直线与圆锥曲线中的弦长问题
巧用弦长公式 妙解圆锥曲线

客观题方面有不错的效果.当然,需要强调的是,几何并不能完全代替代数,这也是解析几何发展的重要依据与出发点.仅以上海高考一例说明此点并结束本文.在该题的解答中,代数工具的优势发挥得甚是明显,而几何上的观察则不易(如图20).例10 (2017年高考上海卷·理16)在平面直角坐标系xOy 中,已知椭圆221:1364x yC +=和22:C x + 219y =.P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值.记{()|Ω=P Q P ,在1C 上,Q 为2C 上,且}OP OQ w ⋅= ,则Ω中元素的个数为( ). A .元素个数为2 B .元素个数为4C .元素个数为8D .含有无穷个元素 解析 不妨设(6cos 2sin )P θθ,,(cos 3sin )Q ϕϕ,,则(6cos 2sin )(cos 3sin )6(cos cos θθϕϕθϕ⋅==+ OP OQ ,,sin sin )6cos()θϕθϕ=−,故OP OQ ⋅的最大值6w =,当且仅当θϕ=时等号成立,即有无穷多组()P Q ,满足题意,选D .参考文献[1]钱珮玲.数学思想方法与中学数学(第二版)[M].北京:北京师范大学出版社,2008[2]刘绍学.普通高中课程标准实验教科书·数学4(必修)[M].北京:人民教育出版社,2004[3]兰琦.高中数学进阶教程(每日一题好题精选)[M].杭州:浙江大学出版社,2016[4]杜志建.金考卷·2020浙江新高考优秀模拟试卷汇编45套[M].乌鲁木齐:新疆青少年出版社,2019(本文系福建省教育科学“十三五”规划2018年度课题《高三数学微专题教学的设计与实践研究》(课题编号:FJJKXB18-652)的研究成果)巧用弦长公式 妙解圆锥曲线黄书虹 福建省泉州市培元中学(362000)在解决圆锥曲线有关线段的距离问题,经常要涉及弦长公式,如果用传统的弦长公式,计算量非常大.因此本文引出广义的弦长公式,适用于直线上任意两点的距离,极大地简化计算,有助于快速解决圆锥曲线问题. 直线与圆锥曲线相交弦长公式为: ||AB =12||x x =−,其中11()A x y ,,22()B x y ,是直线与圆锥曲线的交点.其实,这个公式也适用于直线上任意两点的距离公式,设11()A x y ,,22()B x y ,为直线:l y kx m =+上的任意两点,则||AB=12||x x −或12||||AB y y =−.利用这个距离公式,可以将线段的关系转化为点坐标关系,进而利用韦达定理解决.引例1 (2017年福建质检卷·文20)以抛物线ΓΓ于A B ,两点,且||2AB =. (I )建立适当的坐标系,求Γ的方程; (II )若过点A 且与Γ只有一个公共点的直线l 交Γ的对称轴于点C ,点D 在线段AB 上,直线CD 与Γ交于P Q ,两点,求证:||||||||PC QD PD QC ⋅=⋅.解析 (I )设Γ的顶点为O ,则圆O 的半径r =||2AB =,所以O 到直线AB 的距离为d = 1=,如图1,以O 为原点,过O 且垂直于Γ对称轴的直线为x 轴,Γ对称轴所在直线为y 轴,建立平面直角坐标系xOy ,由对称性,不妨设点A 在y 轴左侧,则(11)A −,,(11)B ,.设抛物线Γ的方程为22(0)x py p =>.因为A 在Γ上,所以2(1)−= 2p ,解得12p =.故抛物线Γ的标准方程为2x y =.(这里建系方法不唯一,抛物线也可以是开口向右)(II )由(I )知,Γ的方程为2y x =,所以2y x ′=,因为直线l 与Γ只有一个公共点,且与y 轴交于C ,所以直线l 为Γ的切线,所以直线l 的斜率为1|2x y =−′=−, 所以直线l 的方程为12(1)y x −=−+, 令0x =,得1y =−,故(01)C −,. 设直线CD 的方程为1(0)y kx k =−≠, 11()P x y ,,22()Q x y ,, 由21y kx y x =−= ,,得210x kx −+=,所以240k ∆=−>,即2k <−或2k >. 又12x x k +=,121x x ⋅=, 所以2212121y y x x ⋅=⋅=, 将1y =代入1y kx =−,得2x k =,即2(1)D k ,. 不妨设C P D Q ,,,自上而下顺序排列,依题意得,20x ≠,220x k−≠.图1法1 利用几何性质,应用三角形的相似关系,将线段关系转化为坐标关系.由三角形的相似比可得1122||||||||x x PC QC x x ==, 112222||||22||||x x PD k k QD x x k k −−+==−−, 因为122122()()x x x x k k −−−+1212222()20x x x x k k k=−+=−⋅=,所以112222x x k x x k−+=−,即||||||||PC PD QC QD =, 所以||||||||PC QD PD QC ⋅=⋅成立.法2 向量法 因为||||PC QD ⋅ ||||cos 0PC QD =⋅⋅ PC QD =⋅ 11222(1)(1)x y x y k=+⋅−−,,12122()(1)(1)x x y y k=−++−,||||||||cos 0PD QC PD QC PD QC ⋅=⋅⋅=⋅11222(1)(1)x y x y k =−−⋅−−−,,12122()()(1)(1)x x y y k=−−+−−−, 所以||||||||PC QD PD QC ⋅−⋅12121222()(1)(1)()()x x y y x x k k =−++−−−−12(1)(1)y y +−−−112112221x x x y y y y k ⋅−+−+− 212211221x x x y y y y k +⋅−++−−1212122()2220x x x x y y k=+−−+=,所以||||||||PC QD PD QC ⋅=⋅成立.法3 利用直线上两点的距离公式,将线段关系转化为坐标关系因为C P D Q ,,,都在直线l 上,所以11||0|PC x x =−=,22||0|QC x x =−=,1122||||+PDx x k k =−=-),2222|||()QD x x k k=−=−.因为122122()()x x x x k k −−−+1212222()20x x x x k k k=−+=−⋅=,所以112222x x k x x k−+=−,= 即||||||||PC PD QC QD =, 所以||||||||PC QD PD QC ⋅=⋅成立.注 本题主要考查坐标法、直线与圆的位置关系、抛物线的标准方程、直线与抛物线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想、化归与转化思想等.引例2 (2018年福建质检卷·文20)在平面直角坐标系xOy 中,点F 的坐标为1(0)2,,以MF 为直径的圆与x 轴相切.(I )求点M 的轨迹E 的方程;(II )设T 是E 上横坐标为2的点,OT 的平行线l 交E 于A B ,两点,交E 在T 处的切线于点N .求证:25||||||2NT NA NB =⋅. 解析 (I )点M 的轨迹E 的方程为22x y =.(略)(II )由(I )得(22)T ,,所以直线OT 得斜率为1.因为//l OT ,所以可设直线l 的方程为+(0)y x m m ≠, 由212y x =,得y x ′=, 则E 在T 处的切线斜率为2|2x y =′=,所以切线方程为22y x =−. 由22y x m y x =+=− ,,得222x m y m =+ =+,, 所以(222)N m m ++,, 由2y x m x y =+=,,消y 得2220x x m −−=,由480m ∆=+>,得12m >−. 设11()A x y ,,22()B x y ,, 则122x x +=,122x x m ⋅=−.又2222||[(2)2][(22)2]5NT m m m +−++−.图2法1 向量法 11((2)(22))NA x m y m =−+−+,, 22((2)(22))NB x m y m =++-,-,因为N A B ,,在直线l 上,11+y x m =,22+y x m =,所以||||||||cos 0NA NB NA NB NA NB ⋅=⋅⋅=⋅12[(2)][(2)]x m x m +⋅+-- 12[(22)][(22)]y m y m ++⋅+-- 12[(2)][(2)]x m x m +⋅+--12[()(22)][()(22)]x m m x m m +++⋅++--2121222(2)()2(2)x x m x x m =−++++ 2244(2)2(2)2m m m m =−−+++=.故25||||||2NT NA NB =⋅成立. 法2 利用直线上任意两点的距离公式 因为N A B ,,在直线l 上,所以1|||(2)|NA x m =−+,2|||(2)|NB x m =−+, 12||||2|[(2)][(2)]|NA NB x m x m ⋅=−+⋅−+22121222(2)()2(2)2x x m x x m m =−++++=,故25||||||2NT NA NB =⋅成立. 注 本题主要考查抛物线的定义及标准方程、直线与抛物线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想等.引例3 (2019年泉州质检卷·文22)在直角坐标系xOy 中,直线l 的参数方程为2x t y nt =−+=,(t 为参数),其中0n >,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为θ= π()2ρ∈R ,曲线2C 的极坐标方程为2cos 21ρθ=. (I )求12C C ,的直角坐标方程;(II )已知点(20)P −,,l 与1C 交于点Q ,与2C 交于A B ,两点,且2||||||PA PB PQ ⋅=,求l 的普通方程. 解析 (I )12C C ,的直角坐标方程的直角坐标方程分别为0x =,221x y −=.(略) (II )法1 利用参数t 的几何意义 把2x t =−+,y nt =代入221x y −=, 得22(1)430n t t −+−=. 因为21240n ∆=+>恒成立, 所以12241t t n +=−−,12231t t n =−−, 设A B ,对应的参数分别为12t t ,,则1|||PA t =,2|||PB t =所以12|||||||PA PB t t ⋅=221223(1)||(1)||1n t t n n =+=+−. 又直线2x t l y nt =−+=,:(t 为参数)交1:0C x =交于x点Q ,则点Q 对应的参数2Q t =,(02)Q n ,,所以2222||(1)||4(1)Q PQ n t n =+=+. 