八年级下数学资源与评价答案

合集下载

八年级上册数学资源与评价答案

八年级上册数学资源与评价答案

数学资源与评价八年级上册勾股定理第一章)1探索勾股定理(1 ;平方和等于斜边的平方c2=b2+a2.1 ④9 ③8 ②10 .①313 .2 8 ;6.49 =AB.11B .10D .9C .812 .75cm .6150m .5或42的周长为ABC.△13cm2 30 =ABC△S;12cm=AD.12320m .32 米.15.155 、4、3.直角三角形的三边长分别为14-x-(x2,尺)4尺(一步=x聚沙成塔:提示,秋千的索长为x解得:2 )4 6 =)2探索勾股定理(1 36 .2cm 或5.1=B2+A2.4370 .3cm2 .8C .7A .649 .5C2 )1(.13B .12D .11C .10B .9B 2(;15.不是;应滑16m2 210 .15 =CD;17=AB.1410 )3(;40) 4 =CD.1810 、8、6.直角三角形的三边分别为17 米0.08约)3探索勾股定理( 1 B .9B .8 .73cm .664 .515cm .4cm .312 .210 .1是锐ABC.当△152 .1472 =PP′2.133 =AC.1210m .11D .10 c2 <b2+a2是钝角三角形时ABC;当△c2>b2 +a2 角三角形时(;1)小正方形的面积为1(聚沙成塔:)提示:分割成四个直角三角形和两个2 小长方形能得到直角三角形吗2 3 2 或8.2 25k =16k +9k .直角三角形;1=m.5 .直角48 、4. C .8 .直角7 90°.直角、62 36 的面积为ABCD.四边形地10A .9天10.12 6 cm =ABC△S.11 cm ,应用勾股定理逆定5 =4 +3 .13 +()3030×()是.提示:1(.14 理得直角三角形;)3050×=()3040× 1500 =)3040×+()3030×(分钟)2(;B=∠A∴∠AB ⊥CD,DC=AD=BD.是.提示:∵15=∠BCD=∠45°= 90°=BCA∠AC =BC∴ACD 蚂蚁怎样走最近 3 cm2 84 .112.9A .8C .7B .64 .5 .413 .325km .2 为过提示:.11 ∴得根据题意,,m 宽为,m 设长为提示:.10 米∴最短13m ===∴12m ==∴5m =8cm =,3cm==,∵于⊥∴∴=∴==且=∵km =km =设提示:.12 .13m距离为处10km站A点应建在离E2.3m∵1cm ===∴2cm =.提示:能通过,∵133.3m∴ 3.3m =1m+=0.8m =-=;∵1.6m>2m且2.5m >∴能1m <m =∴0.2m =-通过.⊥作.提示:过14 ∴6km )=1-3-(8=,8km=6+2=,∴于单元综合评价8,6.2162 )3(60 )2(4 )1(.1一、8 和6,4.8.417cm .310 ,D .8B .7D .6B .5二、11 .利用勾股定理10 .是直角三角形9三、米12.122 厘米169..方案正确,理由:13四、2a=FC=DF,则4a裁剪师的裁剪方案是正确的,设正方形的边长为.a=EC,2)4a=(DF2+AD2=AF2得中,由勾股定理,ADF△•Rt在;20a2=2)2a+(5a2=a2+2)2a=(EF2中,ECF△Rt在;25a2=2)3a+(2)4a =(BE2+AB2=AE2中,ABE△Rt在.,90°=AFE,由勾股定理逆定理,得∠AF2+EF2=AE2∴是直角三角形.AFE∴△长为DE.提示:设14 ,xcm=BE,cm)x-9=(AE,则xcm=A中,∠ABE△Rt那么在,32=2)x-9-(x2,∴90°x()x-9+x故(,5cm 长为DE,即5=x,那么10=2x,即9)=x+9-BD 连,12cm2=EF2互相垂直平分,即可求得:•EF与BD即.144cm2为边的正方形面积为EF∴以实数(答案)第二章数怎么又不够用了1 5 )2()1(.4B .3B .2D .1;,0,0.1 3 ,3.1415926,3. 有理数有.7 .>6 .0.1212212221…,无理数有.它的对角线的长9B .87 、6.)2(;5)1(.10 也不可能是分数.不可能是整数,可.11 不是有理数.b,5=b2 能是整数,可能是分数,可能是有理数.,是有理数,因为有理数都可以表示成分数的形式,所以设聚沙成塔:不妨设,而∴不是有理数而是无为无理数矛盾.∴也是分数,这与是分数,所以理数.)1平方根(2.3C .2D .1=a.5 .43 是根方平术算,是根方平的时,)当1(.104 ,3,2,1,0,1,-2.-925 .8D .7A .681 的7,的平方根为7)1(.11 )任何数.3(有意义;时,)当2(有意义;±的平方根为)3(;7的算术平方根为,7±的平方根为)2(;算术平方根为(;)6(;)5(;)4(;)3(;)2(;)1(.12 的算术平方根为;)b+a )6(;)5(;)4(;,)3(;)2(;)1(.13 )7(∴5 =y,3=z,64=x聚沙成塔:)2平方根(2 .1反相为互,两.313 ;.2 5 .4 数B .14C .13B .12C .11 .10 .9 .8 .7 .6 .)2n-m(±.16 .15 19 =b,26=a聚沙成塔:3 立方根的立方根是343 ∴,343=73 )∵1(.3B .2D .10.93 ∵)2(;7=即,7=,即0.9的立方根是0.729,∴0.729=,的立方根是,∴)∵3(;0.9.6C .5A .4 即. ±的平方根是2,2=.7.8 .,即.答案:由题意知9 ,∴∴,∴又∵4,±的平方根是.因为10 .,∴16=的立方根是4.,∴64=19+45=19+59×=,得代入把又∵,∴.∵11 .,∴,,即且∴..12.13 .0.4=x)2(;6=-x)1(聚沙成塔:所得结果的幂指数等于被开方数的幂指数与根指数的比上述各题的计算规律是:换成任意的正数,这种计算规律仍然10.如果将根号内的值,用式子表示为:成立.公园有多宽4 >,>.7 .A6A .515 或14.4D .3C .2C .1 .<,<,.>,∴>,∴3>,即>,∴9>10.∵8 ,∵)不正确.2(是不正确的;,∴20>,显然>,而)不正确.∵1(.9<而是不正确的.,∴10<,显然,2-2.……的小数部分是;,即2的整数部分是,∵2.……=.通过估算10即.=,∴2-=.∴2-.解析:误差小于几就是所得结果不差几,可比其多,也可比其少.112(;≈500 时,100)当误差小于1(;≈20 时,10)当误差小于.≈1.4 时,0.1)当误差小于4(;≈3 时,1)当误差小于3(米时,只能用收尾法取近似值1.解析:当结果精确到12米,而不能用四舍五6 米处的地方引拉线了.5米,则就不能从离地面5米.若取5入法取近似值.x =BD米才符合要求,则由题意得x设拉线至少需要52+2)x =(x2根据勾股定理得.=x,∴=x2,即.(米)≈6 =x米时,1当结果精确到米,才能符合要求.6答:拉线至少要而不是用计算器求小数部分是用无理数的形式表示的,进行估算时,聚沙成塔:得的.要准确找出被估算数在哪两个整数之间.表示的整数部分用)1(∴∴∵;即)∵2(∴.∴用计算器开方5 a .-4 ±,3,-12.3< ,>.2B .1 ;计算器步骤如图:6.5 题图6 题图5如果要求一个负数的立方根,可以先求它的相反数的三次方根,再在: .解析6 结果前加上负号即可.计算器步骤如图:2)3x.由勾股定理得(2x,3x.设两条直角边为79x2,即2)=(2)2x+(.520=4x2+.12.6=6.32×=2x;18.9=6.33×=3x;∴x≈6.3;∴40=x2∴厘米.12.6厘米、18.9答:两直角边的长度约为2> =t;∵2=t;∴19.6=4.9t2时,得19.6=h.当8 ∴这时楼下的学生能躲开.,,则球的体积公式可变形为d.设该篮球的直径为9 ,即9850=根据题意,得8,9用计算器求D的按键顺序为:,SHIFT , ÷,6, ×,0,5,,EXP (㎝)d≈26.6.∴26.59576801,显示结果为:=,,= 26.6答:该篮球的直径约为㎝.;0.02793,2.793,27.93,279.3)1(.10,0.2550,0.02550)2(255.0 ,25.50,2.550倍,它的算术平方根就扩大为原来的100它们的规律是:一个数扩大为原来的.,则它的算术平方根就缩小到原来的倍,一个数缩小到原来的10 )1实数(6 (.1 )正确,因为实数即是由有理数和无理数组成的.1 )正确,无理数都是无限不循环小数.2(是有理数.)不正确,带根号的数不一定是无理数,如3(是无理数,就不带根号.π)不正确,无理数不一定都带根号,如4()正确,两个无理数之积不一定是无理数,如5(.是有理数.)不正确,两个无理数之和也不一定是无理数,如6()正确,数轴上的点与实数一一对应.7(.5D .4 .A3 .C2D .7C .6A .,∴;又∵;.∵810 .9.大正12 .-611 .=;∴,,,∴,,可得,.由(㎝),所以这个正方形的边长为)2(㎝216方形的面积为,∵两个加数均为算术平方根,∴聚沙成塔:∵互为相反数的两数之和为零;且,∴,∴.,,∴.同理:,)2实数(6 3A .2C .1;;-;.9C .8B .7B .6C .5A .4D .B.13 +.12 .113.14 -.10 ;;-6-7 =]2)+()-([.解:①原式=17 x≥2.16 .151 .14 点1-)=+(-1+ × -;③原式=+3=2 -1-4+2 +;②原式=1=])3 +2 )-(3 -2 ([]×)3 +2 )+(3 -2 ([;④原式=0=-1+- 24 )=-3 -2 -3 -2 (×)3 +2 +3 -2 =(.解:因为(18,1=b,2=a,所以0=1-b且0=2-a,0=2)1-b+(2)2-a 1 =-1-0=,则1=cd,b=a.解:由已知19 =所以20 .1998=6-2004=6-2),原式=(=1+x,所以1-=x.解:因为)1-x)+(2-x时,原式=-(1≤x≤2,当1│-│x+2│-│x.解:原式=21 1 =224 -=2-2-=-2-==b,∴=a.又∵2-=b,∴< < .解:∵32=yx,所以3=3++=y,所以2=x解得.解:由题意,得23聚沙成塔:)由题意,2(;9=32=yx;所以=y,所以2=x解得)由题意,得1(;9=.1=3-22×=y-2x,所以=y,所以2=x解得得,则n)令左边第一个数为2(;…,361,121,25)从上往下依次填1(.解:24(n个等式的左边为n第,右边是什么?可尝试着来1)+3+n()2+n()1+n+n2=(1)+3+n()2+n()1+n(n求,则可得如下规律..证明:2)1+3n)+3+n()2+n()1+n(nn2()3n+n2=(1)+2+n()1+n(·)3+n(n=1)3(结论成立.,2)1+3n+n2(=1+)3n+n2(2+2)3n+n2(=1+)2+3n+的平方根为1+1817×16×15×,故2712=2)1+153×+152=(1+1817×16×15× .271,算术平方根为271± 单元综合评价(一)分)24分共3(每小题:一、选择题B .2C .1B .8B .7D .6D .5B .4C .3分共3(每空二、填空题.分)33或.13 .121 ,-2.115 .1013 .-9,0,1.-15 ,1.-14 ,.162 ,1 三、解答题.(.解:18 ;④ 不存在;③x矛盾,故所求与2=-x;② .①17)2(;)1 =.解:欲使原式有意义,得19 .3<x<4∴=|a|.∵20-2b|-|+|a|,∴a≤0 ,即ab=-|ab|,∴0=ab+|ab|,又∵b≥0,∴b2x.22 次方根为x的x)2(;2=x)1(.21b -a=)2a-3b(-2b+a=-2a|-|3b .,∴4=y,此时,0=3-2x,即2x≥0-3且3≥0-单元综合评价(二) : 答案与提示一、选择题6 .D5 .D4 .D3 .B2 .A1 .A9 .B8 .A7 .D.B12 .B11B .10二、填空题;.59 -;1.42 -.30 .25 -.1x≥0.964 或0.8 实数.71 .63 .x≠6且三、计算题.每个正方4 .3 )6(;)5(;)4(;)3(;)2(;)1(. 2 .1 .表面积为形边长为:..60 <a;根据绝对值的定义:,且.原式变为57 )略.2(;)设1(.证明:意有都式根的有所使要.8式原∴.0=a∴,足满须必,义±.9 =时,21=a,当经分析容易发现:.128 原式=,. 11 .103 =b ..原式=13221 =c,220 图形的平移与旋转第三章生活中的平移1 1(.1ABCD)四边形3(;50cm)向前移动;移动了2()身高、体重没有改变;.相等;3 .移动一定距离2 )略4(的形状、大小相同;A′B′C′D′与四边形∠.84 -.72 右;.6 平行且相等.5 90°平方厘米;5.4 相等平行;∠=B′OC∠;BOB′∠=A′OC∠=A′B′C′∠=ABC.略10 .略9 A′OB≌△ABC;△A′C′、AC;B′C′、BC;A′B′、AB .11=1313×)2(;196)=2030×(÷)280420×()1(.1315 ;3.12 A′B′C′;169 块14块,宽也贴14长贴,宽c-a,这样就形成了一个长为.如图,将四块草地向中间拼拢(即平移)14 的矩形.c-b为(×)c-a空白=(S∴c2 + bc – ac –ab )=c-b 米.19.5.15 简单的平移作图2 .做2 .对应点所连的线段平行且相等;对应线段平行且相等;对应角相等1.3 出平移后的对应点;平移的方向和平移距离.如 5 .如图4A .如图7 .略6 图题图7 题图5 题图41(.8才能使平移的6cm方向平移AB沿着ABCD.将长方形9 )略2(;9)、“○)都是由1(.1024cm2 重叠部分的面积为ABCD长方形与原来的长方形“组成的”△)大小、形状没有发生变化.因3()略;2(平移形成的;”基本图案.根据平移的性质,可以通过对应点、11 平移得到的”基本图案“为它们都是由.通14 .①②③正确,理由略13 .12 对应边、对应角等多种方法作图 25 过平移使阴影部分面积变成一个小正方形的面积,即聚沙成塔:.略15点,C交另一岸于AB′的距离等于河宽,连接BB′使B′点到B,平移(如右图)(方法不限,正确即可)即为所求.CD点作垂直于河岸的桥C过生活中的旋转3 1(.1)形状、大小2()绕一个固定的点或线,转动过程中形状没有发生改变;转.2 略)4(格;12分针转绕两指针的交点,)3(位置发生了变化;没有发生变化,52 .4 .位置;形状、大小.3 动一个角度;旋转中心;旋转角)线1(.)它3()等边三角形;2(得到的;120°、60°段绕其中点顺时针(逆时针)旋转四288°,144°,72°是由一个花瓣为基本图形,以花瓣为旋转中心,顺时针旋转旋转O绕点r.线段6 次得到的;直180°旋转AO绕线段ABCO;矩形180°∠;CA ;A②点;90°;C①点.7 180°旋转AO绕线段AOB角三角形;EAC,CNB和△CME△;DNC和△AMC△;DCB和△ACE△.8 ③等腰直角三角形1(.9 60°点旋转C它们都是绕.如图所示基11 70°.10 75°)2(;30°)(其它正确变换均可)60°本型依次绕正六边形中心旋转题图15 题图12 题图11(其它正确变换120°.如图基本型依次绕正六边形中心顺时针和逆时针旋转12 均可))两个正方形的1(.14BE =AD,故ADC即得△60°顺时针旋转BCE.△1315 (通过旋转利用特殊位置求值))2(重叠部分的面积保持不变;.如图,,可得OO′的位置,再连接O′点落在点O,使90°点顺时针旋转B绕OAB将△ 135°=AOB,则可求∠COO′和直角三角形BO O′等腰直角三角形简单的旋转作图4 2 .旋转中心;旋转方向;旋转角度1.形状;大小;旋转中心;旋转角度及如图.8 略.7 略.63 .5 个3.4 45°;60°;90°.3 方向如.10 53°.9 .如图,分别连结两带箭13 .略12 的旋转对称点)O为O′′.如图(11 图头线段的对应点,做所得两条线段的垂直平分线,其交点即为所求的旋转中,BE)连结2(边上时;AB点转到F)不是始终相等,如1(.15 .略14 心则线段).ABE旋转可得到△A绕AGD(△的长相等.DG的长始终与线段BE 题图 10 题图8 题图 13 题图 11 它们是怎样变过来的5 3 旋转方向旋转角度;旋转中心;.2 对折.1长.4 平移距离平移方向;.ABD.△8 .略7 .不能,必须经过对折6A .5 度;角度点逆时A绕平移和旋转)3(旋转)2(平移)1(.9ACE 得到△60°针旋转)5(轴对称)4()1(.12A .11 略.10 旋转;AFD而得到△90°逆时针旋转A绕点ABE将△.略14 45°.13DF =BE)2(.如图,沿对角线方向,每次平移距离15 .为对角线长的简单的图案设计6 .3 略.2 略.1平和转旋或转旋.5 圆个一.4 略.略6 移.如图,先把矩形纸片对折,然后在10 .略9 .略8 .略7 在落C使折对BM着沿即CN和BM出折再,点N的上EF .略12 .略11 可..略13 题图10 单元综合评价5B .4B .3D .2D .1 120°.10 60°.9C .8B .7C .6C ..11)1(.19 60°.18 .175cm .16 20π.1512 .146 .13 5π.129cm 个的长为AA′.21 略.2025 ;22)4(等腰直角三角形;)3(;90°)2(;D点150°)1(.24 .