 x n 1 x n 2 h( k1 k 2 ) k1 f (t n , x n ,u n ) k f (t n 1, x n 1, u n 1) 2
tn
tn+1
t
这一思想被广泛地应用于许多算法中,实际 计算时,如果在每个积分步矩中多取几个点,分 别求出其斜率 k 1, k 2 , , k r ,然后取不同的权值 r 为:
x ( t n 1 ) x ( t n ) h f ( t n 1, x n 1, u n 1 )
dx f ( t n 1, x n 1, u n 1( t )) d t t t n 1
也能得到:
x n 1 x n h f n 1 后向欧拉法
k w 1k1 2 k 2 r k r
k
i 1
i i
后面Runge—Kutta法就是采用这样的思想 来进行计算的。
梯形法的几何意义也可按折线理解,
x n 1 h h h h x n f n f n 1 x n f n f n 1 x 1 f n 1 n 2 2 2 2 2
x
X Xn+1
n
1 K2 2
X(t)
Xn K1
h/2 tn
h/2
tn+1
t
梯形法大大提高了精度,但为隐式算法,每 次递推计算时需解一次非线性方程,计算量较大
由此考虑进行改进,先用Euler法计算出: x ( t n 1 ) 的近似值 x p n 1 代入导函数 f n 1
求出近似值 f p n 1 再代入梯形公式求解。 p x n 1 x n hf( tn ,x n ) 预估公式(Euler法)

自动控制 Matlab仿真实验一

自动控制 Matlab仿真实验一

仿真实验○一:控制系统的时域分析一、实验目的:1.观察控制系统的时域响应;2.记录单位阶跃响应曲线;3.掌握时间响应分析的一般方法;4.初步了解控制系统的调节过程。

二、实验步骤:1.开机进入Matlab6.1运行界面。

2.Matlab指令窗:"Command Window". 运行指令:con_sys; 进入本次实验主界面。

3.分别双击上图中的三个按键,依次完成实验内容。

4.本次实验的相关Matlab函数:tf([num],[den])可输入一传递函数。

step(G,t)在时间范围t秒内,画出阶跃响应图。

三、实验内容:1、观察一阶系统G=1/(T+s) 的时域响应:取不同的时间常数T,分别观察该系统的脉冲响应、阶跃响应、斜坡响应以及单位加速度响应。

结论:时间常数越小,响应越迅速。

2、二阶系统的时域性能分析:(1)调节时间滑块,使阶跃响应最终出现稳定值。

(2)结合系统的零极点图,观察自然频率与阻尼比对极点位置的影响。

(3)结合时域响应图,观察自然频率与阻尼比对阶跃响应的影响。

结论:阻尼比越小,极点越靠近虚轴,超调量减小,但响应速度变慢。

自然频率减小,极点靠近虚轴,响应速度减小,超调几乎不变。

(4)调节自然频率与阻尼比,要求:Tr<0.56s ,Tp<1.29s,Ts<5.46,超调不大于5%.记录下满足上述要求的自然频率与阻尼比。

调节完成之后的响应曲线如图。

此时自然频率为14.5872rad/sec,阻尼比为0.77456。

各项参数完全满足要求。

3、结合《自动控制原理》一书,Page 135,题3_10. 分别观察比例_微分与测速反馈对二阶系统性能的改善。

(1).按原始的调节参数输入,调节时间滑块,使阶跃响应最终出现稳定值。

(2)采用不同的G输入,观察各项性能指数。

结论:增大分母中间的参数,相当于增大系统阻尼比,从而减小超调量(3).分别取不同的K3,观察比例_微分控制对系统性能的改善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档