由2||||||PA PB PQ ⋅=,得2223(1)||4(1)1n n n +=+−,所以23|1|4n −=.因为0n >,所以12n =, 代入直线l 的普通方程(2)y n x =+,得到1+12y x =或y = 注 本题直线l 的参数方程是非标准型,则||PA1||t ,而不是1||||PA t =,因此学生很容易在这个地方犯错,得出12||||||PA PB t t ⋅=,导致计算出错.利用这个方法需要对参数的几何意义有深刻的理解,而不是简单地代入公式.法2 利用直线上两点间的距离公式 直线l 的普通方程为(2)y n x =+,由(2)0y n x x =+=,,得(02)Q n ,,联立22(2)1y n x x y =+−=,,得2222(1)4(41)0n x n x n −+++=, 因为21240n ∆=+>恒成立,设11()A x y ,,22()B x y ,,则212241n x x n +=−−,2122411n x x n +=−. 因为A B P Q ,,,都在直线l 上,所以1|||2|PA x +,2|||2|PB x +,|||02|PQ =+由2||||||PA PB PQ ⋅=,得2212(1)|(2)(2)|4(1)n x x n +++=+, 即2222418|4|411n n n n +−+=−−, 所以23|1|4n −=,因为0n >,所以12n =,故直线l 的方程为1+12y x =或y =注 法2避免了直线的参数方程的误区,利用两点的距离公式12||||AB x x =−简化计算,学生相对容易接受.注 本题主要考查极坐标系与参数方程等基础知识,考查运算求解能力等,考查数形结合思想等,导向对直观想象等核心素养的关注.结束语直线上两点间的距离公式在圆锥曲线中的应用广泛,可以将线段关系转化为坐标关系,极大地简化计算.但是这个方法比较适用于各点是共线的情况,这样计算可以不用考虑直线斜率的问题.当然,参数法和向量法在圆锥曲线中也是很好的方法.一道高考不等式试题探析陈景文 福建省泉州市第七中学(362000)近日,笔者对2019年全国I卷理第23题深入探究,从问题条件及目标结构特点出发,寻求多元化解题策略,供读者参考研究. 问题呈现 已知a b c ,,为正数,且满足1abc =.证明: (1)222111b ca c ab ≤++++; (2)333()()()24a b bc c a +++≥++.1 解法展示此题是高考卷最后一题,命题者预期此题难度较小.此题题目简洁,内涵丰富,解题方向较广.对条件的结构特征与解题目标不同分析,会产生一些对今后高考复习有启示的解法.1.1 第一问证明解题目标中含有111a b c++与222a b c ++结构,分别为分式与整式,又没有齐次化,因此,解题时还须对目标进行适当的转化.结合1abc =,注意到1a +。
直线与双曲线的位置关系及中点弦问题——教案

直线与双曲线的位置关系及中点弦问题1.直线与双曲线的位置关系的判断设直线)0(:≠+=m m kx y l ,双曲线)0,0(12222>>=-b a by a x 联立解得 02)(222222222=----b a m a mkx a x k a b若0222=-k a b 即ab k ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点; 若0222≠-k a b 即ab k ±≠, ))((4)2(222222222b a m a k a b mk a -----=∆0>∆⇒直线与双曲线相交,有两个交点;0=∆⇒直线与双曲线相切,有一个交点;0<∆⇒直线与双曲线相离,无交点;直线与双曲线有一个公共点是直线与双曲线相切的必要不充分条件。
2.直线与圆锥曲线相交的弦长公式设直线l :y =kx +n ,圆锥曲线:F (x ,y )=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2),且由⎩⎨⎧+==nkx y y x F 0),(,消去y →ax 2+bx +c =0(a≠0),Δ=b 2 -4ac 。
设),(),,(2211y x B y x A ,则弦长公式为:则2122124)(1||x x x x kAB -++= 若联立消去x 得y 的一元二次方程:)0(02≠=++a c by ay设),(),,(2211y x B y x A ,则2122124)(11||y y y y k AB -++= 焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率)。
【例1】过点P 与双曲线221725x y -=有且只有一个公共点的直线有几条,分别求出它们的方程。
解析:若直线的斜率不存在时,则x =,满足条件;若直线的斜率存在时,设直线的方程为5(y k x -=则5y kx =+-217x =, ∴22257(5725x kx -+-=⨯,222(257)72(5(57250k x kx --⨯-+--⨯=,当k =时,方程无解,不满足条件;当k =21075⨯⨯=方程有一解,满足条件;当2257k ≠时,令222[14(54(257)[(5165]0k k ∆=-----=,化简得:k 无解,所以不满足条件;所以满足条件的直线有两条x =10y x =+。
高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
圆锥曲线的综合问题

[例 1] P(1,1)为椭圆x42+y22=1 内的一定点,过 P 点引一 弦,与椭圆相交于 A、B 两点,且 P 恰好为弦 AB 的中点,如 图所示,求弦 AB 所在的直线方程及弦 AB 的长度.
解析:设弦 AB 所在的直线方程为 y-1=k(x-1),A、B 两点坐标分别为 (x1,y1),(x2,y2),则 x12+2y21=4,① x22+2y22=4.② ①-②得: (x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0. ∵P(1,1)为弦 AB 的中点,∴x1+x2=2,y1+y2=2. ∴k=xy11--xy22=-12.
上述两种情形联立方程组消元后,二次项系数为 0,即只 能得到一个一次方程.
思想方法技巧
一、向量法 向量的坐标可以用其起点、终点的坐标表示,因此向量 与解析几何保持着天然的联系.通过向量的坐标可以把解析 几何的很多问题向量化,利用向量的共线、垂直、夹角、距 离等公式巧妙地解决解析几何问题.
二、点差法 涉及到直线被圆锥曲线截得弦的中点问题(即中点弦问题) 时,常用根与系数的关系及点差法求解.
(1)求点 M 的轨迹方程; (2)过点 F(0,1)作互相垂直的两条直线 l1、l2,l1 与点 M 的 轨迹交于点 A、B,l2 与点 M 的轨迹交于点 C、Q,求A→C·Q→B的 最小值.
解析:(1)设 M(x,y),E(a,0),由条件知 D(0,-8), N(a+2 x,2y+0),∵N 在 y 轴上,∴x=-a, ∵E→D⊥E→M,∴E→D·E→M=(-a,-8)·(x-a,y)=-a(x- a)-8y=2x2-8y=0,∴x2=4y(x≠0), ∴点 M 的轨迹方程为 x2=4y(x≠0).
(2)设 A(x1,y1),B(x2,y2),C(x3,y3),Q(x4,y4),直线 l1: y=kx+1(k≠0),则直线 l2:y=-1kx+1,
直线与圆锥曲线自家用稿(弦长公式与中点弦)

题型二:弦长公式
练习2:已知斜率为2的直线 l 与抛物线 A、B两点,若
y 4 x 相交于
2
,求直线 l AB 5
的方程; P70 A2
( x1, y1 ) A
解:设直线 l : y 2 x b,点A( x1, y1 )B( x2 , y2 )
y 2 x b代入y 2 4 x,得 4 x2 (4b 4) x b2 0 x1 x2 b b2 x1 x2 4
a 0, b 0
y 2 2 px
p0
把直线方程代入圆锥曲线方程
得到一元一次方程
抛物线, 直线与 对称轴平行 或重合
得到一元二次方程 计算判别式
双曲线, 直线与 渐近线平行
>0
相交
=0
相切
<0
相离
相交1
相交1
2
1
0
二、新课讲授:
题型二:直线与圆锥曲线弦长问题
例1.已知斜率为 2的直线经过椭圆 4 x 2 5 y 2 20的右焦点 F2, 与椭圆交于A,B两点,求弦长AB的长及AB中点的坐标。
解: (2)将y x m代入椭圆 5x 2 2mx m2 1 0 y 1 2
-2m m -1 则 x1+x2= ,x1x2= . 5 5
B
1 2
A
O
由弦长公式得: 2m 2 2 2 1 1 ( ) 4( m 1) | AB | 5
x
4m2 20(m2 1) 2 2 5 4m 2 2 5 5 2 10 此时,直线方程为 yx 当m 0时, | AB |max 5
(3)证明:设 OM,ON 的斜率分别为 k1,k2, y1 y2 则 k1= ,k2= , x1 x2 由(2)知,y1y2=-4,x1x2=4, -4 ∴k1· k2= =-1,即 OM⊥ON. 4
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用

16.过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为________.
17.过抛物线 的焦点 作倾角为 的直线,与抛物线分别交于 、 两点( 在 轴左侧),则 _______________________.
注意:夹角不是直线的倾斜角,而是直线与焦点所在轴的夹角,这样就不需要区的右焦点F作倾斜角为 的直线,交双曲线于 两点,求弦长 .
三、圆锥曲线坐标式焦点弦长公式
1.椭圆的坐标式焦点弦长公式
例9
9.已知椭圆 ,若过左焦点的直线交椭圆于 两点,求 .
【结论6】椭圆的坐标式焦点弦长公式:
我们有如下结论:
【结论6】双曲线的坐标式焦点弦长公式:
(1)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: ;
(2)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: .
3.抛物线的坐标式焦点弦长公式
由抛物线的定义易得
【结论7】抛物线的坐标式焦点弦长公式:
(1)抛物线 的焦点弦长公式: ;
(2)抛物线 的焦点弦长公式: ;
说明:特殊情形,当倾斜角为 时,即为椭圆的通径,通径长 .
2.双曲线的倾斜角式焦点弦长公式
例2
2.设双曲线 ,其中两焦点坐标为 ,过 的直线 的倾斜角为 ,交双曲线于 , 两点,求弦长 .
可得如下结论2:
【结论2】双曲线的倾斜角式焦点弦长公式:
(1) 为双曲线 的左、右焦点,过 倾斜角为 的直线 与双曲线 交于 两点,则 .