略23 BO=B′O,且使AOA′∠BOB′=.提示:作∠22 单位2(.75°)3)等腰三角形(的长BC)图形平移的距离就是线段1(.解:25.5cm=BC,即5cm又∵较短的边长为.5cm∴平移的距离为.90°=EMC,∴∠60°=CED,∴∠30°=ECM)∵∠2(=CM,∴cm =CD,∴5cm=EC,10cm=DE 中,ECD△Rt又∵在.cm .DB=AE,,中,∵DEC与△ABC)△3(∴△.DN=AN,∴DEC≌△ABC 四边形性质探索第四章)1平行四边形的性质(1 .1,DF□AE三,.5135 ,45,135,45.4135 ,45.314 .270 ,110,110 ,□ABCD ,□ABFE ,□ADHG ,□AEOG,9.712 ,24.6 □CDFE,□BDEF,6.940 .8□CFOH ,□BCHG ,□BFOG ,□EDHO ,□EDCFABE.相等,证:△16A .15D .14B .13D .12D .11C .104 ,AB=9cm.18 )SAS(CBE≌△ADF△.证:17 )AAS(CDF≌△;BF=2cm,EF=1cm,AE=2cm)1(.20 是等腰三角形FBE.△19BC=10cm BC=AE=BE=2.5cm )2(,S = S .易得:AF,AE.连结22AB=BE+DF .21BGD平分∠AG上的高相等,可得:DF,BE,所以BE=DF因为:.)2平行四边形的性质(1 4 .四322 <m<10.2 .二1,AB//CD.824 .7 .六659 .568 .ABE△,BD⊥CF,BD⊥AE,等相角错内,行平线直两△≌.证:△15C .14B .13C .12C .11D .10D . 9 CDF ≌BOE,AF=EF.证:17 )AAS (DOF≌△BOE.相等,证:△16 )AAS (DOF△18BM=EF MAB+)证:∠1(.19OB= BD=2.5 ,CD=AB=13,BC=AD=12..相等,20DF=CE ,可得:DE=AD=BC=CF)2(;MBA=90°∠,S = S = S +S .S =S 所以:)1平行四边形的判定(2 .平行四边形 3 .平行 2 等AB//CD.1.平行且相等;5 等BE=DF.4.7 形边四行平.6 等相且行平边四行平.8 形边四行平A .11C .10B .9 形交BD.是,连结15D .14B .13D .12 即可OB=OD,OE=OF 证:,O于AC)1(.17 即可BD=CF,BD//CF证:是,.16,□ACNP是个,2还有外,□ABCD除,可得:MQ=AC=NP)相等,2(;□ACQM.分别过四个19 重点是给出的证明方法正确即可.几种都正确,18MP=QN H于BF⊥CH.作20 顶点作对角线的平行线所围成的四边形即为答案,证:.FG=CH,再证:DE=CH得:BCH≌△ADE△)2平行四边形的判别(2 和55.26 .148 .819 .770 .615 <<3.580 .475 .3125 BCF≌△ADE.证:△13 B=130°,∠C=50°.∠12C .11B .10C .9)得:AAS(,证:△CD//AC作C.过15=60 ,面积=39.周长14AD=BC :证再,AD=GH:得CGH△≌BDE,BC=10cm.16 可即AD=EFEP,延长G 于AE交DP.延长18EM//FN ,EM=FN.证:17CD=6cm 交 B .207 .19 .可得答案PF=FH,PE=PG=AF,PD=BH.则有,H于BF 菱形3 .124 .78 和6.6 120°,60°,120°,60°.544 .4176 .310 .22 菱.9 3 .8.14D .13C .12B .1160 .10 形提.18B .17B .16C .15C ∠ABE=∠得:,ADE≌△ABE△示:∠所以:.ABE∠ACD=∠DAE=∠,ADE即可AE=DE,得:ADE∠DAE=.证∠19ADE ∠DAE=)2()略;1(.20 BDAC··DH= AB·.利用面积搭桥:22 是菱形AEDF.证四边形21 90°,,由AE=CF,COF≌△AOE.△24 AHC=100°)∠2()略;1(.23DH=9.6 ,可证AE=EC已知得:是菱BEDF时,BD⊥EF)3()相等;2()略;1(.25 OA=1,AC=2由已知可得:形,,AOF=45°∠,AOB=45°∠可得:,OA=AB即:,ASA或AAS (CFH≌△DEH.证△26 45°旋转角的度数为.利用角平27 )问题即CD=CF,利用等校对等边证CD=DE 分线上的点到角两边的距离相等证可得证.)1矩形,正方形(4 3 .矩形,对角线相等的平行四边形是矩形240 .1,12.45 ,10.924 .8 2 .745 . 62 .516 .13A .122.4 .111 .1 0= . D .16B .15C .14A )即HL (BCA≌△ADC,证△AC.是.连结17 可即BCF△≌ADE△证.18 可:得可件条由,形矩是.19OA=OB=AB=4经过计算可得:是等边三角形,AOB△)1(.20OE=OF=OG=OH ;BD交AC.连结22BO=AB=BE )2(;ACB=30°)∠1(.21 =4 S )2(于,DFCE·S = ·;S = S =12,DE.连结23AB=OA= BD=7 ,经过计算可得O点ABE)△1(.24DF= 4.8 可求得)1(.2524 )2(;C=90°∠B=,∠BCD≌△,DF=4,BE=5.方法同上,解得:2639 )2(;EF=3,解得,则有EF= 设)1(.2710 则面积为,ADB=90°∠可证得:,AE=BE=DE由已知可得:)2(略;,DE=AC=AF,得BAC≌△BDE)平行四边形,证△1(.28 问题即可得证同理:的中CD)取1(.29 BAC=60°)∠3(;BAC=150°)∠2(;EF=AB=ADCD=2OA=AB=12,可得OA,连结O点.)1)方法同(2(;)2矩形,正方形(4 .42 .3 3 .2 .有一个内角是直角1.正方7 . 622.5 .5 A .11C .10A .924 .8 形16B .15C .14D .13B .12得CDM≌△ADF.△18 15°.17A .,所以∠ADF=90°,∠DM=DF可理定股勾由,BE=CF=3:得可OBE△≌OCF△由.19 MFD=45°得≌ABG.△21 即可BE=BF得BCF≌△ABE,由△BF,BE.连结20EF=5 BCE∠GAB=得∠BCE△于CD⊥EM作E.过22 ABC=90°∠CHG=,所以∠证△,N于BC⊥GN作G过,MAH=AB=AD由不变,)1(.23 即可GHN≌△EFM,FAH∠DAF=∠,EAH∠BAE=∠得可∠FAH= ∠EAH+∠EAF=∠以所,CE.延长24=CE+BE+CF+DF=2BC )得:周长1)不变,由(2(;BAD=45°,则△G交于AD)由勾股1(.2610 .25AF=CG=2CE ,所以CDG≌△ADF27 即可ME 是直角三角形,证EMC)△2(;ME= 定理得,PQ.提示:连结上时,AC点不在直线P)当2(;ADP≌△ABP)△1(.28MQP ∠MPQ=证∠;BP≠DP,.提示正方形的边长为29 )SAS (BCE≌△CDF,△BE=CF)3( 2 和1两直角边长可为)1梯形(5 120 .2 √)10(√)9(√)8(√)7(×)6(√)5(√)4(√)3(√)2(√)1(.1 ,+24 .54 .4 轴称对,线分平直垂的边底.3 +1 △.15D .14D .13D .12B .11C .10C .93 .830 .7 三.6)2(是菱形;AECD)四边形1(.17 .全等,证略16)SAS (CDP≌△ABP.195cm .腰长为18BC=8cm ,证∠O交于CD,BA.延长209 <CD<5-BC(EF= 结论:.21AD//BC 得OAD∠ABC=,EG//AB作E过提示:,)AD .EH//CD )2梯形(5 .320 .2AB=CD .15cm.8 75cm .736 .613 <<7.5115 ,105.430<等,9cm<15C .14B .13C .12B .11C .106 .9 腰17B .16B .AC,证AC.连结20 )平行四边形2()略;1(.19 .略18B .平分∠;AB=CD,即EMEF+CD·CG=AB·AB·可得S ,由DE,AE)连结1(.21DAE )1)方法同(2(,证△MA是等腰直角三角形,提示:①连结EMC.△22 ,利用等腰三角形的性质.O交于点CB,EM,②延长ACM≌△DEM 探索多边形的内角和与外角和6 .1,60.6 72°,144°,108°,36°.5 2 ,,,.412 .318 .2,36.8 八.790 ,120,90129 .11120 .10 五.9144 ,3.1412 .13 四..19D .18C .17B .16B .152 23 .略22D .21A .20C .= .多边形的边数25C .24 .九中心对称图形7 1.对称中心,对称中490 .3 .略2 √)5(×)4(√)3(√)2(√)1(..③⑩,⑤9 .线段的中点8 .对角线的交点71 .6 .平行且相等5心⑥④②①,⑨⑦10⑧1 .略17C .16D .15A .14B .13A .12C .11D..是8.作图方法如图所示(方20 = 正方形面积的一半=.重叠部分面积19 即为所求.MN.法不唯一))1单元综合评价(.36 .2140 .18 .4.8 或.767.5 .6 或4.54 .4 对角线的交点9或6.118 .1045 . B .16C .15B .14C .13D .12 2 2C .19D .18D .17 24cm )2;(略)1.(22C .21A .0或20cm.23;AF=GB 即得,BF=BC=AD=AG由已知得:)1(.25 DG=9.6cm .24 .22cmA=90°)∠2(,得到∠COG≌△DOE.证△DE⊥CF.26 是矩形等ABCD 或;AF//CE)证1(.27 即可OCG∠ODE= .略28 )不可能3(;B=30°)∠2()2单元综合评价(. 3 等AE=CF.212 .160 .73 .6 有一组邻边相等.570 .4 正四边形③①.952 .8.10⑤C .17A .16A .15C .14D .1348 .1252 .1126 19C .18)3(的中点;AD)2()平行四边形;1(.22C .21C .20C . EF= BC ,BC⊥EF)等边三角形,2()略;1(.24EF=1.5 )2()略;1(.23.25 略)3(正六边形;正方形,,AF=FG可证得:.G交于点BC,AE延长同意,P点)2(略;)1(.26 结论即可得证,AE=EG)1(.28 图略.27 的中点EF为)1)同(2(即可;BOM≌△FON证△第五章位置的确定)1确定位置(1 .一3 号3排7;)1,5(.2 .两1方30°.南偏西55km .4 ;方向角)两;方向和距3()一;2()两;照相馆;超市;1(.650m 向,且距离小红7 离聚沙成塔:经度、纬度和高度.海里11.每小时8B .)2确定位置(1 )8,10(A)1(.1(-.2 略)2(;)1,8(E、)8,2(D、)9,4(C、)11,6(B、)不2(;)3,7(、山陕会馆)4,4、光岳楼()5,2.5)湖心岛(1(.3;)1,2N)1(.8D .7D .6 )5,4(.5 .略4 是,他们表示一对有序实数(聚方向上,北偏东.912 面积为菱形,)2(;)1,4(Q、)4,6(P、)4,2 .)2()略;1(沙成塔:)1平面直角坐标系(2 (轴;y)2()第四象限;1(.1b,0 >a;0>b,0<a.一;2 )第二象限34 .二3 ;三0 <、)4,10(H、)4,11(E、)8,4(B)1(.51 >-x>2.,0.10 ,2. 9 二.8 )3-,2-(,)0 ,7(.6E ,C,I,M.)2(;)1,6(R、)3,1(C、)4,3(B、)1,1(A.15D .14C .13B . 12 .116 ,0E与C横坐标相反,纵坐标相同;F与B;)4,3(-F、)3,1(-E、)5,0(D 横坐标相反,纵坐标相同.)2平面直角坐标系(2 .移动的菱形1B.6 )0,0(.51 -,4-.4 三象限一、.3 向左平移了两个单位鱼,.2(-.略.8D .7 )2,0(A、)0,2(C、)0,2 )3平面直角坐标系(2 ,2(.6 )2,1(-;)2,-1(-;)2,1(.一;51 .42 .36 .2 .二1 ))或((.10 )7,3(.9 )3,2(-.89 .7 )2-.;最小值是)(P聚沙成塔:)1变化的鱼(3 ,-2(-.4 .二;三3 ;纵y.2 .四1,2;7,2;4,1;-4,5.5 )3.鱼;6 )上;下2()右;左;1(;1,10(,)1,10(,)0,8(,)4,10(,)0,5()1-)3,3()7,5()3,0(个单位;5;向右平移)0,5(,)2,-9(,)0,8(,;5;左,3个单位;右,3;向上平移)3,0()1,4()3,3()2,5()4,5(,10(,)1,10(,)0,6(,)4,10(,)0,0()2()鱼;1(.76 ;下,2上,)3(倍;2;图形纵向不变,横向拉长为原来的)0,0(,)2,-8(,)0,6(,)1-,0(;)0,0(,)2,-2(,)0,(,)1,-(,)1,((,)0,(,)4,(,)03)图形横向不变,纵向拉长为原来的1(;图形纵向不变,横向缩短为原来的)图形纵向不变,横向拉长为原3()图形横向不变,纵向缩短为原来的2倍(9 )2,-1(-.8 )图形纵向不变,横向缩短为原来的4倍(4来的.三(Bn,)3,(An,)0,32(B4,)3,16(A4聚沙成塔:.略10 .)0,)2变化的鱼(3 )3,2(-、)3,-2(.25 、3、4.1x;)5,4(.48 .3 )3,-2(-、0()2)鱼(1(.5 轴(-,)1,5(-,)3,5(-,)2,3(-,)6,5(-,)2,3,)6,-5(,)2,-0()3(轴对称;y;与原图关于)2,0(,)0,4(-,)2,x)与原图关于2,-0(,)0,4(,)2,-3(,)1,-5(,)3,-5(,)2,-3(,)1,-5(-,)3,-5(-,)2,-3(-,)6,-5(-,)2,-0()4(轴对称;)=;=,1(;与原图关于原点中心轴对称;)2,-0(,)0,4(-,)2,-3(-)=,-;=2(-;;=,-)=,-,3(个1;向下平移1.图形横坐标不变,纵坐标乘以-6 .11B .10A .9 )3,-4(.810 、8.7 单位..12C 单元综合评价.410 ,8,6.3 )3-,4(.2 二.1,3.5 )4-,3(-,)4,3(-,)4-,3()0,4(:8.9 或6.8 ),2(、),2(-、)0,0(.7 )3,1(.6401D .17C .16B .15D .14B .13B.12C .11B .10 分.8 .如图,所得的图形象机器人. 19C 题图 21 题图20 题图19与点A轴对称,点y关于D与点C、点B与点A.解:如图,点20与B、点D关于原点对称.答案不唯一,只D与点B、点C与点A轴对称,点x关于C点.要合理就可以(如图)轴,x边所在的直线为BC)以1(.21轴,建立y)为O的中垂线(垂足为BC,)3,0(A,所以3=BC =AO,所以6的长为BC.因为直角坐标系(如图),3(-B )0,3(C,)0 A2B2C2 个单位长度,如图△2)整个图案向右平移了2(A3BC 轴对称,如图△x)与原图案关于3(如图,倍,2横向拉长了轴对称,y与原图案相比所得的图案在位置上关于)4( AB4C4 △一次函数第六章函数(1 )13 函数因变量、自变量、.2a ,S,a,a2=S.1D .7B .6A .5C .4B .)2)合金棒的长度和温度,温度是自变量,合金棒的长度是温度的函数(1(.8 .10.1cm,9.98cm)5(验证略,10+0.001x=y)4(℃150℃~50)3(10cm,10.01cm36(3=y,∴6×.)2x-36,面积=(2x-36,∴底边=36+底边=2x.周长=9 .108+6x)=-2x-千米,∴距北京的路程120千米,又天津与北京相距30t小时后汽车行驶t.10,即有30t-:120为.30t -120=s,11=9+2,第二排为10=9+1.∵第一排为11n=m,∴9+:n排为n,第... .9+1-x=(S聚沙成塔:可按下列公式计算出任何一天是星期几,,其中C+)+的表示的日数,(含这天)是该年的元旦算到这天为止C表示公元的年数和,x ,同样整数部分,若恰好除尽,除,7再用后,S求出的整数部分,分别表示,则这天为星期2,则这天为星期一,若余数为1则这天便是星期天,若余数为1949即可推出过去的或未来的任何一天是星期几,如计算依次类推,......二,日是星期几的方法是:1月10年+28+31(++)1-1949(=S2649 ,2694=)1+30+31+31+30+31+30+31÷ 日是星期六.1月10年1949,故384 ......6 =7 年元旦是星期几.2222同样可以算出1-2222=(S ,394 (2)=72760÷.2760=1+)+年元旦是星期二.2222故公元)2函数( 1 ,0.5t-10=y.5D .4A .3D .2C .1,)1000-x(5%=y.6 0≤t≤20 .718 ,x≤1500<1000x<20 ,80+2x=-y.8 0≤x≤2 ,160+80x=-y B .1010000 +8x.12=y.940 <=x)当1(.11y时,代入3=-x;当=y时,代入3=x;当=y时,代入 2 =.