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
专题16圆锥曲线焦点弦
圆锥曲线中的弦长问题(含解析)
圆锥曲线中的弦长问题一、单选题1.椭圆2214x y +=的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2PF =( )A .2B C .72D .42.直线l 过抛物线22y x =的焦点F ,且l 与该抛物线交于不同的两点()11,A x y ,()22,B x y .若12 3x x +=,则弦AB 的长是( )A .4B .5C .6D .83.焦点为F 的抛物线2:4C y x =的对称轴与准线交于点E ,点P 在抛物线C 上,在EFP △中,sin EFP FEP ∠=∠,则||EP 的值是( )A .B .4C .2D .14.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24e ⎡⎤∈⎢⎥⎣⎦,则线段AB 的长度的取值范围是( )A .,3⎡⎢⎣B .3⎡⎢⎣C .,48⎣⎦D .816⎣⎦5.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C 的一个交点,若4PF FQ =,则QF =( ) A .3 B .52C .32D .32或52二、填空题6.已知P 为椭圆221164x y +=上的一个动点,过点P 作圆()2211x y -+=的两条切线,切点分别是A ,B ,则AB 的最小值为_______.7.已知抛物线C :22x py =-()0p >的焦点F 与22184y x +=的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长AB =______.8.已知1F ,2F 为椭圆221123x y+=的两个焦点,点P 在椭圆上,如果线段1PF 的中点在y 轴上,则1PF 的值为______.三、解答题9.如图,在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b +=和椭圆2C :22221x y c b+=,其中0a c b >>>,222a b c =+,1C ,2C 的离心率分别为1e ,2e ,且满足12:2:3e e =,A ,B 分别是椭圆2C 的右、下顶点,直线AB 与椭圆1C 的另一个交点为P ,且185PB =.(1)求椭圆1C 的方程;(2)与椭圆2C 相切的直线MN 交椭圆1C 与点M ,N ,求MN 的最大值.10.在平面直角坐标系上,已知动点P 到定点()11,0F -、()21,0F 的距离之和为2. (1)求动点P 的轨迹方程C .(2)若直线:l y x t =+与曲线C 交于A 、B 两点,423AB =.求t 的值11.已知椭圆222:1(1)x E y a a +=>的离心率为32,右顶点为(,0)P a ,P 是抛物线2:2(0)C y px p =>的焦点.(1)求抛物线C 的标准方程;(2)若C 上存在两动点,A B (,A B 在x 轴两侧)满足20OA OB ⋅=(O 为坐标原点),且PAB △的周长为2||4AB +,求||AB .12.已知椭圆2222:1(0)x y G a b a b +=>>的离心率为1,2过椭圆G 右焦点2(1,0)F 的直线m :x =1与椭圆G 交于点M (点M 在第一象限) (1)求椭圆G 的方程;(2)连接点M 与左焦点并延长交椭圆于点N ,求线段MN 的长.13.已知抛物线21:2C y px =的焦点与椭圆222:198x y C +=的右焦点F 重合,过抛物线1C 的准线l 上一点P 作抛物线1C 的两条切线,切点为A ,B .(1)求证:直线AB 过焦点F ; (2)若8PA =,6PB =,求PF 的值.14.已知椭圆2222:1x y E a b+=()0a b >>的半焦距为c ,原点O 到经过两点()(),0,0,c b 的直线的距离为12c ,椭圆的长轴长为43.(1)求椭圆E 的方程;(2)直线l 与椭圆交于,A B 两点,线段AB 的中点为()2,1M -,求弦长.AB 15.已知直线l 经过抛物线26y x =的焦点F ,且与抛物线交于A 、B 两点. (1)若直线l 的倾斜角为60,求线段AB 的长; (2)若2AF =,求BF 的长.16.已知圆上224x y +=上任取一点P ,过点P 作y 轴的垂线段PQ ,垂足为Q ,当P在圆上运动时,线段PQ 中点为M . (1)求点M 的轨迹方程;(2)若直线l 的方程为y =x -1,与点M 的轨迹交于A ,B 两点,求弦AB 的长.一、单选题1.椭圆2214x y +=的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2PF =( ) A .3 B .3C .72D .4【答案】C 【解析】 试题分析:,所以当时,,而,所以,故选C.考点:椭圆的性质2.直线l 过抛物线22y x =的焦点F ,且l 与该抛物线交于不同的两点()11,A x y ,()22,B x y .若12 3x x +=,则弦AB 的长是( )A .4B .5C .6D .8【答案】A 【分析】由题意得1p =,再结合抛物线的定义即可求解. 【详解】 由题意得1p =,由抛物线的定义知:121231422p pAB AF BF x x x x p =+=+++=++=+=, 故选:A 【点睛】本题主要考查了抛物线的几何性质,考查抛物线的定义,属于基础题.3.焦点为F 的抛物线2:4C y x =的对称轴与准线交于点E ,点P 在抛物线C 上,在EFP △中,sin 2EFP FEP ∠=∠,则||EP 的值是( )A .2B .4C .2D .1【答案】A 【分析】过点P 作PH 垂直于准线于点H ,由双曲线的定义得cos PF PH m FEP ==∠,在EFP △中利用正弦定理可求出FEP ∠,带入所给等式即可推出2EFP π∠=,即可求得PE 的值. 【详解】如图所示,过点P 作PH 垂直于准线于点H ,设PE m =,则cos PF PH m FEP ==∠, 在EFP △中,由正弦定理知sin sin PF PEPEF EFP=∠∠,即cos sin 2sin m FEP FEP FEP∠=∠∠,所以2cos 2FEP ∠=,又()0,FEP π∠∈,所以4FEP π∠=,则sin 21EFP FEP ∠=∠=,又()0,EFP π∠∈,所以2EFP π∠=,在直角EFP △中,2EF =,4FEP π∠=,所以22PE =故选:A 【点睛】本题考查抛物线的定义与几何性质、正弦定理解三角形,属于中档题.4.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24e ⎡⎤∈⎢⎥⎣⎦,则线段AB 的长度的取值范围是( )A .45,253⎡⎢⎣B .85453⎡⎢⎣C .535,48⎣⎦D .535816⎣⎦【答案】B【分析】先利用等面积法可得:12114222a r c y y ⨯⋅=⨯⋅-,求解出12y y -的值,然后根据弦长公式12AB y =-的取值范围. 【详解】设内切圆半径为r ,由题意得12114222a r c y y ⨯⋅=⨯⋅-得1228,43y y e ⎡⎤-=∈⎢⎥⎣⎦,1212AB y y y =-=-∈⎣. 故选:B. 【点睛】本题考查椭圆焦点三角形问题,考查弦长的取值范围问题,难度一般.解答时,等面积法、弦长公式的运用是关键.5.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C 的一个交点,若4PF FQ =,则QF =( ) A .3 B .52C .32D .32或52【答案】B 【分析】设点()1,P t -,利用4PF FQ =求得点Q 的横坐标,利用抛物线的定义可求得QF . 【详解】抛物线C 的焦点为()1,0F ,准线l 的方程为1x =-.设点()1,P t -、(),Q x y ,则()2,PF t =-,()1,FQ x y =-,4PF FQ =,可得()412x -=,解得32x =, 由抛物线的定义可得35122QF =+=. 故选:B. 【点睛】本题考查利用抛物线的定义求焦半径,求出点Q 的坐标是解题的关键,考查计算能力,属于中等题.二、填空题6.已知P为椭圆221 164xy+=上的一个动点,过点P作圆()2211x y-+=的两条切线,切点分别是A,B,则AB的最小值为_______..【答案】422.【分析】连接PC,交AB于H,可得H为AB中点,求得圆心和半径,连接AC,BC,可得,AC PA BC PB⊥⊥,运用勾股定理和三角形面积公式可得AB,设()4cos,2sinPθθ,[]0,2θπ∈,运用两点的距离公式和同角的平方关系,结合配方和二次函数的最值求法,可得所求最小值.【详解】如图,连接PC,交AB于H,可得H为AB中点,圆()2211x y-+=的圆心为()1,0C,半径1r=,连接AC,BC,可得,AC PA BC PB⊥⊥,则21PA PB PC==-又222121221PCPA ACAB AHPC PC PC-⋅====-设()4cos,2sinPθθ,[]0,2θπ∈,可得()()2 2222111 4cos12sin12cos8cos512cos33PCθθθθθ⎛⎫=-+=-+=-+⎪⎝⎭,当1cos 3θ=时,2PC 取得最小值为113,此时AB 取得最小值为11=.故答案为:11. 【点睛】本题考查椭圆中的最值问题,涉及圆的相切问题,属于中档题7.已知抛物线C :22x py =-()0p >的焦点F 与22184y x +=的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长AB =______. 【答案】10 【分析】首先根据已知条件得到抛物线方程为28xy ,设直线AB 方程为2y kx =-,()11,A x y ,()22,B x y ,利用导数的几何意义得到两条切线分别为21148x x y x =-+和22248x x y x =-+,联立切线得到122M x x x +=,从而得到124x x +=,联立直线AB 与抛物线,利用韦达定理即可得到12k =-,再求焦点弦长即可. 【详解】由题意可得()0,2F -,则4p =,抛物线方程为28xy .设直线AB 方程为2y kx =-,()11,A x y ,()22,B x y ,其中2118x y =-,2228x y =-. 由28x y =-得4x y '=-,所以在点A 处的切线方程为()1114x y y x x -=--,化简得21148x x y x =-+①,同理可得在点B 处的切线方程为22248x x y x =-+②.联立①②得122M x x x +=,又M 的横坐标为2, 124x x ∴+=.将AB 方程代入抛物线得28160x kx +-=,1284x x k ∴+=-=,12k ∴=-,()1212144462y y k x x ∴+=+-=-⨯-=-,1210AB p y y ∴=--=.故答案为:10 【点睛】本题主要考查抛物线的焦点弦,同时考查导数的几何意义,属于中档题.8.已知1F ,2F 为椭圆221123x y+=的两个焦点,点P 在椭圆上,如果线段1PF 的中点在y 轴上,则1PF 的值为______.【分析】由题意可得PF 2平行y 轴,然后结合椭圆方程和椭圆的定义整理计算即可求得最终结果. 【详解】∵原点O 是F 1F 2的中点,∴PF 2平行y 轴,即PF 2垂直于x 轴, ∵c =3,∴|F 1F 2|=6,设|PF 1|=x,根据椭圆定义可知2PF x =,∴22)36x x +=,解得2x =.. 【点睛】本题主要考查椭圆的几何性质,方程的思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题9.如图,在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b +=和椭圆2C :22221x y c b+=,其中0a c b >>>,222a b c =+,1C ,2C 的离心率分别为1e ,2e ,且满足12:2:3e e =,A ,B 分别是椭圆2C 的右、下顶点,直线AB 与椭圆1C 的另一个交点为P ,且185PB =.(1)求椭圆1C 的方程;(2)与椭圆2C 相切的直线MN 交椭圆1C 与点M ,N ,求MN 的最大值.【答案】(1)22193x y +=;(232. 【分析】(1)由12:3e e =可得得42243840c a c a -+=,化为2232a c =,从而3a b ,2c b =, )2,0Ab ,()0,B b -,则直线AB 的方程为2y x b =-,与椭圆方程联立,利用弦长公式求得3b =(2)当直线MN 的斜率不存在时,易得2MN =,当直线MN 的斜率存在时,设直线MN :()0y kx m k =+≠,与椭圆2C :22163x y +=联立并消去y ,利用韦达定理、弦长公式表示出弦长,结合配方法可得答案. 【详解】(1)由题意知1c e a =,222222c b c ae --==, 因为12:3e e =22232c c a a c-=⋅,222223a c a c -=,将等号两边同时平方,得42243840c a c a -+=,即()()22222230a cac --=,所以2232a c =,又222a b c =+,所以3a b,c =,所以),0A,()0,B b -,所以直线AB的方程为y x b =-, 与椭圆1C :222213x y b b +=联立并消去y,得222332x x b b ⎛⎫+-= ⎪ ⎪⎝⎭, 整理得10x =,25x =,所以,55b P ⎛⎫ ⎪ ⎪⎝⎭, 因为185PB =185=,得b =3a =,椭圆1C 的方程为22193x y +=.(2)当直线MN 的斜率不存在时,易得2MN =.当直线MN 的斜率存在时,设直线MN :()0y kx m k =+≠,与椭圆2C :22163x y +=联立并消去y , 得()222124260kxknx m +++-=,因为直线MN 与椭圆2C 相切,所以()()222216412260k m k m∆=-+-=,整理得()22630*k m +-=,将直线MN 与椭圆1C 方程联立并消去y ,得()222136390k x kmx m +++-=,由()*式可得()()()22222223641339129336k m kmk m k ∆=-+-=+-=.设(),M M M x y ,(),N N N x y ,则2613M N km x x k -+=+,223913M N m x x k-=+,所以M N MN x =-==设213k t +=,则1t >,2MN ==22<,所以当4t =,即1k =±时,MN 最大,且最大值为322. 【点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.10.在平面直角坐标系上,已知动点P 到定点()11,0F -、()21,0F 的距离之和为22. (1)求动点P 的轨迹方程C .(2)若直线:l y x t =+与曲线C 交于A 、B 两点,423AB =.求t 的值 【答案】(1)2212x y +=;(2)1t =±.【分析】(1)求出,a b 可求椭圆的方程.(2)设点()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,消去y 后利用韦达定理和弦长公式公式可得关于t 的方程,解方程后可得t 的值.【详解】解:(1)因为1222PF PF +=P 轨迹为椭圆,并且长轴长222a =, 因为焦点坐标分别为()1,0-,()1,0,所以22c =,又因为222a b c =+,所以1b =,所以P 点运动轨迹椭圆C 的方程为2212x y +=.(2)设点()11,A x y ,()22,B x y ,因为22220x y y x t⎧+-=⎨=+⎩,消元化简得2234220x tx t ++-=,所以()2221612222480t t t ∆=--=->,1221243223t x x t x x ⎧+=-⎪⎪⎨-⎪=⎪⎩,所以3AB ==又因为3AB =3=, 解得1t =±,满足>0∆,所以1t =±. 【点睛】直线与圆锥曲线的位置关系,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为某一个变量的方程,解此方程即可.11.已知椭圆222:1(1)x E y a a +=>的离心率为2,右顶点为(,0)P a ,P 是抛物线2:2(0)C y px p =>的焦点.(1)求抛物线C 的标准方程;(2)若C 上存在两动点,A B (,A B 在x 轴两侧)满足20OA OB ⋅=(O 为坐标原点),且PAB △的周长为2||4AB +,求||AB . 【答案】(1)28y x =;(2)30. 【分析】(1)根据椭圆离心率的关系可得2a =,进而根据抛物线的性质求出方程即可. (2) 设直线:AB x my n =+,联立28y x =得出韦达定理,再结合抛物线的方程与20OA OB ⋅=化简可得10n =,再根据抛物线的焦半径公式以及弦长公式求得2m =±,进而求得||AB . 【详解】解析:(1)因为椭圆222:1x E y a +=22134a a -=, 解得24a =,所以2a =, 而22p=,所以4p =, 从而得抛物线C 的标准方程为28y x =.(2)由题意0AB k ≠,设直线:AB x my n =+, 联立28y x =得2880y my n --=, 设()()1122,,,A x y B x y (其中120y y <) 所以12128,8y y m y y n +=⋅=-,且0n >,因为20OA OB ⋅=,所以22121212122064y y OA OB x x y y y y ⋅=+=+=,2820n n -=,所以(10)(2)0n n -+=,故10n =或2n =-(舍), 直线:10AB x my =+, 因为PAB △的周长为2||4AB + 所以||||||2||4PA PB AB AB ++=+. 即||||||4PA PB AB +=+,因为()21212||||424824PA PB x x m y y m +=++=++=+.又12||AB y y =-=所以2820m +=解得2m =±,所以||30AB ==.【点睛】本题主要考查了联立直线与抛物线的方程,结合韦达定理与弦长公式、焦半径公式求解的问题,属于中档题.12.已知椭圆2222:1(0)x y G a b a b +=>>的离心率为1,2过椭圆G 右焦点2(1,0)F 的直线m :x =1与椭圆G 交于点M (点M 在第一象限) (1)求椭圆G 的方程;(2)连接点M 与左焦点并延长交椭圆于点N ,求线段MN 的长.【答案】(1)22143x y +=(2)257【分析】(1)由已知条件推导出1c =,12c a =,由此能求出椭圆的方程. (2)依题意可得直线1MF 的方程,联立直线与椭圆方程,消元,求出两交点的横坐标,再根据弦长公式计算可得; 【详解】 解:(1)椭圆2222:1(0)x y G a b a b+=>>的离心率为12,过椭圆G 右焦点2(1,0)F 的直线:1m x =与椭圆G 交于点M (点M 在第一象限),1c ∴=,12c a =,解得2a =, 2223b a c ∴=-=,∴椭圆的方程为22143x y +=.(2)依题意可得()11,0F -,31,2M ⎛⎫⎪⎝⎭,所以1MF :3344y x =+ 联立方程得223344143y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y 整理得22118390x x +-=,则()()121390x x -+=解得11x =,2137x =-所以121325177MN x ⎤⎛⎫=-=--= ⎪⎥⎝⎭⎦【点睛】本题考查待定系数法求椭圆方程,直线与椭圆的综合应用,弦长公式的应用,属于中档题.13.已知抛物线21:2C y px =的焦点与椭圆222:198x y C +=的右焦点F 重合,过抛物线1C 的准线l 上一点P 作抛物线1C 的两条切线,切点为A ,B .(1)求证:直线AB 过焦点F ; (2)若8PA =,6PB =,求PF 的值. 【答案】(1)证明见解析;(2)245. 【分析】(1)求出椭圆的右集合,即抛物线的焦点,从而可得p 值,得抛物线方程,设点()11,A x y ,()22,B x y ,()1,P a -,由切点设出切线方程11:()PA y y k x x -=-,由相切求出斜率k ,得切线PA 方程,同理得PB 方程,代入P 点坐标后可得过,A B 两点的直线方程,得证其过焦点;(2)由(1)中直线AB 方程与抛物线方程联立后消元应用韦达定理,然后可证得PA PB ⊥,又可证得PF AB ⊥,这样由直角三角形性质可得PF【详解】(1)证明:因为椭圆222:198x y C +=的右焦点()1,0F ,所以12p=,即2p =.所以抛物线1C 的方程为24y x =. 设点()11,A x y ,()22,B x y ,()1,P a -,设()111:PA y y k x x -=-, 联立()1112,4,y y k x x y x ⎧-=-⎨=⎩消x 得211114440yy y x k k -+-=, 由0∆=得2111110k y k x -+=.又2114y x =,故2211111104k y k y -+=,故2111102k y ⎛⎫-= ⎪⎝⎭,故112PA k k y ==,故直线PA 的方程为()1112y y x x y -=-, 即1122yy x x =+.同理22PB k y =,直线PB 的方程为2222yy x x =+. 又点P 在直线PA ,PB 上,所以112222,22,ay x ay x =-+⎧⎨=-+⎩故()11,A x y ,()22,B x y 在直线22ay x =-+上,故直线AB 的方程为22ay x =-+,令0y =,得1x =,所以直线AB 过焦点F .(2)解:由(1)知联立222,4,ay x y x =-+⎧⎨=⎩消x 得2240y ay --=,故122y y a +=,124y y =-,故12221PA PB k k y y ⋅=⋅=-, 故直线PA 与直线PB垂直,从而10AB ==.因为2AB k a =,0112PF a ak -==---,所以1PF AB k k ⋅=-, 故PF AB ⊥,所以6824105PF ⨯==. 【点睛】本题主要考查直线与抛物线的位置关系,解题方法是设而不求的思想方法,本题中设出两切点坐标1122(,),(,)A x y B x y ,由直线AB 方程与抛物线方程联立方程组消元后应用韦达定理,然后代入PA PB k k ⋅可得垂直.这是直线与圆锥曲线相交问题常用的方法.14.已知椭圆2222:1x y E a b +=()0a b >>的半焦距为c ,原点O 到经过两点()(),0,0,c b 的直线的距离为12c,椭圆的长轴长为 (1)求椭圆E 的方程;(2)直线l 与椭圆交于,A B 两点,线段AB 的中点为()2,1M -,求弦长.AB【答案】(1)221123x y +=;(2)10. 【分析】(1)由点到直线的距离得12b a =,再由长轴长可求得,a b 得椭圆方程;(2)直线AB 的斜率一定存在,设方程为()12y k x +=-,代入椭圆方程整理,设()()1122,,,A x y B x y ,由韦达定理得1212,x x x x +,由中点坐标公式求得k ,再由弦长公式求得弦长. 【详解】解:(1)经过两点()(),0,0,c b 的直线为:1x yc b+=即0bx cy bc +-=.由已知:原点到直线的距离12bc d c a ===即12b a =因为2a =b =所以椭圆的标准方程为:221123x y +=(2)当直线l 斜率不存在时,线段AB 的中点在x 轴上,不合题意.所以直线l 的斜率存在,设为k ,则直线()12y k x +=-即为:21y kx k =-- 设()()1122,,,A x y B x y 联立22214120y kx k x y =--⎧⎨+-=⎩得:()()22214821161680k x k k x k k +++++-= ()()22214821161680k xk k x k k +-+++-=显然>0∆ 则()122821414k k x x k++==+,解得12k = 则212216168214k k x x k +-⋅==+所以12AB x =-==【点睛】本题考查求椭圆的标准方程,考查求直线与椭圆相交弦长,解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)x y x y ,设直线方程,代入椭圆方程应用韦达定理,得1212,x x x x +,由弦长公式得弦长.15.已知直线l 经过抛物线26y x =的焦点F ,且与抛物线交于A 、B 两点.(1)若直线l 的倾斜角为60,求线段AB 的长; (2)若2AF =,求BF 的长. 【答案】(1)8;(2)6. 【分析】(1)设点()11,A x y 、()22,B x y ,求出直线l 的方程,与抛物线方程联立,求出12x x +的值,再利用抛物线的焦点弦长公式可求得线段AB 的长; (2)设直线l 的方程为32x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立,可得出129y y =-,由2AF =求得1x 的值,利用韦达定理以及抛物线的方程求得2x 的值,利用抛物线的定义可求得BF 的长. 【详解】(1)设点()11,A x y 、()22,B x y ,抛物线26y x =的焦点为3,02F ⎛⎫⎪⎝⎭, 由于直线l 过点F ,且该直线的倾斜角为60,则直线l的方程为32y x ⎫=-⎪⎭,联立2326y x y x⎧⎫=-⎪⎪⎭⎨⎪=⎩,消去y 并整理得29504x x -+=,259160∆=-=>, 由韦达定理可得125x x +=,由抛物线的焦点弦长公式可得123538AB x x =++=+=;(2)设点()11,A x y 、()22,B x y ,由题意可知,直线l 不可能与x 轴重合,设直线l 的方程为32x my =+, 联立2326x my y x⎧=+⎪⎨⎪=⎩,消去x 并整理得2690y my --=,()23610m ∆=+>,由韦达定理可得126y y m +=,129y y =-,1322AF x =+=,可得112x =,21163y x ∴==,129y y ∴=-,则22218127y y ==,222962y x ∴==,因此,2362BF x =+=.【点睛】有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式.16.已知圆上224x y +=上任取一点P ,过点P 作y 轴的垂线段PQ ,垂足为Q ,当P在圆上运动时,线段PQ 中点为M .(1)求点M 的轨迹方程;(2)若直线l 的方程为y =x -1,与点M 的轨迹交于A ,B 两点,求弦AB 的长.【答案】(1)2214y x +=;(2【分析】(1)设M 、P ,利用相关点法即可求解.(2)将直线与椭圆方程联立,利用弦长公式即可求解.【详解】(1)设(),M x y ,()00,P x y ,()00,Q y ∴,点M 是线段PQ 中点,002,x x y y ∴==,又()00,P x y 在圆224x y +=上,()2224x y +=, 即点M 的轨迹方程为2214y x +=. (2)联立22114y x y x =-⎧⎪⎨+=⎪⎩,消去y 可得,25230x x --=, ()22600∆=-+>,设()11,A x y ,()22,B x y , 则1225x x +=,1235x x =,12AB x ∴=-===. 【点睛】方法点睛:本题考查了轨迹问题、求弦长,求轨迹的常用方法如下:(1)定义法:利用圆锥曲线的定义求解. (2)相关点法:由已知点的轨迹进行求解. (3)直接法:根据题意,列出方程即可求解.。
专题七 解析几何 第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2022届高考理科数学三轮
③|F1A|+|F1B|=
2 p
;④以弦
AB
为直径的圆与准线相切.