=x,∴0=2-:4x时有0=y)当2(;7=万元.25)2(;)x≥0(15+2x=y)1(.12 年.10)3(米;3)2(;1.2+3x.0=y)1(.13 .)1≤n≤p(b-a+bn=m)3(;16+4n=m ,17+3n=m)2(;18 +2n=m)1(.14,0.6-t=y,0<t≤3,2.4=y,∴1×)3-t+(2.4=y时,t>3,o<t≤3,2.4=y.15 .t>30×)30-t=(y时,x>30;当0=y时,.当16 .15-5x.0=5.2(之间的关系;t与s)反映了1(.17 秒./米8 =)4()甲;3(米;200)=BOC.分析:如图,∠18平分线ACB、∠ABC是∠O,而)2+∠1-(∠180°的交点,=2+∠1所以∠.)A-∠180°()=ACB+∠ABC(∠,ACB∠=2,∠ABC∠=1,∴∠O平分线交于点ACB、∠ABC解:∵∠,)2+∠1-(∠180°=BOC∠•中,BOC∵在△180°=BOC∴∠.A∠•+90°=)A-∠180°(-180°=)ACB+∠ABC(∠-.)<x<180°0°(x +90°=y即1350月份的收入10)该公民1(聚沙成塔:=800-1350元中,应纳税的部分是30=5+25=10%50×+5%:500×按交税的税率表,他应交纳税款元,550 元.元之2000-500不用纳税,应纳税的部分为800时,其中1300≤x≤2800)当2(5%500×交纳,税费为5%元按500间,其中元,剩余部分交纳,于是有:25=-x=(5%500×+10%500]×)-800-x([=y-1x.0=y即:25+10%×)1300 ①1052)根据第(3(175元至25元之间时,纳税额在2800-1300)小题,当收入在元之2800元至1300他的收入必在元,55于是该企业职员的纳税款为元之间,y间.当元.1600=x代入①,得55=一次函数 2D .3C .2C .1y.9 ,一次t -2=s.8L2 =S.7B .5B .4 .)0≤t≤10(5t-50=P.121 ,-1±.11 .x 10 =.)min(84=x,解得)x -20(=x )根据题意,得2(;x -20=y)1(.13,21=2.58.4×=y时,2.5=x的正比例函数.当x是y,∴8.4x=0.4x+8x=y.14 元.21千克时的售价是2.5即当数量是y,故0.5cm质量,弹簧伸长为1kg,每增加12cm.由表中可知,弹簧原长为15.0.5x+12=x+(16×=y时,x>6,当x=y时,x≤6)当1(.16 ;4.8-8x.1=1.8×)6-,6m3元时,则该户的月用水量超过了8.8)当水费为2(.7 =x,得4.8-1.8x=y代入8.8=y把(.17 的整数.x≥0的取值范围是:x,自变量2x=y的函数关系式为:x 与y)1+10)购买一张这种电话卡实际通话费为2(,(元)11=1,92000=46 0002×=2x=y时,46 000=x当.(亩)230=40092 000÷=y2,b1+kx1=y1)设1(.18 .b2+kx2 .300+10x=y2,20x=y1∴2(是保底工y2元;200件得推销费10是不推销产品没有推销费,每推销y1)元.100件产品再提成10元,每推销300资)若业务能力强,平均每月能保证推销多于3(的付费方案;y1件,就选择30 的付费方案.y2否则选择•+x20%·16×=y)解法一:根据题意,得1(.19,解5002 +0.8x=-25%×20×16x-10 000+(20%x·16·=y•法二:.2 500+0.8x=-25%·).250≤x≤300,解得)解法一:由题意知2(1由(的增大而减小,x随y,∴0.8<0=-k,∵2 500+0.8x=-y)知250=x∴当,(元)2 300=2 500+2500.8×=-y值最大,此时y时,300==∴.(箱)箱时,所获销售利润最大,最大销300乙种酸奶•箱,250答:当购进甲种酸奶• 元.2 300售利润为16因为•解法二:,即乙种酸奶每箱的销售利润大于甲种酸奶25%20%<20×ו因此最大限度的购进乙种酸奶时所获销售利润最大,即购进乙种•的销售利润,箱,300酸奶.(箱)250==x则,2 500+8x.0=-y)知1由(.(元)2 300=2 500+2500.8×=-y值最大,此时y时,250=x∴•1(聚沙成塔:=y时,t>300min,不是一次函数,当168=y时,t≤300min)当+0.5t=0.5×)300-t+(168 是一次函数;3,再t>295,得0.4t>168+50,由题意得0.4t+50)原收费方式的月话费为:2(3+0.4t>0.5t+50由选用之间时,470min到295min即当通话时间在.t<470得,比原收费方式要省钱.3方案)1一次函数(3 C .1y>0)图略;当1(.5 )略2(;30+5t=-Q)1(.4 .略3C .2x<1;当0=y即0 =2-2x时1=x;当y>0时,x>1,即当x>1,∴2>0-2x 时,x.当)0,1轴交点坐标为(x,∴与1=x时0=y)当2(;y<0即2<0-2x时.)2,-0轴交点坐标为(y,∴与2=-y时0= C .6)1(聚沙成塔:时、4时~0时,40时~28时和16时~4,3)2(;12,40,3544时、36时、20;℃)39时骆驼的体温(12)3(时;48时~40时和28时~16时.)2一次函数(3 0(,)0.2(.2 ,0.1.一,二,6<1 .5<0 . 42 k>2 .-3 )2,-)0,2(,四,0(,.11C .10C .9C .8 .7 )4.15A .14B .13C .12A .-18 1<k≤2.-17A .16D .一、二、四19 .22.5)2(;4.5+1.5x=y)1(聚沙成塔:5 一次函数图象的应用10t=-y,10,5,50. 2x>3 ,3=x,0≤x<3.1x =y)1(.3 )0≤t≤5(50+()0≤x≤50(25+;B.510cm .4100 )2y轴的交点的横坐标即方程的解,或先画直线x,图象与6-2x=y.画直线6=.9取何值时函数值为x,然后观察当自变量3+2xy1>y2时x<1;②当)0,1(P.①7y1<y2 时x>1,当个小时.3)骑自行车者出发较早,早1(.8 个小时.3)骑摩托车者到达乙地较早,早到2( 3(千米.40千米,摩托车每小时走10)自行车每小时走小时.1小时后被摩托车追上,此时摩托车出发4)自行车出发4(元;100)1(.9 )0≤x≤40(100+2.5x=-y)4(元;50)3(元;2.5)2()代入关系2.70,0.37)和(0.75,0.40,把(b+kx=y)设1(.解:10=y时,0.42=x)当2(;11+6x.1=y,∴11=b,6.1=k解之得,式,得,∴这套桌椅就是配套的.2.78=11+0.426×.1k1x租=y)设1(.解:11=50租上.∴y)在50,100,∵点(b+k2x会=y,y,因此,0.5=k1,100k1k2x会=y)在50,100(,)20,0.又∵点(0.5x租=20=b上,故b+;20+3x.0会=y,因此0.3=k2,∴b+100k2=50,2(元;0.3元,会员卡每天收费0.5)租书卡每天收费天100天以内时,用租书卡,超过100由图象可知,一年内租书时间在•)3(时用会员卡..如图:12)+x-10(4)+x-6(5+3x=y)1(;86+2x =y,即])x-10-(8[122x时,即y≥90)当2(,1,0的取值为x为自然数,∴x,∵x≤2,∴86≤90•+.23万元的调运方案有90因此,总费用不超过种即:台;6市D市调往B台,从2市D台,10市C市调往A①从②从台;5市D台,1市C市调往B台,从3市D台,•9市C市调往A 台.4市D 台,2市C市调往B台,从4市D台,8市C市调往A③从时,0=x∴当的整数,0≤x≤2又知的增大而增大,x随y中,86+2x=y在)3(.86取最小值为•y•C市运往A台,从6市D市运往B万元,调运方法是从86因此,最低费用是10市台.2市D台,运往,k1x=y的正比例函数,设x是y时,0≤x≤50)①当月电用量1(.解:13 •=y,∴=k1,∴50k1=25,∴25=y时,50=x∵当.x •的一次函数.•x是y时,x>50②当月用电量,∵当b+k2x=y设,70=y时,100=x;当25=y时,50=xy∴∴;20-9x.0=元.当每月0.5千瓦时时,收费标准是:每千瓦时50)当每月用电量不超过2(0.5千瓦时每千瓦时50千瓦时时,收费标准是:其中的50用电量超过元,超过元.0.9部分每千瓦时又知弹簧长度与所挂物体的质量是一次函由于刻度尺只能测量测试,聚沙成塔:用刻度尺测挂上物体后,从而可求弹簧长度与所挂物体质量的关系式,数关系,量弹簧长度,代入关系式,就可求出物体的质量.,把(b+kx=y 解:设,)代入关系式,得16,3)和(5.14,0•,14.5+0.5x=y∴用刻度尺测即挂上物体后,就可测量出所挂物体的质量,∴只要有一把刻度尺,中,就可求出物体的质量.14.5+0.5x=y量弹簧的长度,把测量的长度代入确定一次函数表达式4 2x =y.1;D.9D .8B .72 .-6 .54 .4 .32x =-y.2y时3=-x,∴)5,3(-A.∵图象经过点)k≠0(kx=y.设正比例函数为10 x =-y,∴函数解析式为=-k.∴5=3k,即-5=y)设此一次函数为1(.11,1=b+:2k)代入有3,1(-,)1,2.把(b+kx=.=k,解得3=-b+k-∴此一次函数的解析式为y,当)2(.轴交点坐标为x,即有与=x,∴0=时,0=0=x当.轴交点坐标为y∴与=y时,80t=-S,即400=S+80t.根据题意,得12 .400+x≥100(20+0.4x=y)2(;60)1(.13 .元600)3(;)4(-′M轴的对称点y点关于M.分析:两点之间线段最短,先作14,连)3,最短.要求M′N=PN+PM′=PN+PM,则P轴于点y交M′N接轴的y与M′N)2,-1(N)和3,4(-M′过M′N的表达式,由直线M′N交点,先求,可求.)1,-0为(P轴的交点坐标•y与1-x=-y表达式为M′N出)略2(;2+3x=-y)1(.164 的面积为ABC.△1517,所以此一次=k ,解得)所以2,3(,)2,-0过点(L)由图象知1(.-20× =y时,20=x)当2(;2-x =y函数的表达式为2-x =y)在3(;=2x随y,故>0 =k中,的增大而增大.由.根据题意,得kx=y,∴可设一次函数为)0,0.∵一次函数的图象过(183③,把③代入②得,-2k=-m①得,x随y,因±=k,∴=k2,k2k·=-y,故这个一次函数的表达式为=k 的增大而增大,所以.x =0,把(b+kx=y的关系式为x与y)设1(.19y)代入337,10)和(331,把,331=b由①得,,得,b+kx=故.=k∴,331+10k=337代入②得331=b+x =y所求一次函数关系式为;33122× =y,得331+x =y代入22=x)把2(,故燃放烟花点与此344.2=331+.)m (1721=5344.2×人相距x与y)1(聚沙成塔:;10+40x=y,即x +10=y之间的函数关系式•P从•)2(,25>4h.4=40170÷,)km(170=30+10-150地的距离为•C地到4,则根据题意,得(xkm/h 处.设汽车的速度为C点前赶到12故不能在中午.60km/h,即汽车的速度最少应提高到x≥60,解得·x≥30)-单元综合评价一、选择题C .12A . B 11.10B .9B .8B .7C .6B .5C .4C .3D .2C .1 二、填空题17 )4,1(-.16k>0 .15 ,增大1.141 .13,.182.1 +0.5x=y.=y.20 ,-5.192 -.2+x 三、解答题(;2+3x=-y∴一次函数的表达式为)根据题意,得1(.21 )略.2-k1x=y,则)1+x (k2=y2,k1x=y1.设22 ,根据题意,得)1+x (2k2+x()(-2×-x=y∴.1+2x)=1-a>,故当2-a>,∴4>0+2a)由题意,得1(.23x随y 为任意实数时,b,2 的增大而增大;时,图象过二、三、四象限;b<3,2-a<故当)由题意,得2(轴上方;x轴的交点在y时,图象与b>3,2-a≠,所以,当)由题意得3(2-a≠)当4(时,图象过原点.b>3,2k1,∴1=-y,2=x)得1,-2)图象经过(1(.24 .=k1,∴1=-4-y2,轴交点为x与=y1)2(交=y2与=y1,又)0,0轴交点为(x与=2点为(.,∴三角形面积为)1,->x当;1.2x=y时,0≤x≤4)当1(.25 ;1.6-1.6x=y时,4吨,超过部分4元;超过1.2,每吨水吨)4吨(含4)收费标准:每月用水2(每吨水吨水.9)3(元.1.6 ;5)1(.265h,行驶42L)出发前油箱内余油量2(,因此每30L,共用去12L后余油量为;)0≤t≤5(6t-42=Q,∴6L小时耗油量为36)3(;24L,因此中途加油24=12-,240>230,∵240km=640×,所以加油后行驶6h)由图可知,加油后可行驶4(∴油箱中的油够用.四、实践应用题选择乙•甲元,y人,选择甲旅行社的费用为x.设该单位参加旅游的人数为27乙=y,150x=0.75x200×甲=y乙元,则y旅行社的费用为)=1-x (0.8200×,160-160x ,16=x,解得160-160x=150x乙时,即y甲=y当当,x<16,解得160-150x>160x 乙时,即>y甲y ,x>16,解得160-150x<160x乙时,即<y甲y当人时,选•25~17人时,甲、乙旅行社费用相同,当人数为16所以,当人数为时,选乙旅行社费用较少.15~10甲旅行社费用较少,当人数为则生产女装件,x设生产男装)1(.28,17.5≤x≤20 解得根据题意,件,)x-50(=y ∴总利润,18≤x≤20∴为正整数,x ∵1500 +10x=y即:,)x-50(30×+40x 为正整数)x,且18≤x≤20(2(=x的增大而增大.∴当x随y,∴0>10=k中,∵1500+10x=y)在函数取得最大值y时,20件时,获得利20,即当该厂生产男装1700=1500+2010× 元.1700润最大,最大利润为二元一次方程组第七章谁的包裹多1 1-.51 .4 )3(;)3()2(;)3()1(.32 =n ,1=-m.2 ,,4=3y-5x.唯不案答(3=y-x.7 ;.67 .8 一),7,5.153 .-143 .13C .12A .11C .10B .9 .1.-200 = c ,2=- b ,3=a.19A .18D .17B .163 )1解二元一次方程组(2 ;-4.425 或52.3 .2 .1,3=x)2(;)1(.C 7.6B .58 2=y=b,1-=a.87 =b,5=a)4(;4=b,4=a)3(;0=a.当14 )3(;)2(;)1(.13B .12A .11A .10C .93 .0,空格内的数是.16 . 15 时,3=-a当; 时,2=-a当; 时,)2解二元一次方程组(2 .4C .34 =b ,3=a.21 .1;)4(;)3(;)2(;)1(.6D .5D :4.105 .94 .811 -.7 )5( 3 .111 ;)5(;)4(;)3(;)2(;)1(.15A .14C .13C .12;,,ycm宽为,xcm设长方形的长为)4()3(;)2(;)1(.16 )6( 15 .17 )原方程组为5(鸡兔同笼3 C .4A .3A .2C .111.7 元10元,徽章125.福娃6 岁25.5只,树下x.设树上8 米布50名队员,个,横式纸x.设竖式纸盒 9. 只yy辆,x.设高峰时期三环路、四环路的车流量为每小时10 个,则y 盒.有误11 辆.名同x)设平均每分钟一道正门和一道侧门分别通过1(.12 5,1440=4580×4×)该中学最多有学生2(;名同学y学、道门4分钟内通过这<1440,∵1600)=20%-1(×)802×+1202×(5×安全撤离时可通过学生为:1600,xcm别是.设一个小长方形的长和宽分13 ,∴符合安全规定.值y,x因为. 张白卡纸做盒底盖.y张白卡纸做盒身,x.设应该用14 ycm. 为分数,如果使做成的盒身和盒底盖正好配套.所以不能把白卡纸分成两部分,个盒底盖仍32剩下的白卡纸做个盒身,16张白卡纸做8则只能用不允许剪开,张8.5有剩余,故无法全部利用.如果允许剪开,可将一张白卡纸一分为二,用17个,正好配成34个,盒底盖17张做盒底盖,这样可以做盒身11.5做盒身,套,较充分地利用了材料.增收节支4 万元,200.5B .4 .3 元3000 元,5000.2120 .1.设6 万元150 元.500=20×)2.52×+54×(,所以运费为:吨,y吨.乙车运x甲车运.设去年7+1(100,解得万元.y超市销售额为B万元,x超市销售额为A55)=10%+1(50万元,115 )=15%.设这两种10D .9 亿43.8 万元个小熊,压岁钱共有x.解设小明原计划买11 y% ,x%储蓄的年利率分别是,解这个方程组得元.由题意可得y 平方米.y 平方米,x)设原计划拆、建面积分别是1(.12 )实际比原计划拆除与新建校舍节约资金是:2(200297600÷用此资金可绿化面积是,-)7002400×+804800×(平方米.1488=元,y元,x)设这两种商品的进价分别为1(.13 ;元,商场赚了49)=57+293-(399)2(元;49 折;7.13折,乙不能高于7.15)甲折扣不能高于3()在不低于最低折扣线的前提下,对顾。