[典型例题]
1.已知椭圆 T : x2 y2 1(a b 0) 的长半轴为 2,且过点 M 0,1 .
a2 b2 若过点 M 引两条互相垂直的直线 l1 , l2 ,P 为椭圆上任意一点,
记点 P 到 l1 , l2 的距离分别为 d1 , d2 ,则 d12 d22 的最大值为( B )
C. x2 y
D. x2 1 y 2
[解析]
本题考查抛物线的定义、标准方程. 抛物线 C : x2 2 py( p 0) 的准线方程为 y p .因为 | AF | 4 ,
2 所以由抛物线的定义得 p 3 4 ,解得 p 2 ,
2 所以抛物线 C 的方程为 x2 4 y .故选 A.
因为 | BC | 2 | BF | ,所以 | BC | 2 | BN | ,所以 BC 2 ,所以 BN 2 ,
CF 3
p3
所以 BN BF 4 , BC 8 ,
3
3
[解析]
所以 CF 4 ,因为 p CF , AM CA
所以 2 CF 4 4 , AM CF AF 4 AF 4 AM 4
则 d12 d22 x2 (1 y)2 ,因为 P 在椭圆上,所以 x2 4 4 y2 ,
所以
d12
d
2 2
5
3y2
2y
5
3
y
1 2 3
1 3
,
y [1,1],
[解析]
所以当
y
1 3
时,
பைடு நூலகம்d12
d22
有最大值
16 3
,所以
直线与圆锥曲线综合性问题(含答案)
直线与圆锥曲线综合性问题(含答案)一.考点分析。
⑴直线与圆锥曲线的位置关系和判定直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得 到一个一元二次方程 ,直线和圆锥曲线相交、相切、相离的充分必要条件分别是 A >0、A =0、△ < 0.⑵直线与圆锥曲线相交所得的弦长直线具有斜率 k ,直线与圆锥曲线的两个交点坐标分别为(1)1 AB 1= Jl+k' * 1 — 梵2 1= Jl + Q • +黑2)2或|AB|= Jl + p • Ivi -73!=+ * 丁(珀 + 兀)'-幻吐・上面的公式实质上是由两点间距离公式推导出来的(因为y i - y 2 =k (X i -X 2),运用韦达定理来进行计算 注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既 熟练掌握方程组理论,又关注图形的几何性质,以简化运算;2. 当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,二是点差法;3. 圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围二是建立不等式,通过解不等式求范围 .二.考试探究圆锥曲线是解析几何的核心内容,也是高考命题的热点之一.高考对圆锥曲线的考查,总体上是以知识应用和问题探究为主, 一般是给出曲线方程,讨论曲线的基本元素和简单的几何 性质;或给出曲线满足的条件,判断(求)其轨迹;或给出直线与曲线、曲线与曲线的位置 关系,讨论与其有关的其他问题(如直线的方程、直线的条数、弦长、曲线中参变量的取值 范围等);或考查圆锥曲线与其他知识综合(如不等式、函数、向量、导数等)的问题等 1. (2006年北京卷,文科,19)2 2椭圆C:务+^y2 =1(a Ab A0)的两个焦点为F1,F2,点P 在椭圆Ca b标及直线方程,联立直线方程和椭圆方程后利用一元二次方程根与系数关系即可求出直线方 程,也可以利用“点差法”求出直线的斜率,然后利用点斜式求出直线方程.A(X i ,y i ),B(X 2, y 2),则它的弦长,只是用了交点坐标设而不求的技巧而已当直线斜率不存在是,则AB=yi-y2.PF 1丄FF 』PF 彳4 PF 巳扌4C 的方程;(I )求椭圆(n )若直线I 过圆X +y +4x-2y=0的圆心M ,交椭圆C 于A 、B 两点,且 A 、B 对称,求直线〖解析〗(I )由椭圆的定义及勾股定理求出a,b,c 的值即可,(n )可以设出 A 、关于点M I 的方程.B 点的坐〖答案〗解法一:22) (I )因为点p 在椭圆C 上,所以2a = PF i + PF 2=6 , a=3. X y 已知曲线G : — +丄=1(a Ab >0)所围成的封闭图形的面积为a b在 Rt△ PF1F2 中,F I F2 =JI PF 2 -PF , 2= 2 J 5,故椭圆的半焦距c= J 5,从而b2=a2 —c2=4.2所以椭圆C 的方程为x_92丄=1.4(n)设 A , B 的坐标分别为(x1,y1 )、(x2,y2).已知圆的方程为(x+2) 2+(y — 1)2=5,所以圆心M 的坐标为(一2 , 1). 从而可设直线l 的方程为y=k(x+2)+1,代入椭圆 C 的方程得(4+9k2) x2+(36k2+18k)x+36k2+36k — 27=0. 因为A , B 关于点M 对称.2所以 Xj^—18k +9k =224 + 9k 2 解得k98 所以直线l 的方程为y =-(x +2)+1, 9 (经检验,所求直线方程符合题意 ) 解法二: (I )同解法一.2 2=(n)已知圆的方程为(x+2 ) +(y — 1) 5,所以圆心 M 的坐标为(一2, 1). 设A , B 的坐标分别为(x1,y1 ) ,(x2,y2).由题意x1 H x2且即 8x-9y+25=0.由①一②得因为A 、 代入③得所以直线 2X 12X 2(X 1 -X 2)(X 1 +x 2) +(y 1 -y 2)(y 1 +y 2)_0B 关于点M 对称,所以x1+ x2= — 4, y1+ y2=2,y 1 -y 2 = X 1 -X 2 -,即直线I 的斜率为8 ,9 98y — 1 = - (x+2 ),即 8x — 9y+25=0. 9所求直线方程符合题意 .)l 的方程为 (经检验2. ( 2008年山东卷,文科, W 5,曲线C i 的内切圆半径为 迹.记C 2为以曲线C i 与坐标轴的交点为顶点的椭圆.3(I)求椭圆C 2的标准方程;(n)设AB 是过椭圆C 2中心的任意弦,I 是线段AB 的垂直平分线.M 是I 上异于椭圆中心的点.(1 )若MO =A OA ( O 为坐标原点),当点A 在椭圆C 2上运动时,求点M 的轨迹方程;(2)若M 是I 与椭圆C 2的交点,求 △ AMB 的面积的最小值. 1解析〗(I)由三角形面积公式和点到直线的距离公式可得关于与坐标轴的交点为椭圆的顶点,显然C 2为焦点在X 轴的椭圆;(n) (1)设出AB 的方程y=kx(kHO), A(X A, g , M (x , y),联立直线与椭圆得到方程组后,由M0 = A 0A(A 工0)可得M 的轨迹方程,注意k = 0或不存在时所得方程仍1 1 2然成立;(2)由直线I 的方程:y=-—X 和椭圆方程联立后表示出 S ^AMB =2AB []OM I由不等式放缩即可求出最小值 .2ab=475,〖答案〗(I)由题意得《 a b2/5又a A b A 0,解得a 2 = 5 , b 2 = 4 .J a 2+b232 2因此所求椭圆的标准方程为0+£ = 1. 5 4AB 所在的直线斜率存在且不为零,设 AB 所在直线方程为a, b 的方程组,曲线C i(n) ( 1)假设y =kx(k 工0), A(X A,Y A).r 2区+解方程组{5 4l y = 田 2 20 2 20k2得X A = -- 2,y A = -------------- 2所以OA 2Y A20 丄20k220(1 +k2) = ------ +------ = ---------2 2 2设M(X, y),由题意知MO = A OA仏丰0),当且仅当4 +5k 2=5 +4k 2时等号成立,即k = ±1时等号成立,40此时△ AMB 面积的最小值是 S A AMB =40.92后2=245.9所以MO2,即x 2+y2、2 20(1 +k 2)=扎 --------因为I 是AB 的垂直平分线, 所以直线 I 的方程为y1一匚X ,因此X 2 + y 2 =入2 r20 1 + V V y 丿 2~ 4+5L 笃 y、2 20(x 2 +y 2) =h -------- 2 ------- T~4y +5x2又 X 2 +y2H 0,所以 5x 2 +4y 2 =20 几2,故—+ 乂4 5又当k = 0或不存在时,上式仍然成立.2 2综上所述,M 的轨迹方程为 .七L = 'd (k 丰0、.45(2)当k 存在且k H0时,由(1 )得2X A20 = 2,4+5k 2y A 220k— 24 +"2 2z 丄=1, 由{5 4解得 I 1 L 1x,220k 2X M _5 +4k 22y M20 5 +所以OA2 =xA 中2 y A 220(1+k 2)=2~ 4+5kAB 2=4 OA80(1+ k 2) 4 +5k 2,OM220(1 + k 2) = 2~ 5 + 4k解法一:由于S A AMBT AB 2臥2 280(1+k )汽 20(1 +k )400(1 +k 2)22 2400(1+= 22f 22昭「4 + 5k 2+5 +1600(1 +k 2)2 <40 f—2 2— I81(1 + k 2)2l 9 丿J沢亦沢4=275>坐. 当k不存在时,S A AMB2 9综上所述,△ AMB的面积的最小值为409解法二:因为1OA2+OM 220(1+k )4+5k2+ ——4+5k2+5+4k220(1+ k)= 20*)5 + 4k29"20OA1+ --OMOA|[|OM[,OA J OM I当且仅当4 +5k2 =5 +4k2时等号成立,即k = ±1时等号成立, 40 此时△ AMB面积的最小值是S AAMB =—.9当k =0,S SMB =丄咒2翕咒2 =275>402当k不存在时,S AAMB=丄咒=2亦294O>一•9 40综上所述,△ AMB的面积的最小值为上.93.(广东省实验中学 2008届高三第三次模拟考试,理科, 20)已知抛物线 x2= — y,直线L: (m+1)y+(3-m)x+m+1=0 (m € R且m^— 1)与抛物线交于 A,B两点•(1)当m=0时,试用x,y的不等式组表示由直线L和抛物线围成的封闭图形所在平面区域(包边界),并求该区域的面积•为直径的圆C上;并求(3)将抛物线x2= — y的图像按向量a = (4, 16)移动后得到函数y=f(x)的图像,若g(x) =6lnx+m,问是否存在实数 m,使得y=f (x)的图象与y=g (X)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由•〖解析〗(1)所要表示的平面区域包括边界,要注意不等式取等号,由定积分即可求出相应的面积,计算时可以整体代入;(2)证明抛物线的顶点在以线段 AB为直径的圆C上,即证明0AQB=0,圆C的圆心的轨迹可由中点坐标公式利用“代入法”求得;(3)构造函数®(x) =g(x) - f(X)=x2 -8x +6In x + m,因为x^O,所以 y=f (x)的图象与y=g (X)的图象有且只有两个不同的交点问题就可以转化为函数W(x)有两个正零点的问题,要对®(x)的单调性进行讨论,从而求出使得®(x)由两个正零点的m的取值范围x€( 0,(1)当m=0时,直线L 的方程为:y+3x+1=0,故所求区域2对应的不等式组为[y +x 乞0;[y + 3x + 1 > 0 y = -X e 2得x 2-3x-仁 0*) y + 3x+1 = 0贝x 2为方程(* 的两解,即 X t + X 2 = 3,X 1X 2 = — 1,X 2 - X t = = J 13/.