数学八下资源与评价答案

数学八下资源与评价答案

第一章 一元一次不等式和一元一次不等式组1.1 不等关系1.B ; 2.A ; 3.D ; 4.C ; 5.C ;6.D ;7.(1)>,(2)>;8.3y +4x <0;9.x<ll .7,x ≥11.7;10.a <1<1a ;11.8;12.12a 2+12b 2>ab (a ≠b) . 13.(1)2a<a+3,(2)1502y -≥,(3)3x +l < 2x -5.14.(1)设这个数为x ,则x 2≥0;(2)设某天的气温为x ℃, 则≤25. 15.2a<a +b <3b . 16.a >b .17.设参加春游的同学x 人,则8x<250,9x >250(或8x< 250<9x ). 18.50+(20-3)x >270.19.设该同学至少应答对x 道题,依题意有6x -(16-x)×2≥60.20.(1)>(2)=(3)>(4)>(5)>; 22a b +≥2ab (当a =b 时取等号). 聚沙成塔:甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球的人数少于50人,有些同学就没有球玩.乙同学说的意思是:如果每6人一组玩一个篮球,那么就会有一个组玩篮球的人数不足6人.丙同学说的意思是:如果每6人一组玩一个篮球,除了一个球以外,剩下的每6人玩一个球,还有几个(不足6人)玩另外一个篮球.1.2 不等式的基本性质1.C ; 2.D ; 3.B ; 4.A ; 5.C ; 6.A ; 7.C ; 8.D ; 9.(1)<(2)>(3)>(4)>(5)>(6)<;10.(1)<(2)>(3)>(4)<;11.a <0; 12.(4); 13.0,1,2,3,4,5; 14.<a b ; 15.<2 <0; 16.>32. 17.(1)x >5;(2)172x >-;(3)得x <-3.(4)x <-8. 18.解:根据不等式基本性质3,两边都乘以-12,得3a >4a .根据不等式基本性质1,两边都减去3a ,得0>a ,即a<0 ,即a 为负数. 19.(1)a >0;(2)a >l 或a <0;(3)a<0. 聚沙成塔解:∵B 1=45×111111111=45×(10+11111)=12.5+111125.1<13A 1=⨯341111111=⨯34(10+1111)=13.33+11133.1>13∴A 1>B1>0 ∴A <B点拨:利用倒数比较大小是一种重要方法.1.3 不等式的解集1.A ;2.B ;3.C ;4.D ;5.B ;6.A ;7.B ;8.C ;9.答案不唯一,如x -1≤0,2x ≤2等. 10.=52,≤52.11.x =2. 12.x =1,2,3 13.-6. 14.(1)x >3;(2)x <6;(3)x >5;(4)x >10. 15.x =1,2 16.n >75% 40%≤n ≤49% n <20% 温饱.17.图略.18.答案不惟一:(1)x <4; (2) -3<x ≤1.19.不少于1.5克. 20.x 可取一切实数.21.非负整数为0,1,2,3. 22. x >512. 23. k 大于36时b 为负数. 24. a=-3 聚沙成塔解:设白球有x 个,红球有y 个,由题意,得⎩⎨⎧=+60322y x xy x由第一个不等式得:3x <3y <6x ,由第二个不等式得,3y=60-2x ,则有3x <60-2x <6x ∴7.5<x <12,∴x 可取8,9,10,11.又∵2x=60-3y=3(20-y ) ∴2x 应是3的倍数 ∴x 只能取9,y =39260⨯-= 14 答:白球有9个,红球有14个.1.4一元一次不等式(1)1.B ;2.C ;3.D ;4.B ;5.B ;6.D ;7.A ;8.A ;9.x =0,-1,-2,-3,-4 ;10.x <-3;11.R >3;12.-6;13.2;14.2≤a <3; 15.x ≥119. 16.第④步错误,应该改成无论x 取何值,该不等式总是成立的,所以x 取一切数. 17.(1)得x ≥1;(2)x >5;(3)x ≤1;(4)x < 3;18.(1)解不等式231023x x ++-≥,得74x ≥- 所以当74x ≥-时,23123x x ++-的值是非负数. (2)解不等式231123x x ++-≤,得14x ≤-所以当14x ≤-时,代数式23123x x ++-的值不大于1 19.p >-6. 20.-11.聚沙成塔解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得m m m x ->92, 当0>m 时,29mx ->.根据题意,得 2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x ,因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x . 1.4一元一次不等式(2)1.B ; 2.B ; 3.C ; 4.C ; 5.D ; 6.12; 7.13; 8.152. 9.以后6天内平均每天至少要挖土80立方米. 10.以后每个月至少要生产100台. 11.不少于16千米.12.每天至少安排3个小组.13.招聘A 工种工人为50人时,可使每月所付的工资最少,此时每月工资为130000元. 14.甲厂每天处理垃圾至少需要6小时. 15.(1)y=9.2-0.9x ;;(2)饼干和牛奶的标价分别为2元、8元. 聚沙成塔 解:(1)由题意,可将一、二、三等奖的奖品定为相册、笔记本、钢笔即可.此时所需费用为5×6+10×5+25×4=180(元); (2)设三等奖的奖品单价为x 元,则二等奖奖品单价应为4x 元,一等奖奖品单价为20x 元,由题意应由5×20x +10×4x +25×x ≤1000,解得x ≤6.06(元).故x 可取6元、5元、4元.故4x 依次应为24元,20元,16元,20x 依次应为120元、100元、80元.再看表格中所提供各类奖品单价可知,120元、24元、6元以及80元、16元、4元这两种情况适合题意,故有两种购买方案,方案一:奖品单价依次为120元、24元、6元,所需费用为990元;方案二:奖品单价依次为80元、16元、4元,所需费用为660元.从而可知花费最多的一种方案需990元.1.5一元一次不等式与一次函数(1)1.A ;2.D ;3.C ;4.C ;5.B ;6.A ;7.D ;8.B ;9.m <4且m ≠1;10.20;11.x>-45,x <-45;12.x <-5;13.x >-2;14.x <3;15.(-3,0);16.(2,3). 17.(1) 12x <-;(2)x ≤0.18. (1)P (1,0);(2)当x <1时y 1>y 2,当x >1时y 1<y 2. 聚沙成塔在直角坐标系画出直线x =3,x +y =0,x -y +5=0, 因原点(0,0)不在直线x -y +5=0上,故将原点(0,0)代入x -y +5可知,原点所在平面区域表示x -y+5≥0部分, 因原点在直线x+y=0上,故取点(0,1)代入x+y 判定可知点(0,1)所在平面区域表示x+y≥0的部分,见图阴影部分.1.5 一元一次不等式与一次函数(2)1.B ;2.B ;3.A ;4.13;5.(1)y 1=600+500x y 2=2000+200x ; (2)x >432,到第5个月甲的存款额超过乙的存款额.6.设商场投入资金x 元,如果本月初出售,到下月初可获利y 1元, 则y 1=10%x +(1+10%)x·10%=0.1x +0.11x =0.21x ;如果下月初出售,可获利y 2元,则y 2=25%x -8000=0.25x -8000 当y 1=y 2即0.21x =0.25x -8000时,x =200000 当y 1>y 2即0.21x >0.25x -8000时,x <200000 当y 1<y 2即0.21x <0.25x -8000时,x >200000∴ 若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多,若投入资金多于20万元,下月初出售获利较多. 7.(1)分两种情况:y=x(0≤x ≤8),y=2x -8(x >8); (2)14. 8.(1)乙在甲前面12米;(2)s 甲=8t ,s 乙=12+213t ; (3)由图像可看出,在时间t >8秒时,甲走在乙前面,在0到8秒之间,甲走在乙的后面,在8秒时他们相遇.9.解:如果购买电脑不超过11台,很明显乙公司有优惠,而甲公司没优惠,因此选择乙公司.如果购买电脑多于10台.则:设学校需购置电脑x 台,则到甲公司购买需付[10×5800+5800(x -10)×70%]元,到乙公司购买需付5800×85% x 元.根据题意得: 1)若甲公司优惠:则 10×5800+5800(x -10)×70%<5800×85% x 解得: x >202)若乙公司优惠:则 10×5800+5800(x -10)×70%>5800×85% x 解得: x <203)若两公司一样优惠:则 10×5800+5800(x -10)×70%=5800×85% x 解得: x =20答:购置电脑少于20台时选乙公司较优惠,购置电脑正好20台时两公司随便选哪家,购置电脑多于20台时选甲公司较优惠. 10.(1)他继续在A 窗口排队所花的时间为42844a a -⨯-=(分) (2)由题意,得42625246a a -⨯-⨯+⨯>,解得 a >20. 11. 解:(1)设轿车要购买x 辆,那么面包车要购买(10-x )辆,由题意得: 7x +4(10-x )≤55 解得:x ≤5又∵x ≥3,则 x =3,4,5 ∴购机方案有三种:方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆;(2)方案一的日租金为:3×200+7×110=1370(元) 方案二的日租金为:4×200+6×110=1460(元) 方案三的日租金为:5×200+5×110=1550(元)为保证日租金不低于1500元,应选择方案三. 12.(1)y 1=50+0.4x ,y 2=0.6x ;(2)当y 1=y 2,即50+0.4x =0.6x 时,x =250(分钟),即当通话时间为250分钟时,两种通讯方式的费用相同;(3)由y 1<y 2即50+0.4x <0.6x ,知x >250,即通话时间超过250分钟时用“全球通”的通讯方式便宜. 13.解:(1)该商场分别购进A 、B 两种商品200件、120件. (2)B 种商品最低售价为每件1080元. 聚沙成塔 解:(1)500n ;(2)每亩年利润=(1400×4+160×20)-(500+75×4+525×4+15×20+85×20) =3900(元) (3)n 亩水田总收益=3900n 需要贷款数=(500+75×4+525×4+15×20+85×20)n -25000=4900n -25000 贷款利息=8%×(4900n -25000)=392n -2000 根据题意得:35000)2000392(3900≥--n n解得:n ≥9.41 ∴ n =10需要贷款数:4900n -25000=24000(元)答:李大爷应该租10亩水面,并向银行贷款24000元,可使年利润超过35000元.1.6 一元一次不等式组(1)1.C ;2.D ;3.C ;4.C ;5.A ;6.D ;7.D ;8.-1<y <2;9.-1≤x <3;10.-14≤x ≤4;11.M ≥2;12.2≤x <5;13.a ≤2;14.-6;15.A ≤1; 16.(1)31023x <<;(2)无解;(3)-2≤x <13;(4)x >-3.17.解集为345x <≤-,整数解为2,1,0,-1.18.不等式组的解集是27310x ≤<-,所以整数x 为0.19.不等式组的解集为6913x ≤, 所以不等式组的非负整数解为:0,l ,2,3,4,5.聚沙成塔 -4<m <0.5.1.6.一元一次不等式组(2)1.解:设甲地到乙地的路程大约是xkm ,据题意,得 16<10+1.2(x -5)≤17.2, 解之,得10<x ≤11,即从甲地到乙地路程大于10km ,小于或等于11km .2.解:设甲种玩具为x 件,则甲种玩具为(50-x )件.根据题意得:⎩⎨⎧≤-+≤-+6440)50(1201404600)50(10080x x x x解得:20≤x ≤22答:甲种玩具不少于20个,不超过22个. 3.(1)y =3.2-0.2x(2)共有三种方案,A 、B 两种车厢的节数分别为24节、16节或25节、15节或26节、14节. 4.(1)共有三种购买方案,A 、B 两种型号的设备分别为0台、10台或1台、9台或2台、8台;(2)A 、B 两种型号的设备分别1台、9台;(3)10年节约资金42.8万元. 5.解:设明年可生产产品x 件,根据题意得:⎪⎩⎪⎨⎧+≤≤≤⨯≤600006000412000100002400800120x x x 解得:10000≤x ≤12000答:明年产品至多能生产12000件.6.解:设宾馆底层有客房x 间,则二楼有客房(x+5)间.根据题意得:⎪⎪⎩⎪⎪⎨⎧>+<+><48)5(448)5(3485484x x x x 解得:9.6<x <11,所以 x = 10 答:该宾馆底层有客房10间. 7.解:(1)32(20)y x x =+-40x =+ (2)由题意可得203(20)264486(20)708x x x x +-⎧⎨+-⎩≥ ①≤ ②解①得x ≥12 解②得x ≤14∴不等式的解为12≤x ≤14 ∵x 是正整数∴x 的取值为12,13,14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个.(3)∵y =x +40中,y 随x 的增加而增加,要使费用最少,则x =12 ∴最少费用为y =x +40=52(万元) 村民每户集资700元与政府补助共计:700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案. 8.解:(1)设一盒“福娃”x 元,一枚徽章y 元,根据题意得23153195x y x y +=⎧⎨+=⎩ 解得15015x y =⎧⎨=⎩答:一盒“福娃”150元,一枚徽章15元. (2)设二等奖m 名,则三等奖(10—m )名,216515015(10)1000216515015(10)1100m m m m ⨯++-⎧⎨⨯++-⎩≥≤ 解得1041242727m ≤≤. ∵m 是整数,∴m =4,∴10-m =6. 答:二等奖4名,三等奖6名.单元综合评价1. 3a -2b ≤5; 2.0,1,2,3; 3. <; 4. x >21; 5. m <2; 6.28人或29人; 7.4x ; 8. 51-+≤a a x ; 9.x >2; 10. 1. 11. D ; 12. B ;13. B ;14. C ;15. D ;16. C ;17. B ;18. A . 19.解:图略 (1)x >-4 (2)-6≤x ≤-2. 20.(1)x ≤4;(2)x <3;(3)1<x ≤2; (4)2<x ≤4. 21. 解:9a 2 + 5a + 3-(9a 2-a -1)=6a +4当6a +4>0即a >-32时,9a 2 + 5a + 3>9a 2-a -1 当6a +4=0即a =-32时,9a 2 + 5a + 3=9a 2-a -1当6a +4<0即a <-32时,9a 2 + 5a + 3<9a 2-a -1.22.解:根据三角形三边关系定理,得 ⎩⎨⎧->-+<-38213821a a解得 25-<<-a .23.解:设导火线至少需xcm ,根据题意,得40215>⋅x4.80>x 81≈x答:导火线至少需要81厘米长.24.解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得m m m x ->92, 当0>m 时,29mx ->.根据题意,得2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x .25.解:(1)y 1=250x+200,y 2=222x+1600.(2)分三种情况:①若y 1>y 2,250x+200>222x+1600,解得x >50;②若y 1=y 2,解得x=50; ③若y 1<y 2,解得x <50.因此,当所运海产品不少于30吨且不足50吨时,应选择汽车货运公司承担运输业务;当所运海产品刚好50吨时,可选择任意一家货运公司;当所运海产品多于50吨时,应选择铁路货运公司承担业务.第二章 分解因式 2.1分解因式 1.整式,积;2.整式乘法;3.因式分解;4.C ;5.A ;6.D ;7.D ;8.B ;9.2,1-=-=n m ; 10.0; 11.C; 12.能;2.2提公因式法1.ab 2;2.3+x ;3.)43)(2(++a a ;4.(1)x+1;(2)b-c;5.22432y xy x +-;6.D;7.A; 8.(1)3xy(x-2); (2))5(522x y y x -; (3))1382(22+--m m m ; (4))72)(3(--a a ; (5))223)((y x m y x +--; (6))25()(62a b b a --;(7) )413(522y xy y x -+; (8)2(x+y)(3x-2y); (9)))((c b a a x ---; (10))(2n m q +;9.C;10.10;21;11.)1(2nna a a ++;12.)1(2+=+n n n n ;13.6-;14.6;2.3运用公式法(1)1.B;2.B;3.C;4.(1)))((x y x y -+;(2))3)(3(41y x y x -+; 5.(1)800;(2)3.98; 6.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b);(5)-3xy(y+3x)(y-3x); (6)4a 2(x+2y)(x-2y); (7)(a+4)(a-4); (8))3)(3)(9(22y x y x y x -++; (9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x m+1(x+1)(x-1); 8.A; 9.2008; 10.40162009; 2.3运用公式法(2)1.±8;2.1;3.2)121(-x ; 4.(1)5x+1;(2)b-1;(3)4;2;(4)±12mn;2m ±3n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12.(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9)22)3(n mn +; (10)-2ax n-1(1-3x)2; 13.x=2;y=-3; 14.(1)240000;(2)2500;15.7;16.31-;17.A;18.B;19.B;20.1;单元综合评价1.C; 2.B; 3.B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3x 2y+2xy-1); 17.(a-b)2(a+b); 18.2)21(--x a ; 19.(x+y)2(x-y)2; 20.45000; 21.14; 22.2)1(1)1(+=+++n n n n第三章 分式 3.1分式(1)1.②和④,①和③;2.43;3.23+-m m ,-2;4.31,-5;5.为任意实数,1;6.32-,3±;7.⑴t s ,⑵)(a m b a m --,⑶ba bnam ++,⑷p n m -;8.B ;9.C ;10.C ;11.⑴3±≠x ,⑵a x 4±≠;12.⑴x=2,⑵x=1;13.a=6;14.2<x ;15.-3,-1,0,2,3,5;四.109=+b a .1分式(2):1.⑴ab a +2,⑵x ,⑶4n ,⑷x-y ;2.1≠x 且0≠x ;3.①y x 32,②xx --112,③x x x -+-2122,④1312-++x x x ;4.①y x y x 560610+-,②15203012+-x y x ,③y x y x 20253940+-,④b a b a 1512810+-;5.B ;6.71-;7.①-6xyz ,②m m 2-,③42+-m ,④22+-a a ;8.5;9.53;10.-3,11;11.5642++x x ;四.1.M=N ;2.1.3.2分式的乘除法1.⑴bc a 2,⑵22xy ;2.2-≠x 且3-≠x 且4-≠x ;3.b a x 265;4.515;5.D ;6.D ;7.C ;8.⑴y x 2-,⑵55ba -,⑶2-x x ,⑷11-+-m m ;9.⑴-1,⑵34-,⑶41.四.1.3.3分式的加减法(1)1.⑴abc-7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1. 3.3分式的加减法(2)1.B;2.B;3.C;4.27;5.1;6.⑴11-x ,⑵2)2(4--x x x ,⑶y ,⑷3-x ;7.31或21;8.81;9.A=1,B=1;10.12;11.-3;四.解:由13ab a b =+,得3a b ab +=,即113a b +=……① 同理可得114b c +=……②,115a c +=……③,①+②+③得22212a b c ++=,∴1116a b c ++=,∴6bc ac ab abc ++=,∴abc ab bc ca ++=163.4分式方程(1)1.整式方程,检验;2.12-x ;3.D ;4.0;5.x=20;6.-1;7.5;8.x=2;9.3;10.C ;11.D ;12.3;13.4;14.-1;15.A ;16.⑴原方程无解,⑵x=2,⑶x=3,⑷3-=x ;四.221+-n n .3.4分式方程(2)1.B ;2.C ;3.3;4.22;5.D ;6.⑴x200,⑵5x ,(200-5x),⑶55200+-x x ,⑷1552005200++-+=x xx ;⑸20;7.3±;8.⑴x=4,⑵x=7;9.1>m 且9≠m ;10.解:设公共汽车的速度为x 千米/时,则小汽车速度为3x 千米/时,根据题意得xx x 38031380=+-解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x 元,则今年价格为1.25x 元,根据题意得,6181.2536=-xx ,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x 个,则需要横式3x 个,根据题意得,)3354x x ⨯+⨯(∶)325(x x ⨯+=29x ∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.单元综合评价1.D ;2.B ;3.D ;4.C ;5.B ;6.B ;7.C ;8.)1()1(2-+x x x ;9.21≠x 且43-≠x ;10.2;11.53;12.