所求区域面积亠X2设A (X 1,y 1), B(X 2,y 2),不妨x^X 1,则由*S =「(-x 2+3x +1 dx(X 33x 2Y x / 1 r -—+ ——+X l |x : = (X 2 -X 1 1 --収13 2 丿1V 3、_13J13+ X2 ) -X 1X 2】+3(X 1 +X2)+1]2 丿(2)令k=y^,则直线L 的方程为y = kxm +1L2由* y X 得:X 2+ kx -1=0,方程有解,且x 1, x 2为其两解, y = kx -1 贝 y X 1 + X 2 = —k, X 1X 2 = -1,-1,设A(X i ,y i ),B(X 2,y 2)/. OA ”OB = X 1X 2 + 丫』2 = X1X 2 +(X 1X 2 ) = —1 + 1 = 0.以AB 为直径的圆 恒过抛物线顶点(0,0设以AB 为直径的圆的圆心坐标为(X, y),2 2milX 1 +X 2 k y 1 + y 2X 1 + X 2贝寸 X = ------ = 一 一2(X 1 + X2 ) - 2X 1X 22 2 2 2 2 得y =-2x 2-1,即所求的圆心轨迹方程 为y = -2x 2-1k 2—— 一1(3)依题意,f(x)=-x2+8x,令护(X)=g(x) -f(x) = x2-8x+6lnx + m.因为x> 0,要使函数f(X)与函数g (x)有且仅有2个不同的交点,则函数®(x) =x 2 -8x +61 nx +m 的图象与x 轴的正半轴有且只有两个不同的交点 平'6 ■■申(X) =2x -8 + -= 2空二g =2(x -1)(x -3)(x 〉0) x€( 1, (X)c0,®(x)是减函数 x€( 3,®'(x) >0,®(x)是增函数当 x=1 或 x=3 时,cp'(X)=0•••甲(x)极大值为申⑴=m-7;申(X)极小值为W(3) =m +6In3-15又因为当X70时,W(X)T 二当X T P时,申(X)T 邑所以要使W(x) =0有且仅有两个不同的正根,必须且只须『⑴"或r⑶=0即或^十6"3-15=0[◎(3) <0 [护(1)>0 t m+61 n3-15c0 [m-7A0•- m=7 或m =15 -61 n3.•••当m=7或m =15-61 n3.时,函数f (x)与g (x)的图象有且只有两个不同交点4. ( 2008年广东卷,文科,20)2 2设b,椭圆方程为二+占=1,抛物线方程为X2 =8( y- b).如图所示,过点2b2 b2F(0, b +2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F i .(1)求满足条件的椭圆方程和抛物线方程;(2 )设A, B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点为直角三角形?若存在,请指出共有几个这样的点?并说明理由标).〖解析〗(1)由已知可求出 G点的坐标,从而求出抛物线在点G的切线方程,进而求出F i点的坐标,由椭圆方程也可以求出F i点的坐标,从而求出b =1,得出椭圆方程和抛物线方程;(2)以NPAB为直角和以NPBA为直角的直角三角形显然各一个,NAPB为直角的直角三角形是否存在可以转化成PA 'PB = 0 对应的方程是否有解的问题,从而可以求出满足条件的个数.P,使得△ ABP (不必具体求出这些点的坐以P点的1 答案〗(1)由x2=8(y-b)得y=1x2+b ,81当y =b +2 得x = ±4,二G 点的坐标为(4,b +2) , y'= —x ,4过点G的切线方程为y-(b+2) =x-4即y=x + b-2,F i点的坐标为(b,0),令y=0得x=2-b,二F i点的坐标为(2-b,0),由椭圆方程得2二2—b =b即b=1,即椭圆和抛物线的方程分别为一+ y2=1和x2 =8(y-1);2(2) •••过A 作x 轴的垂线与抛物线只有一个交点 PA 以N PAB 为直角的RtAAB P 只有一个,同理二 以N PBA 为直角的RUABP 只有一个。
2020年高考理数母题题源系列(全国Ⅰ专版) 圆锥曲线综合(解析版)
专题 圆锥曲线综合【母题来源一】【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程;(2)若,求|AB |.【答案】(1)3728y x =-;(2【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =u u u r u u u r可得123y y =-. 由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.323AP PB =u u u r u u u r故||AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.【母题来源二】【2018年高考全国Ⅰ卷理数】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【答案】(1)2y x =-2y x =-;(2)见解析. 【解析】(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为或(1,,所以AM 的方程为2y x =-+2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以21221222422,2121x x x k k k x k -+==++, 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.【母题来源三】已知椭圆C :22221()0x y a b a b +=>>,四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【答案】(1)2214x y +=;(2)见解析. 【解析】(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b+>+知,C 不经过点P 1,所以点P 2在C 上. 因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩,故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t),(t,.则1222122k k t t +=-=-,得2t =,不符合题设,从而可设l :y kx m =+(1m ≠). 将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=,由题设可知2216(41)0k m ∆=-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841km k -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()kx x m x x x x +-+=. 由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=,即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++,解得12m k +=-, 当且仅当1m >-时0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.【命题意图】(1)了解椭圆或抛物线的实际背景,了解椭圆或抛物线在刻画现实世界和解决实际问题中的作用. (2)掌握椭圆或抛物线的定义、几何图形、标准方程及简单性质. (3)了解圆锥曲线的简单应用. (4)理解数形结合的思想. 【命题规律】解析几何的解答题一般难度较大,多为试卷的压轴题之一,常考查直线与圆锥曲线的位置关系及最值范围、定点、定值、存在性问题及证明问题,多涉及最值求法,综合性强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识相结合,解题时,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养. 【方法总结】(一)求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且. (二)用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程. (三)直线与圆锥曲线的弦长问题有三种解法:(1)过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.(2)将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长. (3)它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(四)圆锥曲线中的定点、定值问题定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.1.【河北省保定市2019届高三第二次模拟考试数学试题】已知抛物线E :28y x =,直线l :4y kx =-. (1)若直线l 与抛物线E 相切,求直线l 的方程;(2)设(4,0)Q ,0k >,直线l 与抛物线E 交于不同的两点()11,A x y ,()22,B x y ,若存在点C ,使得四边形OACB 为平行四边形(O 为原点),且AC QC ⊥,求2x 的取值范围. 【答案】(1)142y x =--;(2)201)x <≤. 【解析】(1)由248y kx y x=-⎧⎨=⎩得228(1)160k x k x -++=,由0k ≠及2264(1)640k k ∆=+-=,得12k =-. ∴所求的切线方程为142y x =--. (2)由248y kx y x=-⎧⎨=⎩得228(1)160k x k x -++=, 2264(1)640,k k ∆=+->Q 且0k ≠,12k ∴>-,1228(1),k x x k+∴+= ∴12128()8y y k x x k+=+-=, ∵四边形OACB 为平行四边形,1212=(,)OC OA OB x x y y ∴+=++u u u r u u u r u u u r 28(1)8(,)k kk+=,即C 28(1)8(,)k kk+, ∵AC QC ⊥,0QC AC ∴⋅=u u u r u u u r,又222228(1)8(4,),(,)(,4)k QC AC OB x y x kx k k +=-===-u u u r u u ur u u u r 2228(1)8[4](4)0k QC AC x kx k k +∴⋅=-+-=u u u r u u u r ,即2822k x k =++, ∵0k >,∴2821)x ≥=,当且仅当k =此时,201)x <≤.