-3;13.av v a +25;14.x=2;15.1<m 且3-≠m ;16.1210222++-x x x;17.x -22;18.21;19.56-=x ;20.5-=x ;21.解:设改进前每天加工x 个,则改进后每天加工2.5个,根据题意得155.210001000+=xx ,解得x=40,经检验x=40是所列方程的解,所以2.5x=100.答:改进后每天加工100个零件.22.解:设甲原来的速度为x 千米/时,则乙原来的速度为(x-2)千米/时,根据题意得240844-40-=-+x x x ,解得x=12,经检验x=12是所列方程的解,所以x-2=10.答:甲原来的速度为12千米/时,乙原来的速度为10千米/时.第四章 相似图形 4. 1线段的比⑴1.2:5,57;2.58;3.269;4.5; 5.1:50000;6.45;7.1:2:2;8.D ;9.B ;10.C ;11.B ;12.D ;13.⑴√⑵×;14.BC=10cm .4.1线段的比⑵1.3;2.32;3.53;4.C ;5.B ;6.B ;7.D ;8.B ;9.PQ=24;10.⑴3;⑵54-;11.⑴38;⑵76-;(3)-5;12.a :b:c=4:8:7;13.分两种情况讨论:⑴a +b+c≠0时,值为2;⑵a +b+c=0时,值为-1.4.2黄金分割1.AP 2=BP·AB 或PB 2=AP·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN·MN 即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形. 4.3形状相同的图形1.相同⑶⑸;不同(1)(2)(4)(6).2.(a )与⑷,(b)与⑹,(c)与⑸是形状相同的;3.略;4.⑴AB=13,BC=26,AC=5,⑵A /B /=213,B /C /=226,A /C /=10,⑶成比例,⑷相同.4.4相似多边形1.×2.√3.×4.√5.√6.①④⑤;7.B ;8.B ;9.C ;10.C ;11.A ;12.27;13.66;14.一定;15.不一定;16.2;17.都不相似,不符合相似定义;18.各角的度数依次为650,650,1150;1150.B 'C '=A 'D '=415cm ;19.BC·CF=1;20.相似;21.2;22.b 2=2a 2.4.5相似三角形1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.4.6探索三角形相似的条件⑴1.2;2.6;3.2;4.4;△CDF ,1:2,180;5.4:3;6.2.4;7.572;8.B ;9.B ;10.C ;11.C ;12D ;13.BF=10cm ;14.⑴略.⑵BM=3.15.由已知可得:AE AF BE FG =, AEAF DE FC =,BE=DE ,所以,FG=FC . 16.由已知可得: AG AF CG BF =,AG AF GD EF =,所以GD EF CG BF =.17. 由已知得:BFDF CF GF =,BF DF EF CF =,可得EF CF CF GF =,即: CF 2=GF·EF . 18.由已知得: PB PD PA PQ =,PBPD PR PA =,可得: 22PB PD PR PQ =. 19.不变化,由已知得: BC CP AB PE =,BCBP CD PF =,得:1=+CD PF AB PE ,即PE+PF=3. 20.提示:过点C 作CG//AB 交DF 于G .21.23. 22.⑴由已知得:21===CD OE FC OF GC EG ,所以32=CE GC ,即31=BC GC .问题得证.⑵连结DG 交AC 于M ,过M 作MH ⊥BC 交BC 于H ,点H 即为所求.23.⑴证△AEC ≌△AEF 即可.⑵EG=4.24.⑴过点E 作EG//BC 交AE 于G .可得: nn m EC BE +=.⑵由⑴与已知得:2=+n n m 解得:m=n ,即AF=BF .所以:CF ⊥AB .⑶不能,由⑴及已知可得:若E 为中点,则m=0与已知矛盾.4.6探索三角形相似的条件⑵1.三;2.22,26;3.6;4;15-55;5.310;6.2.4;7.A ;8.C ;9.B ;10.A ;11.B ;12.A ;13.⑴略.⑵相似,由⑴得∠AFE=∠BAC=600,∠AEF 公共.⑶由△BDF ∽△ABD 得: ADBD BD DF =,即BD 2=AD·DF . 14.⑴∠BAC=∠D 或∠CAD=∠ACB .⑵由△ABC ∽△ACD 得BC AC AC AD =,解得:AD= 4,所以中位线的长= 6.5.15.证: △ADF ∽△BDE 即可.16.AC = 43.17.提示:连结AC 交BD 于O .18.连结PM ,PN .证: △BPM ∽△CPN 即可.19.证△BOD ∽△EOC 即可.20.⑴连结AF .证; △ACF ∽△BAF 可得AF 2=FB·FC ,即FD 2=FB·FC .⑵由⑴相似可得: CF AF AC AB =,AF BF AC AB =,即CF BF ACAB =22.21.⑴略.⑵作AF//CD 交BC 与F .可求得AB=4.⑶存在.设BP=x ,由⑴可得xx -⨯=74834,解得x 1=1, x 2= 6.所以BP 的长为1cm 或6cm .22.⑴由∠AFC=∠BCE=∠BCF+450,∠A=∠B=450可证得相似.⑵由⑴得AF·BE=AC·BC =2S .23. ⑴略. ⑵△ABP ∽△DPQ ,DQ PD AP AB =,x y x -+=522,得y =-21x 2+25x -2.(1<x <4).24. ⑴略. ⑵不相似.增加的条件为: ∠C=300或∠ABC=600.4.6探索三角形相似的条件⑶1.√;2.√;3.相似;4.90;5.相似;6.相似;7.D ;8.C ;9.C ;10.略;11.略;12.易得BCEF OC OF AC DF OA OD AB DE ====. 13.证: 22===AG AF CG AC AC CF 得△ACF ∽△ACG ,所以∠1=∠CAF ,即∠1+∠2+∠3=900. 14.A .15. ⑴略. ⑵AQ 平分∠DAP 或△ADQ ∽△AQP 等.4.6探索三角形相似的条件⑷1.相似;2.4.1;3.310;4.4;5.ABD ,CBA ,直角;6.D ;7.A ;8.C ;9.B ;10.C ;11.DE//BC ;12.证△AEF ∽△ACD ,得∠AFE=∠D ;13.易得△ABD ∽△CBE , ∠ACB=∠DEB .14.证△ABD ∽△ACE 得∠ADB=∠AEC 即可.15.略.16. ⑴CD 2=AC·BD .⑵∠APB=1200. 17.分两种情况讨论: ⑴CM=55,⑵CM=552. 18. ⑴证明△ACD ∽△ABE , ⑵AD AC DE BC =或AE AB DE BC =.由⑴得: AD AE AC AB =,△ABC ∽△AED 问题即可得证.19.650或1150.20.易得2==CEDF CF AD ,△CEF ∽△DAF ,得2=EF AF 与∠AFE=900.即可得到. 21. ⑴证明△CDE ∽△ADE ,⑵由⑴得BC AD CE DM 212=,即BC AD CE DM =,又∠ADM=∠C .⑶由⑵得∠DBF=∠DAM ,所以AM ⊥BE .22.易得:AC=6,AB=10.分两种情况讨论: 设时间为t 秒.⑴当ACCQ BC PC =时, 6828t t =-,解得t=512.⑵同理得8628t t =-,解得t=1132. 23. ⑴相似,提示可延长FE ,CD 交于点G . ⑵分两种情况:①∠BCF=∠AFE 时,产生矛盾,不成立.②当∠BCF=∠EFC 时,存在,此时k=23.由条件可得∠BCF=∠ECF=∠DCE=300,以下略.4.6探索三角形相似的条件⑸1.B ;2.C ;3.B ;4.C ;5.C ;6.C ;7.C ;8.A ;9.C ;10.B ;11.2等(答案不 唯一);12.DE//BC(答案不唯一);13. △ABF ∽△ACE , △BDE ∽△CDF 等;14.②③;15. ∠B=∠D(答案不 唯一);16.略;17.略(只要符合条件即可);18. ⑴七. ⑵△ABE ∽△DCA ∽△DAE ;19.利用相似可求得答案: x = 2cm .20. ⑴相似,证略.⑵BD=6.21.BF 是FG ,EF 的比例中项.证△BFG ∽△EFB 即可.22.证△ACF ∽△AEB .23. 2.24. ⑴AQ=AP ,6-t=2t 解得t=2.⑵S=12×6-21×12t -21×6(12-2t)=36.所以四边形的面积与点P ,Q 的位置无关.⑶分两种情况:①t=3.②t=56. 4.7测量旗杆的高度1.20;2.5;3.14;4.C ;5.C ;6.AB=25346米;7.MH=6m ;8. ⑴DE=310m ;⑵3.7m/s ;9.由相似可得: ⎪⎪⎩⎪⎪⎨⎧+==1284.37.18.17.1BC AB BC AB 解得AB=10.所以这棵松树的高为10m .10.略.4.8相似多边形的性质1.2:3;2.2:5,37.5;3.1:4,1:16;4.1:4;5.75;6.1:16;7.22;8.60;9.C ;10.C ;11.C ;12.D ;13.B ;14.B ;15.C ;16.B ;17.4.8cm ;18.25;19.16;20.⑴提示:延长AD ,BF 交于G .AE:EC=3:2.⑵4.21.⑴S 1:S=1:4.⑵141+-=x y (0<x <4).22.提示:延长BA ,CD 交于点F .面积=16217.23. ⑴可能,此时BD=72108180-.⑵不可能,当S FCE ∆的面积最大时,两面积之比=925<4. 24.⑴S AEF ∆=x x 512522+-.⑵存在.AE=266-. 25.略.26. ⑴640元.⑵选种茉莉花.⑶略.27. ⑴利用勾股定理问题即可解决.⑵答:无关.利用△MCG ∽△MDE 的周长比等于相似比可求得△MCG 的面积=4a .28. ⑴CP=22.⑵CP=724.⑶分两种情况①PQ=3760,②PQ=49120. 29.提示:作△ABC 的高AG . ⑴略.⑵DE=38. 30. ⑴x =310s .⑵2:9.⑶AP=940或20. 31.⑴DE=AD ,AE=BE=CE . ⑵有: △ADE ∽△ACE 或△BCD ∽△ABC . ⑶2:1.4.9图形的放大与缩小1.点O ,3:2;2.68,40;3. △A 'B 'C ',7:4, △OA 'B ',7:4;4.一定;5.不一定;6.略;7.(-1,2)或(1, -2),(-2,1)或(1, -2);8.2:1;9.D ;10.C ;11.B ;12.D ;13.C ;14.D ;15.略;16.略;17.略;18.略;19. ⑴略; ⑵面积为445. 单元综合评价⑴ 1.C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.B ;8.C ;9.95;10.80;11.5;12.8;13.7.5;14.5;15.8:27;16.a 22;17.1:3; 18.相似.证明略.19.10:2.20.25:64.21.边长为6.22.y x :=3:2.23.略.24. △ABF ∽△ACE ,AB AF AC AE =得△AEF ∽△ACB . 25.菱形的边长为320cm . 26.证明略. 27. ⑴边长为48mm .⑵分两种情况讨论:①PN=2PQ 时,长是7480mm ,宽是7240mm .②PQ=2PN 时,长是60mm .宽是30mm . 单元综合评价⑵1.64cm ;2.4:9;3.30;4.三;5.72;6. △AEC ;7.1:4;8.②③④;9.8:5;10.7;11.C ;12.B ;13.B ;14.C ;15.C ;16.D ;17.D ;18.C ;19.B ;20.A ;21.略;22.EC= 4.5cm ;23.21. 6cm 2;24.略;25.边长是48mm .26. ⑴AC AO BC OE =,DC DF BC OF =,DCDF AC AO =,所以:OE= OF . ⑵易得OE=712,EF=2OE=724. 27. ⑴PM=43厘米. ⑵相似比为2:3.⑶由已知可得:t=a a +66≤3,解得a ≤6,所以3<a ≤6. ⑷存在.由条件可得:⎪⎪⎩⎪⎪⎨⎧-=-+=t t a at a a t 3)(66 解得: a 1=23,a 2=-23(不合题意,舍去).28. ⑴600,450.⑵900-21α.⑶900-21α,900+21α.证明略. 第五章 数据的收集与处理5.1 每周干家务活的时间1、(1)普查 (2)抽样调查 (3)抽样调查 (4)抽样调查2、(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10 (2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.3、D4、B5、(1)适合抽样调查 (2)适合普查 (3)适合抽样调查 (4)适合普查6、(1)缺乏代表性 (2)缺乏代表性 (3)有代表性7、8001512000=÷条8、估计该城市一年(以365天计)中空气质量达到良以上的天数为219天. 四、聚沙成塔(略)5.2 数据的收集1、抽样调查2、A3、C4、7万名学生的数学成绩、每名考生的数学成绩、1500名考生的数学成绩5、D6、(1)丘陵,平原,盆地,高原,山地;山地的面积最大(2)59%(3)丘陵和平原(4)各种地形的面积占总面积的百分比,100%(5)略(6)不能(7)96万平方千米,249.6万平方千米.7、原因可能是:样本的容量太小,或选区的样本不具有代表性、广泛性、随机性.8、(1)否(2)抽样调查(3)200(4)不一定,抽查的样本不具有代表性和广泛性.9、(1)平均质量为2.42千克. (2)900只可以出售.四、聚沙成塔能装电话或订阅《文学文摘》杂志的人在经济上相对富裕,而占人口比例多数、收入不高的选民却选择了罗斯福,因此抽样调查既要关注样本的大小,又要关注样本的代表性.5.3 频数与频率1、C2、0.323、0.54、0.185、D6、(1)48人(2)12人,0.257、0.258、(1)0.26 24 3 0.06(2)略 9、(1)8,12,0.2,0.24 (2)略 (3)900名学生竞赛成绩, 每名学生竞赛成绩, 50名学生竞赛成绩,50 (4)80.5~90.5 (5)216人四、聚沙成塔(1)89分(2)甲的综合得分=92(1-a )+87a 乙的综合得分=89(1-a )+88a 当0.5 ≤a < 0.75, 甲的综合得分高;当0.75 <a ≤0.8, 乙的综合得分高.5.4 数据的波动1、B2、A3、24、C5、B6、B7、D8、9 s ²9、2 10、4牛顿 11、(1)90分、70分、甲组(2)172、256、甲组成绩比较整齐. 12、甲x =8,乙x =8,x 丙=7.6,2甲s =4.4,2乙s =2.8,2s 丙=5.44;(2)乙 13、(1)8,7,8,2,60% (2)略四、聚沙成塔(1)701.6 699.3 (2)65.84 284.21 (3)甲稳定 (4)甲,乙单元综合评价1、 某校八年级学生的视力情况,每名八年级学生的视力情况,85八年级学生的视力情况.2、 (2), (1)、(3)3、3.2 、964、不可信,样本不具有代表性5、50,20、0.46、3,5,12克 7、(1)50,(2)60%(3)15 8、3,2.25,1.5 9、A 10、B 11、D 12、B 13、C 14、B 15、B 16、B 17、C 18、B 19、(1)102、113,106 (2)3180(3)y=53x 20\(1)21人 (2)0.96 (3)答题合理即可 21、(1)7、7、7.5、3(2)①甲的成绩较为稳定②乙的成绩较好③乙要比甲成绩好④尽管甲的成绩较为稳定,单从折线图的走势看,从第四次射击后,乙每次成绩都比甲高,并成上升趋势,乙的潜力比较大.第六章 证明(一)6.1 你能肯定吗?1、 观察可能得出的结论是(1)中的实线是弯曲的;(2)a 更长一些;(3)AB 与CD 不平 行.而我们用科学的方法验证可发现:(1)中的实线是直的;(2)a 与b 一样长;(3)AB 与CD 平行. 2、一样长.计算略. 3、(1)不正确;(2)不正确;(3)不正确. 4.A 5.B 6.能 7、原式=n 4,,所以一定为4的倍数.8、(1)正确的结论有①②③;(2)略 9.将此长方体从右到左数记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,由Ⅱ,Ⅳ可知,白颜色的面与红、黄两种颜色的面必相邻,又由Ⅰ知,白颜色的面应是蓝色的对面,恰为Ⅰ中的下底面,由Ⅲ知红与紫必相邻,再与Ⅰ相比较知,黄色的对面必为紫色了,从而红色的对面必为绿色了,通过上面的推理可以知道Ⅰ的下底面为白颜色,有4朵花,Ⅱ的下底面为绿色,有6朵花,Ⅲ的下底面为黄色,有2朵花,Ⅳ的下底面的紫色有5朵花,故这个长方体的下底面有(4+6+2+5)朵花,即共17朵花.聚沙成塔.m 4.107371000201.030≈÷⨯,比五层楼和电视塔都高.6.2 定义与命题1.(1)题设:两个角是对顶角;结论:这两个角相等(2)题设: 22b a =;结论:b a =(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等(4)题设:同旁内角互补;结论:两直线平行(5)题设:经过两点作直线;结论:有且只有一条直线.2.C3.C4.C5.B6.D7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知,,C B AC AB ∠=∠=求证:AD AE =是真命题.(只要答案合理即可)18.先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河.6.3 为什么它们平行1.C2. C3.B4.C5.B6. D7.A8.B9.(1)AD ∥BC (2) AD ∥BC (3)AB ∥CD 10.平行11.平行 12.平行,同位角相等,两直线平行. 13——16答案略 17.因为∠A=∠1,∠2+∠ACE+∠1=180º,又AC ⊥CE ,故∠ACE=90º,∴∠1+∠2=90º,∴∠A+∠2=90º,∴∠ABC=90º,同理∠EDC=90º,∴AB ∥DE. 18.提示:∠B+∠A=90º,∠AEF=∠B ,∴∠AEF+∠A=90º19.提示:∠A=90º,∠B=60º,∠C=30º ,∠A :∠B :∠C=3:2:1 6.4 如果两条直线平行1.C 2.C 3.C 4.B 5.A 6. 110º 7. 123º 8. 180º 9.南偏东70º 10. 证明:(1)∵AD ∥BC ,∴∠1=∠B ,∠2=∠C.又∠B=∠C ,∴∠1=∠2,即AD 平分∠EAC ;(2)由∠B+∠C+∠BAC=180º,且∠1+∠2+∠BAC=180º知,∠1+∠2=∠B+∠C ,又AD 平分∠EAC ,∴∠1=∠2,而∠B=∠C ,故∠1=∠B ,或∠2=∠C ,从而AD ∥BC. 11. 148º12.提示:过点C 做CP ∥AB 13. 121º49ˊ 14. (1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD , 故∠B+∠F=∠BCF.(2)过C 作CD ∥AB ,∴∠B+∠BCD=180º,又AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180º,故∠B+∠F+∠BCF=360º.6.5 三角形内角和定理的证明1.B2.D3.C4.D5.B6. 90º7. 50º, 100º8. 40º9. 63º 10. 100º 11. 50º12.略13.略 14.连CE ,记∠AEC=∠1,∠ACE=∠2,∴∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+21∠DEA+21∠BCD=180º 由 ∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º. ∴21(∠D+∠B )+∠1+∠2+21∠BCA+21∠DEA=180º ∴∠1+∠2+21∠BCA+21∠DEA=180º-21(∠D+∠B ), 即∠F+180º-21(∠D+∠B )=180º,∴∠F=21(∠B+∠D ); ( 2)设∠B=2α,则∠D=4α,∴∠F= 21(∠B+∠D )=3α, 又∠B :∠D :∠F=2:4:x ,∴x=3.2.略. 15.略6.6 关注三角形的外角1.C 2.C 3.C 4.B 5C 6. 35° 7. 37.5° 8. 260° 9. 55°或70° 10. 120°或115°或125°11.AF ⊥DE 12. ∠D=70° ∠D=90°12A +∠ 13. 证法一:延长CD 交AB 于点E ; 证法二:过点B 做BF ⊥AD ,交AD 的延长线于点F.14.证法1:360BDC BDA CDA∠=-∠-∠ 又180BDA B BAD ∠=-∠-∠ 180CDA C CAD ∠=-∠-∠ 360(180)BDC B BAD ∴∠=--∠-∠- (180)C CAD BAD CAD B C -∠-∠=∠+∠+∠+∠ 即BDC BAC B C ∠=∠+∠+∠;证法2略. 15.略 16.延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A .证明略.提示:单元综合评价一、1.A 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.略12.80° 13.60° 14.115° 15.88° 16.45°>∠B>30°17.360 ° 18.118° 19.3 20.68°三、21.10022.证明: ∵∠ADE=∠B ,∴ED ∥BC . ∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD ∥FG .∵FG ⊥AB , ∴CD ⊥AB .23. ∵L 1∥L 2, ∴∠ECB+∠CBF=180°. ∴∠ECA+∠ACB+∠CBA+∠ABF=180°. ∵∠A=90°, ∴∠ACB+∠CBA=90°. 又∠ABF=25°, ∴∠ECA=180°-90°-25°=65°.24.解:分两种情况(1)当ABC ∆为锐角三角形时,70B ∠=(2) 当ABC ∆为钝角三角形时,20B ∠=25.略 33.FD EC ⊥ 90EFD FEC ∴∠=-∠ 而FEC B BAE ∴∠=∠+∠又AE 平分BAC ∠ 11(180)22BAE BAC B C ∴∠=∠=-∠-∠ =190()2B C -∠+∠ 则19090()2EFD B B C ⎡⎤∠=-∠+-∠+∠⎢⎥⎣⎦ =1()2C B ∠-∠ (2)成立。