【名师点睛】本题考查了直线与抛物线的位置关系,根与系数关系的应用,也考查平行四边形的性质、数量积和不等式的运算,属于中档题.(1)由248y kx y x =-⎧⎨=⎩得228(1)160k x k x -++=,由题意得00k ≠⎧⎨∆=⎩,解出k 即可.(2)由四边形OACB 为平行四边形,得1212=(,)OC OA OB x x y y +=++u u u r u u u r u u u r,利用根与系数的关系得点C ,又由AC QC ⊥,0QC AC ⋅=u u u r u u u r,通过数量积和不等式的运算,求出2x 的范围即可.2.【山东省安丘市、诸城市、五莲县、兰山区2019届高三5月校际联合考试数学试题】已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C,且离心率为2. (1)求椭圆E 的方程; (2)若直线1:3l y kx =-与椭圆E 相交于A ,B 两点,线段AB 的中点为M ,是否存在常数λ,使∠∠AMC ABC =⋅λ恒成立,并说明理由.【答案】(1)2212x y +=;(2)存在. 【解析】(1)由题意知1b =,2c a =. 又因为222a b c =+,所以解得a =所以椭圆方程为2212x y +=.(2)存在常数λ,使∠∠AMC ABC =⋅λ恒成立. 理由如下:由221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩得()2291812160k x kx +--=,且>0∆. 设()11,A x y ,()22,B x y ,则1221221291816918k x x k x x k ⎧+=⎪⎪+⎨⎪=-⎪+⎩,又因为()11,1CA x y =-u u u r ,()22,1CB x y =-u u u r,()()()()2121212121212444161113339CA CB x x y y x x kx kx k x x k x x ⎛⎫⎛⎫⋅=+--=+--=+-++⎪⎪⎝⎭⎝⎭u u u r u u u r ()22216412161091839189k k k k k -=+-⋅+=++, 所以CA CB ⊥u u u r u u u r . 因为线段AB 的中点为M ,所以MC MB =, 所以2AMC ABC ∠=∠.所以存在常数2=λ,使∠∠AMC ABC =⋅λ恒成立.【名师点睛】本题主要考查求椭圆的方程以及椭圆的应用,熟记椭圆的标准方程与椭圆的简单性质即可,属于常考题型.(1)根据题意得到1b =,2c a =,求出a = (2)先由题意判断出结果,再证明,联立直线与椭圆方程,设()11,A x y ,()22,B x y ,根据根与系数的关系,以及向量数量积运算,得到0CA CB ⋅=u u u r u u u r,进而可得出结果.3.【山西省晋城市2019届高三第三次模拟考试数学试题】已知△ABC 的周长为6,B ,C 关于原点对称,且(1,0)B -,点A 的轨迹为Γ. (1)求Γ的方程;(2)若(2,0)D -,直线l :(1)(0)y k x k =-≠与Γ交于E ,F 两点,若1DE k ,k λ,1DFk 成等差数列,求λ的值.【答案】(1)()221243x y x +=≠±;(2)2. 【解析】(1)依题意,(1,0)B -,(1,0)C ,故2BC =, 则42AB AC BC +=>=,故点A 的轨迹是以B ,C 为焦点的椭圆(不含左、右两顶点),故Γ的方程为221(2)43x y x +=≠±.(2)依题意,112DE DF kk k ⋅=+λ,故2DE DFk kk k =+λ. 联立22(1)34120y k x x y =-⎧⎨+-=⎩,整理得()22223484120k x k x k +-+-=. 设11(,)E x y ,22(,)F x y ,则2122834k x x k+=+,212241234k x x k -=+. 故()()121222DE DF k x k x k kk k y y +++=+ ()()()()12122211k x k x k x k x ++=+--1233211x x =++-- ()()()121232211x x x x +-=+--()()1212123221x x x x x x +-=+-++222222832342412813434k k k kk k ⎛⎫- ⎪+⎝⎭=+--+++ ()2222238682412834k k k k k--=+--++2242=+==λ,则2=λ.【名师点睛】本题考查椭圆的方程、直线与椭圆的综合性问题,考查运算求解能力、推理论证能力. (1)由椭圆定义得轨迹方程即可; (2)依题意得112DE DF kk k ⋅=+λ,得2DE DF k k k k =+λ,联立22(1)34120y k x x y =-⎧⎨+-=⎩消去y ,整理()()121222DE DF k x k x k kk k y y +++=+结合根与系数关系得λ的值即可. 4.【安徽省泗县第一中学2019届高三高考最后一模数学试题】已知椭圆M :22221(0)x y a b a b +=>>的离心率为2,且椭圆上一点P的坐标为2⎫⎪⎪⎭. (1)求椭圆M 的方程;(2)设直线l 与椭圆M 交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求△ABC 面积的最大值.【答案】(1)2214x y +=;(2)1625. 【解析】(1)由已知c e a ==又222a b c =+,则2a b =.∴椭圆方程为222214x y b b +=,将)2代入方程得1b =,2a =,故椭圆的方程为2214x y +=.(2)不妨设直线AB 的方程为x ky m =+,联立2214x y x ky m ⎧+=⎪⎨⎪=+⎩消去x 得()2224240k y kmy m +++-=.设11(,)A x y ,22(,)B x y ,则有12224km y y k -+=+,212244m y y k -⋅=+,①又以线段AB 为直径的圆过椭圆的右顶点(2,0)C , ∴0CA CB ⋅=u u u r u u u r,由11(2,)CA x y =-u u u r ,22(2,)CB x y =-u u u r得()()1212220x x y y --+=,将11x ky m =+,22x ky m =+代入上式得()()2212121(2)(2)0k y y k m y y m ++-++-=,将①代入上式求得65m =或2m =(舍), 则直线l 恒过点6(,0)5D .∴1211||22△ABCS DC y y =-== 设211(0)44t t k=<≤+,则△ABC S =1(0,]4t ∈上单调递增, 当14t =时,△ABC S 取得最大值1625. 【名师点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆相交的弦长公式,考查直线和椭圆的位置关系,考查三角形面积最大值的求法,运算量较大,属于中档题.(1)将P 点坐标代入椭圆方程,结合椭圆的离心率列方程,解方程求得,a b 的值,由此求得椭圆方程. (2)设直线AB 的方程为x ky m =+,联立直线AB 的方程和椭圆的方程,消去x ,得到关于y 的一元二次方程,写出根与系数关系,根据0CA CB ⋅=u u u r u u u r列方程,解方程求得m 的值.由此判断出直线l 过定点6,05⎛⎫ ⎪⎝⎭,由121||2△ABC S DC y y =-求得三角形面积的表达式,利用换元法,结合二次函数的单调性,求得三角形面积的最大值.5.【江西省南昌市江西师范大学附属中学2019()2222:10x y C a b a b+=>>过点2⎫⎪⎪⎭,,A B 分别为椭圆C 的右顶点和上顶点,点P 在椭圆C 上且不与四个顶点重合. (1)求椭圆C 的标准方程;(2)若直线PA 与y 轴交于N ,直线PB 与x 轴交于M ,试探究AM BN ⋅是否为定值?若是,请求出该定值;若不是,请说明理由.【答案】(1)2214x y +=;(2)AM BN ⋅是定值,定值为4. 【解析】(1)由题意得:2222222112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2241a b ⎧=⎨=⎩,∴椭圆C 的标准方程为:2214x y +=. (2)Q 点P 不与四个顶点重合,∴直线,PA PB 的斜率存在且不为0,设()00,P x y ,且()2,0A ,()0,1B ,∴直线PA 的方程为:()0022y y x x =--,则0020,2y N x ⎛⎫- ⎪-⎝⎭. 直线PB 的方程为:0011y y x x -=+,则00,01xM y ⎛⎫- ⎪-⎝⎭. 2200000000000000244448211222x y x y x y x y AM BN y x x y x y +++--∴⋅=+⋅+=----+,P Q 在椭圆上,220044x y ∴+=.0000000000000000844822442222x y x y x y x y AM BN x y x y x y x y +----+∴⋅==⨯=--+--+.4AM BN ∴⋅=,为定值.【名师点睛】本题考查椭圆标准方程的求解、椭圆中的定值问题的求解.解决定值类问题的关键是将所求量利用变量进行表示,通过变量间的关系进行化简、消元,从而整理出所求的定值.(1)根据离心率、点⎭在椭圆上和222a b c =+建立方程组,解方程求得结果,从而得到椭圆方程;(2)设()00,P x y ,从而可得,PA PB 方程,求得,M N 的坐标,从而可得AM BN ⋅,根据点()00,P x y 在椭圆上得到220044x y +=,代入AM BN ⋅整理可得定值.6.【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】如图,椭圆C :22143x y +=的右焦点为F ,过点F 的直线l 与椭圆C 交于A 、B 两点,直线n :x =4与x 轴相交于点E ,点M 在直线n 上,且满足BM ∥x 轴.(1)当直线l 与x 轴垂直时,求直线AM 的方程; (2)证明:直线AM 经过线段EF 的中点. 【答案】(1)直线AM 的方程为y =-x +52或y =x -52;(2)见解析. 【解析】(1)由c=1,得F (1,0), ∵直线l 与x 轴垂直, ∴x =1,由221143x x y=⎧⎪⎨+=⎪⎩,解得:113322或x x y y ==⎧⎧⎪⎪⎨⎨==-⎪⎪⎩⎩, 当点A 坐标为31,2⎛⎫⎪⎝⎭,则点M 坐标为34,2⎛⎫-⎪⎝⎭, 此时直线AM 的斜率为33()22114--=--,∴直线AM 的方程为31(1)2y x -=-⋅-,即y =-x +52;当点A 坐标为31,2⎛⎫-⎪⎝⎭,则点M 坐标为34,2⎛⎫ ⎪⎝⎭, 此时直线AM 的斜率为33()22141--=-,∴直线AM 的方程为31(4)2y x -=⋅-,即y =x -52. 