2023八年级数学下册第4章平行四边形4.1多边形(1)教案(新版)浙教版

2023八年级数学下册第4章平行四边形4.1多边形(1)教案(新版)浙教版
在教学过程中,我将注重培养学生的空间想象能力,通过引导学生观察、分析多边形的性质,使其能够运用几何直观的方法理解和解决问题。同时,我将引导学生运用逻辑推理的方法,从已知条件出发,推导出多边形的性质和结论,从而提升其逻辑推理能力。
此外,我还将引导学生将多边形的知识应用于实际问题中,使其能够运用数学建模的方法,将实际问题抽象为多边形模型,并运用多边形的性质解决问题,从而提升其数学建模的能力。总之,通过本章节的教学,我希望学生能够提升其几何直观、逻辑推理和数学建模的核心素养。
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与多边形相关的主题进行深入讨论。
小组内讨论该主题的现状、挑战以及可能的解决方案。
每组选出一名代表,准备向全班展示讨论成果。
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对多边形的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括主题的现状、挑战及解决方案。
布置课后作业:让学生撰写一篇关于多边形的短文或报告,以巩固学习效果。
学生学习效果
1.知识与技能:
-学生能够准确地定义多边形,理解多边形的概念和基本性质。
-学生能够识别和分类不同类型的多边形,并掌握它们的特征。
-学生能够运用多边形的性质解决一些实际问题,如计算多边形的面积、周长等。
2.过程与方法:
-学生能够通过观察、分析和推理,探索多边形的性质和规律。
重点难点及解决办法
本章节的重点是理解并掌握多边形的概念、性质及其分类,以及能够运用多边形的知识解决实际问题。难点主要是学生对于多边形的性质的理解和运用,以及如何将多边形的知识应用于实际问题的解决中。
为了解决这些重点难点,我将采用以下方法:

最新北师大版八年级下册数学《资源与评价》答案优秀名师资料

最新北师大版八年级下册数学《资源与评价》答案优秀名师资料

北师大版八年级下册数学《资源与评价》答案第一章一元一次不等式和一元一次不等式组1(1 不等关系1(B; 2(A; 3(D; 4(C; 5(C ;6(D;7((1),,(2),;8(3y,4x,0;9(x<ll(7,x?11(7;1112210(a,1<;11(8;12(a,b,ab (a?b) ( a22113((1)2a<a+3,(2),(3)3x,l, 2x,5( y,,502214((1)设这个数为x,则x?0;(2)设某天的气温为x?,则?25(15(2a<a,b,3b(16(a,b(17(设参加春游的同学x人,则8x<250,9x,250(或8x< 250,9x)(18(50,(20,3)x,270(19(设该同学至少应答对x道题,依题意有6x,(16,x)×260( ,2220((1),(2),(3),(4),(5),; ?2ab(当a,b时取等号)( ab,聚沙成塔:甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球的人数少于50人,有些同学就没有球玩(乙同学说的意思是:如果每6人一组玩一个篮球,那么就会有一个组玩篮球的人数不足6人(丙同学说的意思是:如果每6人一组玩一个篮球,除了一个球以外,剩下的每6人玩一个球,还有几个(不足6人)玩另外一个篮球(1(2 不等式的基本性质1(C; 2(D; 3(B; 4(A; 5(C; 6(A; 7(C; 8(D;9((1),(2),(3),(4),(5),(6),;10((1),(2),(3),(4),;11(a,0; 12((4);3b13(0,1,2,3,4,5; 14(,; 15(,2 ,0; 16(,( a217x,,17((1)x,5;(2);(3)得x,,3((4)x,,8( 218(解:根据不等式基本性质3,两边都乘以,12,得3a,4a(根据不等式基本性质1,两边都减去3a,得0,a ,即a<0 ,即a为负数( 19((1)a,0;(2)a,l或a,0;(3)a<0(聚沙成塔511111511.251解:?=×=×(10,)=12(5,,13 41111411111111B441111111.33,, ==(10,)=13(33,,13 33111111111A11 ?,,0 ?A,B AB点拨:利用倒数比较大小是一种重要方法(1(3 不等式的解集1(A;2(B;3(C;4(D;5(B;6(A;7(B;8(C;9(答案不唯一,如x,1?0,2x?2等( 10(,55,? (11(x,2( 12(x,1,2,3 13(,6( 14((1)x,3;(2)x,6;(3)x,5;(4)x,22 10( 15(x,1,2 16(n,75% 40%?n?49% n,20, 温饱(surface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush. 10.5.4 thermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steel spot welding to secure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped around a three-tier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when concrete material from the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial back fill around get rid of 8cm aggregate particle size mixed ... (1) joint meter apart from theextension Rod hook and outside joint flange, all wrapped with a plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint account, backfilled with concrete. 10.5.8多displacement meter (1) according to the design of measuring depth, anchor, a displacement passed rod, pipe, isolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod extensometer baled paragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works color 17(图略(18(答案不惟一:(1)x,4; (2) ,3<x?1( 19(不少于1.5克(20(x可取一切实数(21(非负整数为0,1,2,3(1222( x,( 523( k大于36时b为负数(24( a=,3聚沙成塔x,y,2x,解:设白球有x个,红球有y个,由题意,得 ,2x,3y,60,由第一个不等式得:3x,3y,6x,由第二个不等式得,3y=60,2x,则有3x,60,2x,6x?7.5,x,12,?x可取8,9,10,11(又?2x=60,3y=3(20,y) ?2x应是3的倍数60,2,9?x只能取9,y = = 14 3答:白球有9个,红球有14个(1(4一元一次不等式(1)1(B;2(C;3(D;4(B;5(B;6(D;7(A;8(A;9(x,0,,1,,2,,3,,4 ;10(x,,3;1111(R,3;12(,6;13(2;14(2?a,3; 15(x?( 9步错误,应该改成无论x取何值,该不等式总是成立的,所以x取一切数( 16(第?17((1)得x?1;(2)x,5;(3)x?1;(4)x, 3;231xx,,718((1)解不等式,,0,得x,, 2347231xx,,,所以当x,,时,的值是非负数( 234231xx,,1,,1x,, (2)解不等式,得 2341231xx,,,x,,所以当时,代数式的值不大于1 23419(p,,6( 20(,11(聚沙成塔解:假设存在符合条件的整数m(m,5x,2,mx,由解得 x,1,232x9,m3xx9,1,,,由整理得, mmmmm9,mm,0x,当时,( 2m,59,m,根据题意,得解得 m=7 22x,2,mx,1x,1,把m=7代入两已知不等式,都解得解集为,因此存在整数m,使关于x的不等式与3x,1是同解不等式,且解集为(2rtensometer baled paragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works coloassed rod, pipe, isolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod exdisplacement meter (1) according to the design of measuring depth, anchor, a displacement p 多ount, backfilled with concrete. 10.5.8ll wrapped with a plastic clothand coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint accnge, aound get rid of 8cm aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flaconcrete material from the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial backfill artier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when -nd a threespot welding to secure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped arou thermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steelsurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush.10.5.41(4一元一次不等式(2)1(B; 2(B; 3(C; 4(C; 5(D; 6(12; 7(13; 8(152( 9(以后6天内平均每天至少要挖土80立方米(10(以后每个月至少要生产100台(11(不少于16千米(12(每天至少安排3个小组(13(招聘A工种工人为50人时,可使每月所付的工资最少,此时每月工资为130000元( 14(甲厂每天处理垃圾至少需要6小时(15((1)y=9.2,0.9x;;(2)饼干和牛奶的标价分别为2元、8元(聚沙成塔解:(1)由题意,可将一、二、三等奖的奖品定为相册、笔记本、钢笔即可(此时所需费用为5×6+10×5+25×4,180(元);(2)设三等奖的奖品单价为x元,则二等奖奖品单价应为4x元,一等奖奖品单价为20x元,由题意应由5×20x,10×4x,25×x?1000,解得x?6.06(元)(故x可取6元、5元、4元(故4x依次应为24元,20元,16元,20x依次应为120元、100元、80元(再看表格中所提供各类奖品单价可知,120元、24元、6元以及80元、16元、4元这两种情况适合题意,故有两种购买方案,方案一:奖品单价依次为120元、24元、6元,所需费用为990元;方案二:奖品单价依次为80元、16元、4元,所需费用为660元(从而可知花费最多的一种方案需990元( 1(5一元一次不等式与一次函数(1)41(A;2(D;3(C;4(C;5(B;6(A;7(D;8(B;9(m,4且m?1;10(20;11(x,,,x54,,;12(x,,5;13(x,,2;14(x,3;15((,3,0);16((2,3)( 5117((1) x,,;(2)x?0( 218( (1)P(1,0);(2)当x,1时y,y,当x,1时y,y( 1212聚沙成塔在直角坐标系画出直线x,3,x,y,0,x,y,5,0,因原点(0,0)不在直线x,y,5,0上,故将原点(0,0)代入x,y,5可知,原点所在平面区域表示x,y+5?0部分,因原点在直线x+y=0上,故取点(0,1)代入x+y判定可知点(0,1)所在平面区域表示x+y?0的部分,见图阴影部分(1(5 一元一次不等式与一次函数(2)1(B;2(B;3(A;4(13;5((1)y=600+500x y=2000+200x; 122(2)x,4,到第5个月甲的存款额超过乙的存款额( 36(设商场投入资金x元,3aragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works colorsolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod extensometer baled pdisplacement meter (1) according to the design of measuring depth, anchor, a displacement passed rod, pipe, i 多ith concrete. 10.5.8plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint account, backfilled with a m aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flange, all wrapped wfrom the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial back fill around get rid of 8cte material tier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when concre-ecure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped around a threethermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steel spot welding to ssurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush. 10.5.4 如果本月初出售,到下月初可获利y元, 1则y,10%x,(1,10%)x?10%,0.1x,0.11x,0.21x; 1如果下月初出售,可获利y元,则y,25%x,8000,0.25x,8000 22当y,y即0.21x,0.25x,8000时,x,200000 12当y,y即0.21x,0.25x,8000时,x,200000 12当y,y即0.21x,0.25x,8000时,x,200000 12? 若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多,若投入资金多于20万元,下月初出售获利较多(7((1)分两种情况:y=x(0?x?8),y=2x,8(x,8); (2)14(138((1)乙在甲前面12米;(2)s,8t,s,12,t; 甲乙2(3)由图像可看出,在时间t,8秒时,甲走在乙前面,在0到8秒之间,甲走在乙的后面,在8秒时他们相遇(9(解:如果购买电脑不超过11台,很明显乙公司有优惠,而甲公司没优惠,因此选择乙公司(如果购买电脑多于10台(则:设学校需购置电脑x台,则到甲公司购买需付[10×5800,5800(x,10)×70%]元,到乙公司购买需付5800×85% x元(根据题意得:1)若甲公司优惠:则10×5800,5800(x,10)×70%,5800×85% x解得: x,202)若乙公司优惠:则10×5800,5800(x,10)×70%,5800×85% x,20 解得: x3)若两公司一样优惠:则10×5800,5800(x,10)×70%,5800×85% x解得: x,20答:购置电脑少于20台时选乙公司较优惠,购置电脑正好20台时两公司随便选哪家,购置电脑多于20台时选甲公司较优惠(10((1)他继续在A窗口排队所花的时间为aa,,,428(分) ,44(2)由题意,得aa,,,,,,426252,解得 a,20( ,4611( 解:(1)设轿车要购买x辆,那么面包车要购买(10,x)辆,由题意得: 7x,4(10,x)?55解得:x?5又?x?3,则 x,3,4,5?购机方案有三种:方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆;(2)方案一的日租金为:3×200,7×110,1370(元)方案二的日租金为:4×200,6×110,1460(元)方案三的日租金为:5×200,5×110,1550(元)为保证日租金不低于1500元,应选择方案三(12((1)y,50,0.4x,y,0.6x; 12(2)当y,y,即50,0.4x,0.6x时,x,250(分钟),即当通话时间为250分钟时,两种通讯方式12的费用相同;(3)由y,y即50,0.4x,0.6x,知x,250,即通话时间超过250分钟时用“全球通”的通讯方式便宜( 124rtensometer baled paragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works coloassed rod, pipe, isolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod exdisplacement meter (1) according to the design of measuring depth, anchor, a displacement p 多ount, backfilled with concrete. 10.5.8ll wrapped with a plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint accnge, aound get rid of 8cm aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flaconcrete material from the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial backfill artier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when -nd a threespot welding to secure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped arou thermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steelsurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush. 10.5.413(解:(1)该商场分别购进A、B两种商品200件、120件((2)B种商品最低售价为每件1080元(聚沙成塔解:(1)500n;(2)每亩年利润,(1400×4,160×20),(500,75×4,525×4,15×20,85×20),3900(元)(3)n亩水田总收益,3900n需要贷款数,(500,75×4,525×4,15×20,85×20)n,25000,4900n,25000 ,×(4900n,25000),392n,2000 贷款利息,8根据题意得: 3900n,(392n,2000),35000解得:n?9.41? n ,10需要贷款数:4900n,25000,24000(元)答:李大爷应该租10亩水面,并向银行贷款24000元,可使年利润超过35000元(1(6 一元一次不等式组(1)1(C;2(D;3(C;4(C;5(A;6(D;7(D;8(,1,y,2;9(,1?x,3;110(,?x?4;11(M?2;12(2?x,5;13(a?2;14(,6;15(A?1; 43101,,x16((1);(2)无解;(3),2?x,;(4)x,,3( 3235,,x,3,整数解为2,1,0,,1( 17(解集为42718(不等式组的解集是,所以整数x为0( ,,,x31069x,19(不等式组的解集为,所以不等式组的非负整数解为:0,l,2,3,4,5( 13聚沙成塔 ,4,m,0.5(1(6(一元一次不等式组(2)1(解:设甲地到乙地的路程大约是xkm,据题意,得16<10+1.2(x,5)?17.2,解之,得10,x?11,即从甲地到乙地路程大于10km,小于或等于11km(2(解:设甲种玩具为x件,则甲种玩具为(50,x)件(根据题意得:80x,100(50,x),4600, ,140x,120(50,x),6440,解得:20?x?22答:甲种玩具不少于20个,不超过22个(3((1)y,3.2,0.2x(2)共有三种方案,A、B两种车厢的节数分别为24节、16节或25节、15节或26节、14节( 4((1)共有三种购买方案,A、B两种型号的设备分别为0台、10台或1台、9台或2台、8台;(2)A、B两种型号的设备分别1台、9台;(3)10年节约资金42.8万元( 5(解:设明年可生产产品x件,根据题意得:5aragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works colorsolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod extensometer baled pdisplacement meter (1) according to the design of measuring depth, anchor, a displacement passed rod, pipe, i 多ith concrete. 10.5.8plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint account, backfilled with a m aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flange, all wrapped wfrom the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial back fill around get rid of 8cte material tier thermometer key in case the instrument from touch damage and on black cloth fixed tothe horizontal bar. (3) when concre-ecure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped around a threethermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steel spot welding to ssurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush. 10.5.4 120x,800,2400,,10000,x,12000 解得:10000?x?12000 ,,4x,6000,60000,答:明年产品至多能生产12000件(6(解:设宾馆底层有客房x间,则二楼有客房(x+5)间(根据题意得:4x,48,,5x,48, 解得:9.6,x,11,所以 x = 10 ,3(x,5),48,,4(x,5),48,答:该宾馆底层有客房10间(,,x407(解:(1) yxx,,,32(20)(2)由题意可得203(20)264xx,,? ?, ,486(20)708xx,,? ?,解?得x?12解?得x?14?不等式的解为12?x?14?x是正整数13,14 ?x的取值为12,即有3种修建方案:?A型12个,B型8个;?A型13个,B型7个;?A型14个,B型6个((3)?y,x,40中,随的增加而增加,要使费用最少,则x,12 yx?最少费用为y,x,40,52(万元)村民每户集资700元与政府补助共计:700×264,340000,524800,520000?每户集资700元能满足所需要费用最少的修建方案( 8(解:(1)设一盒“福娃”元,一枚徽章y元,根据题意得 x2315xy,,x,150,, 解得 ,,y,15xy,,3195,,答:一盒“福娃”150元,一枚徽章15元((2)设二等奖m名,则三等奖(10—m)名,216515015(10)1000,,,,mm?, ,216515015(10)1100,,,,mm?,104124??m解得( 2727?m是整数,?m,4,?10,m,6(答:二等奖4名,三等奖6名(单元综合评价11( 3a,2b?5; 2(0,1,2,3; 3( ,; 4( x,; 5( m,2; 6(,,人或,,人; 26rtensometer baled paragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works coloassed rod, pipe, isolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod exdisplacement meter (1) according to the design of measuring depth, anchor, a displacement p 多ount, backfilled with concrete. 10.5.8ll wrapped with a plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint accnge, aound get rid of 8cm aggregate particlesize mixed ... (1) joint meter apart from the extension Rod hook and outside joint flaconcrete material from the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial backfill artier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when -nd a threespot welding to secure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped arou thermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steelsurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush. 10.5.4a,1x7( ; 8( ; 9(x,2; 10( 1( x,4a,511( D; 12( B;13( B;14( C;15( D;16( C;17( B;18( A(19(解:图略 (1)x,,4 (2),6?x?,2(20((1)x?4;(2)x,3;(3)1,x?2; (4)2,x?4(2221( 解:9a + 5a + 3,(9a,a ,1),6a,4222当6a,4,0即a,,时,9a + 5a + 3,9a,a ,1 3222当6a,4,0即a,,时,9a + 5a + 3,9a,a ,1 3222当6a,4,0即a,,时,9a + 5a + 3,9a,a ,1( 322(解:根据三角形三边关系定理,得1,2a,8,3, ,1,2a,8,3,,5,a,,2 解得 (23(解:设导火线至少需xcm,根据题意,得x 5,,402 1x,80.4x,81答:导火线至少需要81厘米长(24(解:假设存在符合条件的整数m(m,5x,2,mx,由解得 x,1,232x9,m3xx9,由整理得, 1,,,mmmmm9,mm,0x,当时,( 2m,59,m,根据题意,得解得 m=7 22x,1把m=7代入两已知不等式,都解得解集为x,2,mx,1x,1,因此存在整数m,使关于x的不等式与是同解不等式,且解集为( 325(解:(1)y=250x+200,y=222x+1600( 12(2)分三种情况:?若y,y,250x+200,222x+1600,解得x,50; 12?若y=y,解得x=50; 12?若y,y,解得x,50( 12因此,当所运海产品不少于30吨且不足50吨时,应选择汽车货运公司承担运输业务;当所运海产品刚好50吨时,可选择任意一家货运公司;当所运海产品多于50吨时,应选择铁路货运公司承担业务(第二章分解因式2.1分解因式m,,1,n,,21.整式,积;2.整式乘法;3.因式分解;4.C;5.A;6.D;7.D;8.B;9.;7aragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works colorsolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple pointRod extensometer baled pdisplacement meter (1) according to the design of measuring depth, anchor, a displacement passed rod, pipe, i 多ith concrete. 10.5.8plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint account, backfilled with a m aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flange, all wrapped wfrom the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial back fill around get rid of 8cte material tier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when concre-ecure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped around a threethermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steel spot welding to ssurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush. 10.5.410.0; 11.C; 12.能;2.2提公因式法222abx,31.;2.;3.;4.(1)x+1;(2)b-c;5.;6.D;7.A; (a,2)(3a,4)2x,3xy,4y2228.(1)3xy(x-2); (2); (3); (4); (a,3)(2a,7)5xy(y,5x),2m(2m,8m,13) 222(5); (6);(7) ; (x,y)(3m,2x,2y)6(a,b)(5b,2a)5xy(3xy,1,4y)(8)2(x+y)(3x-2y); (9); (10); (x,a)(a,b,c)2q(m,n)n2n2,69.C;10.10;21;11.;12.;13.;14.6; a(1,a,a)n,n,n(n,1)2.3运用公式法(1)11.B;2.B;3.C;4.(1);(2); 5.(1)800;(2)3.98; (3x,y)(3x,y)(y,x)(y,x)46.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b);222(5)-3xy(y+3x)(y-3x); (6)4a(x+2y)(x-2y); (7)(a+4)(a-4); (8); (9x,y)(3x,y)(3x,y)2009m+1(9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x(x+1)(x-1); 8.A; 9.2008; 10.; 40162.3运用公式法(2)12(x,1);4.(1)5x+1;(2)b-1;(3)4;2;(4)?12mn;2m?1.?8;2.1;3.222223n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12 .(1)-(2a-1);(2)-y(2x-3y);(3)(3x-3y+1);(4)3(1-x);m222222222n(,n)(5)-a(1-a); (6)(x+y)(x-y); (7)(a+b)(a-b);(8)(x+3)(x-3); (9); 31n-12,(10)-2ax(1-3x); 13.x=2;y=-3;14.(1)240000;(2)2500;15.7;16.;17.A;18.B;19.B;20.1; 3单元综合评价1(C; 2(B; 3(B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;1222,a(x,)11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3xy+2xy-1); 17.(a-b)(a+b); 18.; 222219.(x+y)(x-y); 20.45000; 21.14; 22. n(n,1),n,1,(n,1)第三章分式3(1分式(1)m,3mm231s,3(,),1.?和?,?和?;2.;3.,,2;4.,,5;5.为任意实数,1;6.,;7.?,?,4m,23t3a,baam,bnm,nx,,3x,,4ax,2?,?;8.B;9.C;10.C;11.?,?;12.?x=2,?x=1;13.a=6;14.;a,bpa,b,10915.,3,,1,0,2,3,5;四((,分式(2):2x,1x,2x,12x,12x2x,1x,0a,ab1(?,?x,?4n,?x-y;2(且;3(?,?,?,?;21,x2,xx,3x,13ytensometer baled paragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works coloassed rod, pipe, isolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod exdisplacement meter (1) according to the design of measuring depth, anchor, a displacement p 多ount, backfilled with concrete. 10.5.8ll wrapped with a plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint accnge, aound get rid of 8cm aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flaconcrete material from the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial backfill artier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when -nd a threespot welding to secure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped arou thermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steelsurface 5mm~10MM level markers. (3) protectivecover on the pothole point, protection cover and top surface is flush. 10.5.4 8rm,212x,30y10a,8b10x,6y140x,39y4(?,?,?,?;5(B;6(;7(?-6xyz,?,,20x,1512a,15bm760x,5y25x,20y2a,243?,?;8(5;9(;10(,3,11;11(;四(1(M=N;2(,( ,2m,4a,25x,6x,53(2分式的乘除法2axy5x1x,,2x,,3x,,41(?,?;2(且且;3(;4(;5(D;6(D;7(C;8(?522bc526ab5m,14ax12,,?,?,?;9(?,,,?,?(四(,( ,,,xy5x,2m,143b3(3分式的加减法(1)10c,8b,95,3x7,c2xxy2a,31(?,?1,?,?;2(D;3(15bc;4(;5(;6(;7(?ab12abcx,22x,2x,y 11x,3a,2232,8,,?,?,?;8(;9(;10(,2;11(B;12(?2,?;13(;,xx,3a5x,28a 四(1(3(3分式的加减法(2)x,471111x,3(,;3(,;4(;5(,;6(?,?,?y,?;7(或;8(;1(,;222x,1328x(x,2) ab111ab,,39(A=1,B=,;10(12;11(,,;四(解:由,,得,即,,3……? 同理可得abab,3ab1111222111bcacab,,,6,,,6,,4……?,,,5……?,?+?+?得,,,12,?,?,abcabcbcacabcabc1?= 6abbcca,,3(4分式方程(1)2x,11(整式方程,检验;2(;3(D;4(0;5(x=20;6(,1;7(5;8(x=2;9(3;10(C;11(D;n,1x,,312(3;13(4;14(,,;15(A;16(?原方程无解,?x=2,?x=3,?;四(( 2n,2 3(4分式方程(,)200,5x200200,5x200,5,,1;4(22;5(D;6(?1(B;2(C;3(3,?5x,(200-5x),?,?;xx,5xx,5m,1m,9,3?20;7(;8(?x=4,?x=7;9(且;10(解:设公共汽车的速度为x千米,时,则80,3x180,,小汽车速度为3x千米/时,根据题意得解得x=20,经检验x=20是所列方程的解,所以x33x3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11(解:设去年居民用水价格为3618,,6x元,则今年价格为1.25x元,根据题意得,,解得x=1.8,经检验x=1.8是所列方程的解,1.25xx所以1.25x=2.25(答:今年居民用水价格为2.25元(四(解:设需要竖式纸盒5x 个,则需要横式3x个,(4,5x,3,3x)(5x,2,3x)根据题意得,?=29x?11x=29?11(答:长方形和正方形纸板的张数比应9aragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works colorsolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod extensometer baled pdisplacement meter (1) according to the design of measuring depth, anchor, a displacement passed rod, pipe, i 多ith concrete. 10.5.8plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint account, backfilled with a m aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flange, all wrapped wfrom the equipment above 1.5M, vibrators shall not close within 1.0M; the systemof artificial back fill around get rid of 8cte material tier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when concre-ecure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped around a threethermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steel spot welding to ssurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush. 10.5.4 是29?11(单元综合评价3121(D;2(B;3(D;4(C;5(B;6(B;7(C;8(;9(且;10(2;x,,x,x(x,1)(x,1)242,x5a32m,1m,,311(;12(,3;13(;14(x=2;15(且;16(;17(;2252,xv,av2x,10x,1261x,,518(;19(;20(;21(解:设改进前每天加工x个,则改进后每天加工2.5个,根据x,,2510001000题意得,解得x=40,经检验x=40是所列方程的解,所以2.5x=100(答:改进后每天加,,15x2.5x工100个零件(22(解:设甲原来的速度为x千米/时,则乙原来的速度为(x-2)千米/时,根据题意得40-4440,,,解得x=12,经检验x=12是所列方程的解,所以x-2=10(答:甲原来的速度为12xx,8x,2千米/时,乙原来的速度为10千米/时(第四章相似图形4( 1线段的比?785961(2:5,;2(;3(;4(5; 5(1:50000;6(;7(1::2;8(D;9(B;10(C;11(B;2554212(D;13(???×;14(BC=10cm(4(1线段的比?46238,,1(3;2(;3(;4(C;5(B;6(B;7(D;8(B;9(PQ=24;10(?3;?;11(?;?;35357(3) ,5;12(:b:c=4:8:7;13(分两种情况讨论:?+b+c?0时,值为2;?+b+c=0时,值为,1( aaa4(2黄金分割2221(AP=BP?AB或PB=AP?AB;2(0.618;3(7.6,4.8;4(C;5(C;6(B;7(C;8证得AM=AN?MN55即可;9(?AM=,1;DM=3,;?略;?点M是线段AD的黄金分割点;10(通过计算可得AE5,1,,所以矩形ABFE是黄金矩形( AB24(3形状相同的图形13((1(相同??;不同(1)(2)(4)(6)(2a)与?,(b)与?,(c)与?是形状相同的;3(略;4(?AB=,//////261326BC=,AC=5,?AB=2,BC=2,AC=10,?成比例,?相同(4(4相似多边形71(×2(?3(×4(?5(?6(???;7(B;8(B;9(C;10(C;11(A;12(;13(66;14(一定;2 000215(不一定;16(;17(都不相似,不符合相似定义;18(各角的度数依次为65,65,115;150''''222a115(BC=AD=cm;19(BC?CF=1;20(相似;21(;22(b=2( 44(5相似三角形10rtensometer baled paragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works coloassed rod, pipe, isolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod exdisplacement meter (1)according to the design of measuring depth, anchor, a displacement p 多ount, backfilled with concrete. 10.5.8ll wrapped with a plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint accnge, aound get rid of 8cm aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flaconcrete material from the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial backfill artier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when -nd a threespot welding to secure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped arou thermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steelsurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush.10.5.421(全等;2(4:3;3(24cm;4(80,40;5(直角三角形,96cm;6(3.2;7(D;8(B;9(D;10(C;11(C;12(A;13(B;33//////2214(AB=18cm,BC=27cm,AC=36cm;15(?相似,1:2(?分别为和( aa416?面积之比等于边长之比的平方(4(6探索三角形相似的条件?721(2;2(6;3(2;4(4;?CDF,1:2,180;5(4:3;6(2.4;7(;8(B;9(B;10(C;11(C;512D;13(BF=10cm;14(?略(?BM=3( FCAFFGAF15(由已知可得:,,,BE=DE,所以,FG=FC( ,BEAEDEAEBFAFEFAFBFEFGFDFCFDF,,,,,16(由已知可得: ,,所以(17( 由已知得:,,CGAGGDAGCGGDCFBFEFBFGFCF2可得,即: CF=GF?EF( ,CFEF2PQPDPQPDPAPD18(由已知得: ,,,,可得: ( ,2PAPBPRPBPRPBPEPFPECPPFBP,,119(不变化,由已知得: ,,,,得:,即PE+PF=3( ABBCCDBCABCD20(提示:过点C作CG//AB交DF于G(321(( 2EGOFOE1GC2GC1,,,,,22(?由已知得:,所以,即(问题得证(?连结DG交AC于GCFCCD2CE3BC3M,过M作MH?BC交BC于H,点H即为所求(23(?证?AEC??AEF即可(?EG=4(BEm,nm,n,,224(?过点E作EG//BC交AE于G(可得: (?由?与已知得:解得:m=n,即ECnnAF=BF(所以:CF?AB(?不能,由?及已知可得:若E为中点,则m=0与已知矛盾(4(6探索三角形相似的条件?106521(三;2(2,2;3(6;4;15,5;5(;6(2.4;7(A;8(C;9(B;10(A;11(B;3DFBD0,(?略(?相似,由?得?AFE=?BAC=6012(A;13,?AEF公共(?由?BDF??ABD 得: ,BDAD2即BD=AD?DF(ADAC,14(??BAC=?D或?CAD=?ACB(?由?ABC??ACD得,解得:AD= 4,所以中位线的ACBC长= 6.5(15(证: ?ADF??BDE即可(316(AC = 4(17(提示:连结AC交BD于O(18(连结PM,PN(证: ?BPM??CPN即可(11aragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works colorsolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod extensometer baled pdisplacement meter (1) according to the design of measuring depth, anchor, a displacement passed rod, pipe, i 多ith concrete. 10.5.8plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint account, backfilled with a m aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flange, all wrapped wfrom the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial back fill around get rid of 8cte material tier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when concre-ecure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped around a threethermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steel spot welding to ssurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush. 10.5.4 19(证?BOD??EOC即可(2220(?连结AF(证; ?ACF??BAF可得AF=FB?FC,即FD=FB?FC(?由?相似可得: 2ABAFABBFABBF,,即( ,,,2ACCFACAFCFAC3,4x821(?略(?作AF//CD交BC与F(可求得AB=4(?存在(设BP=,由?可得,解得=1, xx,147,x= 6(所以BP的长为1cm或6cm( x20022(?由?AFC=?BCE=?BCF+45,?A=?B=45可证得相似(?由?得AF?BE=AC?BC =2S(ABPDxy,215223( ?略( ??ABP??DPQ,,,,得=,+,2((1,,4)( ,yxxx2225,xAPDQ0024( ?略( ?不相似(增加的条件为: ?C=30或?ABC=60(4(6探索三角形相似的条件?1(?;2(?;3(相似;4(90;5(相似;6(相似;7(D;8(C;9(C;10(略;11(略;12(易得DEODDFOFEF,,,,( ABOAACOCBCCFACAF2013(证: 得?ACF??ACG,所以?1=?CAF,即?1+?2+?3=90( ,,,ACCGAG2 14(A(15( ?略( ?AQ平分?DAP或?ADQ??AQP等(4(6探索三角形相似的条件?101(相似;2(4.1;3(;4(4;5(ABD,CBA,直角;6(D;7(A;8(C;9(B;10(C;11(DE//BC;312(证?AEF??ACD,得?AFE=?D;13(易得?ABD??CBE, ?ACB=?DEB(14(证?ABD??ACE得?ADB=?AEC即可(15(略(2016( ?CD=AC?BD(??APB=120(25517(分两种情况讨论: ?CM=,?CM=( 55BCACABAEBCAB,,,18( ?证明?ACD??ABE, ?或(由?得: ,?ABC??AED问DEADDEAEACAD题即可得证(0019(65或115(ADDFAF0,,2,220(易得,?CEF??DAF,得与?AFE=90(即可得到( CFCEEF12rtensometer baled paragraph by paragraph and Grouting pipes, pipe joints sealed with glue, and make a logo designer works coloassed rod, pipe, isolation bracket and sensor Assembly and shipped to the laying of venue. (2) assemble multiple point Rod exdisplacement meter (1) according to the design of measuring depth, anchor, a displacement p 多ount, backfilled with concrete. 10.5.8ll wrapped with a plastic cloth and coated asphalt. (2) in laying out the tamping of concrete 20cm Groove, into the joint accnge, aound get rid of 8cm aggregate particle size mixed ... (1) joint meter apart from the extension Rod hook and outside joint flaconcrete material from the equipment above 1.5M, vibrators shall not close within 1.0M; the system of artificial backfill artier thermometer key in case the instrument from touch damage and on black cloth fixed to the horizontal bar. (3) when -nd a threespot welding to secure the thermometer. (2) when the concrete surface to planted around 20cm, with a black cloth wrapped arou thermometer (1) location of embedded two reinforcing φ 12 and a horizontal φ 12 embedded reinforcing steelsurface 5mm~10MM level markers. (3) protective cover on the pothole point, protection cover and top surface is flush. 10.5.42DMADDMAD21( ?证明?CDE??ADE,?由?得,即,又?ADM=?C(?由?得,,1CECEBCBC2?DBF=?DAM,所以AM?BE(PCCQ22(易得:AC=6,AB=10(分两种情况讨论: 设时间为t秒(?当时, ,BCAC 8,2tt128,2tt32,解得t=(?同理得,解得t=( ,,5866811。