故直线AM 的方程为y =-x +52或y =x -52.(2)当AB 直线方程为0y =时,直线BM 与x 轴重合,不满足题意; 故可设直线l 的方程为x =my +1,由221143x my x y =+⎧⎪⎨+=⎪⎩,得3(my +1)2+4y 2=12,即(3m 2+4)y 2+6my -9=0,设A (x 1,y 1),B (x 2,y 2), 由根与系数关系可得,y 1+y 2=2634m m -+,y 1y 2=2934m -+, ∵EF 的中点N 502,⎛⎫ ⎪⎝⎭,点M (4,y 2), ∴NA u u u r =11112533,,,,222x y my y NM y ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭u u u u r ,∵132my ⎛⎫-⎪⎝⎭×y 2-32y 1=my 1y 2-32(y 1+y 2)=2934m m -+-32×2634m m -+=0. ∴∥NA NM u u u r u u u u r, 故A ,N ,M 三点共线,所以直线AM 经过线段EF 的中点.【名师点睛】本题考查了直线与椭圆的位置关系问题,直线与圆锥曲线问题常见解法是借助根与系数的关系,将多元问题转化为少元(单元)问题,属于中档题.(1)由直线l 与x 轴垂直,可得直线l 的方程,从而求解出点、A B 的坐标,由BM ∥x 轴可得M 点坐标,从而得出直线AM 的方程;(2)要证直线AM 经过线段EF 的中点N ,即证A ,N ,M 三点共线,即证∥NA NM u u u r u u u u r,设出、A B 两点,联立直线与椭圆的方程,借助根与系数关系,从而得证.7.【湖南省株洲市2019届高三第二次教学质量检测(二模)数学试题】已知抛物线()2:20E y px p =>经过点()1,2A ,过A 作两条不同直线12,l l ,其中直线12,l l 关于直线1x =对称. (1)求抛物线E 的方程及准线方程;(2)设直线12,l l 分别交抛物线E 于、B C 两点(均不与A 重合),若以线段BC 为直径的圆与抛物线E 的准线相切,求直线BC 的方程.【答案】(1)24y x =;准线方程为1x =-;(2)10x y +-=.【解析】(1)∵抛物线E 过点()1,2A , ∴24p =,解得2p =,∴抛物线的方程为24y x =,准线方程为1x =-.(2)方法一:不妨设B 在C 的左边,从而可设直线AB 的方程为()12(0)x m y m -=->,即21x my m =-+,由2214x my m y x=-+⎧⎨=⎩消去x 整理得24840y my m -+-=. 设(),B B B x y ,则24B y m +=,故42B y m =-,∴2441B x m m =-+,∴点()2441,42B m m m -+-.又由条件得AB 与AC 的倾斜角互补,以m -代替点B 坐标中的m , 可得点()2441,42C m m m ++--.∴BC ==,且BC 中点的横坐标为2412B Cx x m +=+, ∵以线段BC 为直径的圆与抛物线E 的准线相切,∴24112BC m ++==,解得2m =∴()32B --,()32C +-, ∴1BC k =-,∴直线BC 的方程为()(23y x -=--+,即10x y +-=. 方法二:设()()1122,,,B x y C x y , 因为直线12,l l 关于1x =对称,所以AB 与AC 的倾斜角互补, 所以12122212121222224411221144AB AC y y y y k k y y x x y y ----+=+=+=+=--++--, 所以124y y +=-,所以1212221212124144BC y y y y k y y x x y y --====--+-. 设直线BC 的方程为y x m =-+,由24y x m y x=-+⎧⎨=⎩消去y 整理得()22240x m x m -++=, 所以2121224,x x m x x m +=+=,所以12BC x =-=BC 中点D 的横坐标为1222x x m +=+. 因为以线段BC 为直径的圆与抛物线的准线1x =-相切, 所以12122BC x x ++=,即3m +=1m =,所以直线BC 的方程为1y x =-+,即10x y +-=.【名师点睛】由于在解答圆锥曲线问题中需要涉及大量的计算,所以在解题时要注意“设而不求”、“整体代换”等方法的利用,另外还应注意巧设直线的方程,以达到简化运算的目的,考查直线和圆锥曲线的位置关系及计算能力,属于中档题.(1)将点()1,2A 坐标代入曲线方程求出2p =,于是可得曲线方程.(2)方法一:由题意设出直线AB 的方程,与抛物线方程联立消元后,根据根与系数的关系求出点B 的坐标,同理得到点C 的坐标,然后根据以线段BC 为直径的圆与抛物线E 的准线相切可求得点,B C 中的参数,进而可得所求方程.方法二:由题意得AB 与AC 的倾斜角互补,由此可得1BC k =-,于是可设直线BC 的方程为y x m =-+,与曲线方程联立消元后,再根据题意求得参数m ,进而得到直线方程. 8.【河南省开封市2019届高三上学期第一次模拟考试数学试题】已知抛物线2:2(0)C y px p =>的焦点F与椭圆22143x y +=的右焦点重合,抛物线C 的动弦AB 过点F ,过点F 且垂直于弦AB 的直线交抛物线的准线于点M .(1)求抛物线的标准方程; (2)求AB MF的最小值.【答案】(1)24y x =;(2)2.【解析】(1)由椭圆方程得,椭圆的右焦点为()1,0, ∴抛物线的焦点为()1,0F , ∴2p =,∴抛物线的标准方程为24y x =.(2)①当动弦AB 所在直线的斜率不存在时,易得:24AB p ==,2MF =,2AB MF=.②当动弦AB 所在直线的斜率存在时,易知AB 的斜率不为0. 设AB 所在直线方程为()1y k x =-,且()11,A x y ,()22,B x y .联立方程:()241y xy k x ⎧=⎪⎨=-⎪⎩,得()2222220k x k x k -++=,∴()212222k x x k ++=,121x x ⋅=,()21610k ∆=+>,∴12AB x =-=()2241k k +=. ∵FM 所在的直线方程为()11y x k =--,联立方程()111y x kx ⎧=--⎪⎨⎪=-⎩,得点21,M k ⎛⎫- ⎪⎝⎭,∴MF == ∴()22412k AB MF+==>,综上所述:ABMF的最小值为2.【名师点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 直线与圆锥曲线中的弦长问题
【关卡1 一般弦的计算问题】
笔 记
1.直曲联立韦达定理法(优化的弦长公式)
2.直线与圆锥曲线的位置关系的判断
代数法 几何法
例 题
1.已知椭圆()2222:10x y C a b a b +=>>,直线1:1x y l a b -=被椭圆C 截得的弦长为,且
e =,过椭圆C 2l 被椭圆C 截的弦长AB ,
(1)求椭圆的方程;
(2)弦AB 的长度.
2.已知椭圆1422=+y x 以及直线m x y +=
(1)当直线和椭圆有公共点时,求实数m 的取值范围
(2)求被椭圆截得的最长弦所在的直线方程
3.已知直线3+=kx y 与椭圆12
22
=+y x ,试判断k 的取值范围,使得直线与椭圆分别有两个交点,一个交点和没有交点?
4.已知椭圆1222=+y x ,),(00y x P ,1202020≤+<y x ,问12
00=+y y x x 与椭圆的公共点个数?
5.已知双曲线422=-y x ,直线)1(:-=x k y l ,试讨论满足下列条件时实数k 的取值范围
(1)直线l 与双曲线有两个公共点
(2)直线l 与双曲线有且只有一个公共点
(3)直线l 与双曲线没有公共点
过关练习 1.)0(12222>>=+b a b y a x 的离心率为3
6,设过椭圆的右焦点且倾斜角为45°的直线l 和椭圆交于A,B 两点,当|AB |=
3,求的b 值.
2.已知椭圆G:14
22
=+y x ,过点(m ,0)作圆122=+y x 的切线l 交椭圆G 于A 、B 两点 (1)求椭圆的焦点坐标和离心率;
(2)将|AB |表示成m 的函数,并求|AB |的最大值
3.直线01=--kx y 与椭圆152
2=+m
y x 恒有公共点,求m 的取值范围?
4.若直线
2+=kx y 与双曲线622=-y x 的右支交于不同的两点,求k 的取值范围?
【关卡2 中点弦问题】
笔 记
设椭圆)0(122
22>>=+b a b
y a x 的弦AB 的中点为P ),(00y x (0,000≠≠y x ),则
1222
-=-=⋅e a b k k op AB 设双曲线12222=-b
y a x 的弦AB 的中点为P ),(00y x (0,000≠≠y x ),则1222-==⋅e a b k k op AB 设抛物线px y 22=的弦AB 的中点为P ),(00y x (00≠y ),则0y p k AB =
例 题
1.已知椭圆14
162
2=+y x 求(1)以)1,2(-P 为中点的弦所在直线的方程
(2)斜率为2的平行弦中点的轨迹方程
(3)过)2,8(Q 的直线被椭圆截得的弦中点的轨迹方程
2.(1)已知椭圆E :22
143
x y +=,试确定m 的取值范围,使得椭圆E 上存在两个不同的点关于直线4y x m =+对称
(2)已知双曲线132
2
=-y x ,双曲线上存在关于直线L :4+=kx y 对称的点,求实数k 的取值范围。
(3)如果抛物线y 2=px (p>0)和圆(x -2)2+y 2
=3在x 轴上方相交于A 、B 两点,且弦AB 的中点M 在直线y=x
上,求抛物线的方程。
3.椭圆C 22
221x y a b
+=的两个焦点为12,F F ,点P 在椭圆C 上,且12,PF PF ⊥ 143PF =,2143
PF = (1)求椭圆C 的方程。
(2)若直线l 过圆22++4-2=0x
y x y 的圆心M,交椭圆C 于A,B 两点,且A,B 关于点M 对称,求直线l 的
方程。
过关练习
1.已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,求|AB|的长。
2.已知直线1+=kx y 与双曲线1322=-y x 有A,B 两个不同的交点。
(1)如果以AB 为直径的圆恰好过原点,试求k 的值。
(2)是否存在k 的值,使得AB 两个不同的交点关于直线x y 2=对称
3.已知椭圆C :22
194
x y +=和圆M :22420x y x y ++-=,是否存在直线l ,使l 过圆心M ,与椭圆C 相交于A, B 两点,且A, B 两点关于M 对称?若存在,求出直线l 的方程;若不存在,说明理由。