《数学资源与评价》答案

《数学资源与评价》答案

1.B 2.作CD AC ⊥交AB 于D ,则28CAD = ∠,在Rt ACD △中,tan CD AC CAD =∠40.53 2.12=⨯=(米).所以,小敏不会有碰头危险. 3.(1)B 17A =米,CD 20=米;(2)有影响,至少35米 4.AD=2.4米 5.小船距港口A 约25海里1 二次函数所描述的关系1.略 2.2或-3 3.S=116c 2 4.11,4,2,844±± 5.y=16-x 2 6.y=-x 2+4x 7.B 8.D 9.D 10.C 11.y=2x 2;y=18;x=±2 12.y=-2x 2+260x-6500 13.(1)S=4x-32x 2;(2)1.2≤x<1.6 14.s=t 2-6t+72(0<t ≤6)2 结识抛物线1.抛物线;下;y 轴;原点;高;大;相反;相同;相同 2.减小 3.a=2;k=-2 4.a=-15.m=-1 6.(-2,4) 7 8.12 9.y=x 2+6x 10.(1)S=32y ;(2)S 是y 的一次函数,S 是x 的二次函数 11.(1)m=2或-3;(2)m=2.最低点是原点(0,0).x>0时,y 随x 的增大而增大;(3)m=-3,最大值为0.当x>0时;y 随x 的增大而减小 12.A(3,9);B(-1,1);y=x 2 13.抛物线经过M 点,但不经过N 点. 14.(1)A(1,1);(2)存在.这样的点P有四个,即P 10), P 20), P 3(2,0), P 4(1,0)3 刹车距离与二次函数1.下;y 轴;(0,5);高;大;5 2.(0,-1) 1,02⎛⎫- ⎪⎝⎭和1,02⎛⎫ ⎪⎝⎭3.y=x 2+3 4.下;3 5.14- 6.k=9,122b = 7.22y x =- 8.C 9.A 10.C 11.C 12.C 13.(1)2212(2)2y x y x ==-;(3)2y x = 14.(1)3;(2)3 15.y=mx 2+n 向下平移2个单位,得到y=mx 2+n-2,故由已知可得m=3,n-2=-1,从而m=3,n=1 16.以AB 为x 轴,对称轴为y 轴建立直角坐标系,设抛物线的代数表达式为y=ax 2+ c .则B 点坐标为0),N 点坐标为3),故0=24a+c ,3=12a+c ,解得a=-14,c=6,即y= -14x 2+6.其顶点为(0,6),(6-3)÷0.25=12小时. 17.以MN 为x 轴、对称轴为y 轴,建立直角坐标系,则N 点坐标为(2,0), 顶点坐标为(0,4).设y=ax 2+c ,则c=4,0=4a+4,a=-1,故y=-x 2+4.设B 点坐标为(x ,0),c 点坐标为( -x ,0),则A 点坐标为(x ,-x 2+4),D 点坐标为(-x ,-x 2+4).故BC=AD=2x ,AB=CD=-x 2+4.周长为4x+2(-x 2+4).从而有-2x 2+8+4x=8,-x 2+2x=0,得x 1=0,x 2=2.当x=0时,BC=0;当x=2时,AB=-x 2+4=0.故铁皮的周长不可能等于8分米. 18.(1)6,10;(2)55;(3)略;(4)S=12n 2+12n . 聚沙成塔 由y=0,得-x 2+0.25=0,得x=0.5(舍负),故OD=0.5(米).在Rt △AOD 中,AO=OD· tan ∠ADO=0.5tanβ=0.5×tan73°30′≈1.69.又AB=1.46,故OB≈0.23米.在Rt △BOD 中,tan ∠BDO=0.230.5BO OD ==0.46,故∠BDO≈24°42′.即α=24°42′.令x=0,得y=0.25, 故OC= 0.25,从而BC=0.25+0.23=0.48米.2.1~2.3 二次函数所描述的关系、结识抛物线、刹车距离与二次函数测试一、1.πr 2、S 、r 2.(6-x )(8-x )、x 、y 3.①④ 4.4、-2 5.y =-2x 2(不唯一) 6.y =-3x 2 7.y 轴 (0,0) 8.(2,4),(-1,1)二、9.A 10.D 11.B 12.C 13.D 14.C 15.B 16.D三、17.解:(1)∵m 2-m =0,∴m =0或m =1.∵m -1≠0,∴当m =0时,这个函数是一次函数.(2)∵m 2-m ≠0,∴m 1=0,m 2=1.则当m 1≠0,m 2≠1时,这个函数是二次函数.18.解:图象略.(1)0;(2)0;(3)当a >0时,y =ax 2有最小值,当a <0时,y =ax 2有最大值. 四、19.解:y =(80-x )(60-x )=x 2-140x +4800(0≤x <60).20.如:某些树的树冠、叶片等;动物中鸡的腹部、背部等.五、21.解:两个图象关于x 轴对称;整个图象是个轴对称图形.(图略) y =-2x 2 (0,0)y ⎧⎪⎨⎪⎩开口方向向下对称轴轴顶点坐标 y =2x 2 (0,0)y ⎧⎪⎨⎪⎩开口方向向上对称轴轴顶点坐标 22.解:(1)设A 点坐标为(3,m );B 点坐标为(-1,n ).∵A 、B 两点在y =13x 2的图象上,∴m =13×9=3,n =13×1=13.∴A (3,3),B (-1,13).∵A 、B 两点又在y =ax +b 的图象上,∴33,1.3a b a b =+⎧⎪⎨=-+⎪⎩解得231a b ⎧=⎪⎨⎪=⎩,∴一次函数的表达式是y =23x +1. (2)如下图,设直线AB 与x 轴的交点为D ,则D 点坐标为(-32,0).∴|DC |=32.S △ABC =S △ADC -S △BDC =12×2×3-2×2×3=4-14=2. 4 二次函数y=ax 2+bx+c 的图像1.上,12,33⎛⎫ ⎪⎝⎭,13x = 2.-4 0 3.四 4.0 5.左 3 下 2 6.1 7.-1或3 8.< > > > < 9.12x =,19,24⎛⎫- ⎪⎝⎭10.①②④ 11.D 12.D 13.A 14.D 15.∵2215044(5)1015015,113522(5)44(5)b ac b a a -⨯-⨯--=-===⨯-⨯-.故经过15秒时,火箭到达它的最高点,最高点的高度是1135米 16.由已知得2444a a -=2.即a 2-a-2=0,得a 1=-1,a 2=2,又a≥0,故a=2. 17.以地面上任一条直线为x 轴,OA 为y 轴建立直角坐标系,设y=a(x-1)2+2.25, 则当x=0时,y=1.25,故a+2.25=1,a=-1.由y=0,得-(x-1)2+2.25=0,得(x-1)2=2.25,x 1=2.5,x 2=-0.5(舍去),故水池的半径至少要2.5米. 18.如:7月份售价最低,每千克售0.5元;1-7月份, 该蔬菜的销售价随着月份的增加而降低,7-12月份的销售价随月份的增加而上升;2月份的销售价为每千克3.5元;3月份与11月份的销售价相同等.5 用三种方式表示二次函数1.y=-x 2+144 2.y 3.(1) y=x 2+-2x ;(2)3或-1 ;(3) x<0或x>2 4.k>35. y=x 2+8x 6.y=x 2+3x ,小,33,24- 7.(2,4) 8.14- 9.C 10.D 11.C 12.C 13.(1)略;(2)y=x 2-1;(3)略 14.设底边长为x ,则底边上的高为10-x ,设面积为y ,则y=12x(10-x)=-12(x 2-10x)=-12(x 2-10x+25-25)=-12(x-5)2+12.5.故这个三角形的面积最大可达12.5 15.2116S l = 16.(1)对称轴是直线x=1,顶点坐标为(1,3),开口向下;(2)当x<1时,y 随x 的增大而增大;(3)y=-2(x-1)2+3 17.由已知得△BPD ∽△BCA .故22416BPD ABC S x x S ∆∆⎛⎫== ⎪⎝⎭,224(4)416PCE ABC S x x S ∆∆--⎛⎫== ⎪⎝⎭,过A 作AD ⊥BC ,则由∠B=60°,AB=4,得 AD=AB·sin60°4=,故142ABC S ∆=⨯⨯∴222(4)1616BPD PCE x x S S ∆∆-+=⨯⨯-+∴22y =-+=+⎝.18.(1) s=12t 2-2t ; (2)将s=30代入s=12t 2-2t ,得30=12t 2-2t ,解得t 1=10,t 2=-6(舍去).即第10个月末公司累积利润达30万元;(3)当t=7时,s=12×72-2×7=10.5,即第7个月末公司累积利润为10.5万元;当t=8时,s=12×82-2×8 =16, 即第8个月末公司累积利润为16万元.16-10.5=5.5万元.故第8个月公司所获利润为5.5万元.19.(1)略;(2)(1)2n n S -=;(3)n=56时,S=1540 20.略 6 何时获得最大利润1.A 2.D 3.A 4.A 5.C 6.B7. (1)设y=kx+b ,则∵当x=20时,y=360;x=25时,y=210.∴3602021025k b k b =+⎧⎨=+⎩, 解得30960k b =-⎧⎨=⎩∴y=-30x+960(16≤x≤32); (2)设每月所得总利润为w 元,则 w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+ 1920.∵-30<0,∴当x=24时,w 有最大值.即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元.8. 设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会减少6x 间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y 有最大值6750,这时每间客房的日租金为50+5×5=75元. 客房总收入最高为6750元.9.商场购这1000件西服的总成本为80×1000=8000元.设定价提高x%, 则销售量下降0.5x%,即当定价为100(1+x%)元时,销售量为1000(1-0.5x%)件.故y=100(1+x%)·1000(1-0.5x%)-8000 =-5x 2+500x+20000=-5(x-50)2+32500.当x=50时, y 有最大值32500.即定价为150元/件时获利最大,为32500元.10.(1)s=10×277101010x x ⎛⎫-++ ⎪⎝⎭×(4-3)-x=-x 2+6x+7.当x=62(1)-⨯-=3 时,S 最大=24(1)764(1)⨯-⨯-⨯-=16. ∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于再投资的资金有16-3=13万元.有下列两种投资方式符合要求:①取A 、B 、E 各一股,投入资金为5+2+6=13万元,收益为0.55+0.4+0.9=1.85万元>1.6万元. ②取B 、D 、E 各一股,投入资金为2+4+6=12万元<13万元,收益为0.4+0.5+0.9=1.8万元>1.6万元.11.(1)60吨;(2) 226033(7.545)(10)(320)(100)315240001044x y x x x x x -=⨯+-=--=-+-;(3)210元/吨;(4) 不对,设月销售额为w 元.22603(7.545)240104x w x x x -=⨯+=-+,x=160时,w 最大.12.(1)21425y x =-+;(2)货车到桥需280406(40-=小时) ,0.256 1.5(⨯=米)而O(0,4),4-3=1(米)<1.5米,所以,货车不能通过. 安全通过时间434(0.25-=小时),2804060(/4-=千米时),货车安全通过速度应超过60千米/时.7 最大面积是多少1.y=-x 2+600,020x ≤≤,600m 2 ,200m 2 2.20cm 2 3.圆 4.16cm 2 ,正方形 5. 5±6.10 7.21822333y x x =-+- 8. 9.-2 10. C 11. D 12.C 13.A 14.D 15.过A 作AM ⊥BC 于M ,交DG 于N ,则.设DE=xcm ,S矩形=ycm 2,则由△ADG ∽△ABC ,故AN DG AM BC =,即161624x DG -=,故DG=32(16-x).∴y=DG·DE=32(16-x)x=-32(x 2-16x)=-32(x-8)2+96,从而当x=8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.16.(1)y= 238x -+3x .自变量x 的取值范围是0<x<8. (2)x=3328-⎛⎫⨯- ⎪⎝⎭=4时,y 最大=234038348⎛⎫⨯-⨯- ⎪⎝⎭⎛⎫⨯- ⎪⎝⎭=6.即当x=4时,△ADE 的面积最大,为6. 17.设第t 秒时,△PBQ 的面积为ycm 2.则∵AP=tcm ,∴PB=(6-t)cm ;又BQ=2t .∴y=12PB·BQ=12(6-t)·2t=(6-t)t=-t 2+6t=-(t-3)2+9,当t=3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.18.(1)可以通过,根据对称性,当x=12×4=2时,y=132-×4+8=778>7.故汽车可以安全通过此隧道;(2)可以安全通过,因为当x=4时,y=132-×16+8=172>7.故汽车可以安全通过此隧道;(3)答案不惟一,如可限高7m .19.不能,y=-x 2+4x ,设BC=a ,则AB=4-a ,(2,4)2a A a ∴+-代入解析式 24(22)404,2a a a -=-+-+=得或 A(2,4)或(4,0) 所以,不能. 20.(1)125h =;(2)12,125x S ==最大;(3)BE=1.8,在 21.(1)第t 秒钟时,AP=t ,故PB=(6-t)cm ;BQ=2tcm .故S △PBQ =12·(6-t)·2t=-t 2+ 6t .∵S 矩形ABCD =6×12=72.∴S=72-S △PBQ =t 2-6t+72(0<t<6);(2)S=(t-3)2+63.故当t=3时,S 有最小值63. 22. (1)过A 作AD ⊥BC 于D 交PQ 于E ,则AD=4.由△APQ ∽△ABC ,得446x x -=,故x=125;(2)当RS 落在△ABC 外部时,不难求得AE=23x ,故22212446335y x x x x x ⎛⎫⎛⎫=-=-+<< ⎪ ⎪⎝⎭⎝⎭.当RS 落在△ABC 内部时,y=x 2(0<x<125);(3)当RS 落在△ABC 外部时,2222124(3)66335y x x x x ⎛⎫=-+=--+<< ⎪⎝⎭.∴当x=3时,y 有最大值6.当RS 落在BC 边上时,由x=125可知,y= 14425.当RS 落在△ABC 内部时,y=x 2(0<x<125),故比较以上三种情况可知:公共部分面积最大为6.23.(1)由对称性,当x=4时,y=211642525-⨯=-.当x=10时,y=2110425-⨯=-.故正常水位时,AB 距桥面4米,由16943 2.52525-=>,故小船能通过; (2)水位由CD 处涨到点O 的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.8 二次函数与一元二次方程1.(-3,0),(1,0) 2.y=2x 2+4x-6 3.一、二、三 4.(1,2) 5.m=-7 6.m=87.(-1,0) 8.9016k k >-≠且 9.a=2 10.B 11.A 12.C 13.y=x 2+x+9图象与y=1的两个交点横坐标是x 2+x+9=0两根 14.224(2)(2)40m m m ∆=--=-+>15.C △ABC =AB+BC+AC=2.S △ABC =12AC·OB=12×2×3=3 16.(1)k=-2,1 (2)0<k<2 17.(1) 904m m <≠且(2)在(3) 15(,),(2,1)24Q P --- 18.(1)25s ,125m ;(2)50s 19.(1)m=2或0;(2) m<0;(3)m=1,S = 20.(1) y=112-(x-6)2+5;(2) (2)由112-(x-6)2+5=0,得x 1=266x +=-:C 点坐标为(6+0) 故OC=6+.75(米),即该男生把铅球推出约13.75米.21.(1) y=-x 2+4x-3;(2) ∴直线BC 的代数表达式为y=x-3 (3) 由于AB=3-1=2,OC=│-3│=3.故S △ABC =12AB·OC=12×2×3=3 22.(1) k=1;(2)k=-1 2.6—2.8A 参考答案一、1. 2.14,大,-38,没有 3.①x 2-2x ;②3或-1;③<0或>2 4.y =x 2-3x -10 5.m >92,无解 6.y =-x 2+x -1,最大 7.S =π(r +m )2 8.y =-18x 2+2x +1, 16.5二、9.B 10.C 11.C 12.B 13.D 14.B 15.D 16.B三、17.解:(1)y =-2x 2+180x -2800;(2)y =-2x 2+180x -2800=-2(x 2-90x )-2800=-2(x -45)2+1250.当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元. 18.解:∵二次函数的对称轴x =2,此图象顶点的横坐标为2,此点在直线y =12x +1上.∴y =12×2+1=2.∴y =(m 2-2)x 2-4mx +n 的图象顶点坐标为(2,2).∴-2b a=2.∴-242(2)m m --=2.解得m =-1或m =2.∵最高点在直线上,∴a <0,∴m =-1.∴y =-x 2+4x +n 顶点为(2,2).∴2=-4+8+n .∴n =-2.则y =-x 2+4x +2.四、19.解:(1)依题意得:鸡场面积y =-2150.33x x -+∵y =-13x 2+503x =13-(x 2-50x )=-13(x -25)2+6253,∴当x =25时,y 最大=6253, 2.6—2.8B 参考答案一、1.3 2.2 3.b 2-4ac>0(不唯一) 4.15 cmcm 2 5.(1)A ;(2)D ;(3)C ;(4)B 6.5,625二、7.B 8.B 9.A 10.C 11.D 12.B三、13.解:(1)信息:①1、2月份亏损最多达2万元;②前4月份亏盈吃平;③前5月份盈利2.5万元;④1~2月份呈亏损增加趋势;⑤2月份以后开始回升.(盈利);⑥4月份以后纯获利……(2)问题:6月份利润总和是多少万元?由图可知,抛物线的表达式为y=12(x -2)2-2,当x=6时,y=6(万元)(问题不唯一). 14.解:设m=a+b y=a·b ,∴y=a(m -a)=-a 2+ma=-(a -2m )2+24a ,当a=2m 时,y 最大值为24a .结论:当两个数的和一定,这两个数为它们和的一半时,两个数的积最大.四、15.(1)由题意知:p=30+x ;(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000;(3)设总利润为L=Q -30000-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时总利润最大,为6250元. 五、16.解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ .6,,8AB BP x PC CQ x y ==-∴y=-16x 2+43x . 17.解:(1)10;(2)55;(3)略;(4)经猜想,所描各点均在某二次函数的图象上.设函数的解析式为S=an 2+bn+c .由题意知:1a ,21,1423,b ,2936,c 0.a b c a b c a b c ⎧=⎪++=⎧⎪⎪⎪++==⎨⎨⎪⎪++=⎩=⎪⎪⎩解得∴S=211.22n n + 单元综合评价一、选择题:1~12:CBDAA ,CDBDB ,AB二、填空题:13.2 14.591415. 16.-7 17.2 18.y=0.04x 2+1.6x 19.<、<、> 20.略 21.只要写出一个可能的解析式 22.1125m 23.-9.三、解答题:24.y=x 2+3x+2 (-3/2,- 1/4) 25.y=-1200x 2+400x+4000;11400,10600 26.2125y x =-; 5小时 27.(1)5;(2) 2003 28.(1) 2y -x x =+;(2) y=-x 2+1/3x+4/9,y=-x 2-x 29.略.第三章 圆1 车轮为什么做成圆形1.=5cm <5cm >5cm 2.⊙O 内 ⊙O 上 ⊙O 外 3.9π cm 2 4.内部 5.5cm6.C 7.D 8.B 9.A 10.由已知得OA=8cm ,=10,,故OA<10,OB<10,OD=10,OC>10.从而点A , 点B 在⊙O 内;点C 在⊙O 外;点D 在⊙O 上 11.如图所示,所组成的图形是阴影部分(不包括阴影的边界) 12.如图所示,所组成的图形是阴影部分(不包括阴影的边界).(11题) (12题)13.由已知得PO=4,PA=5,PB=5,故OA=1,OB=9,从而A点坐标为A(-1,10),B点坐标为(9,0);连结PC、PD,则PC=PD=5,又PO⊥CD,PO=4,故OC==3,.从而C点坐标为(0,3) ,D点坐标为(0,-3) 14.存在,以O为圆心,OA为半径的圆15.2≤AC≤8聚沙成塔∵PO<2.5,故点P在⊙O内部;∵Q点在以P为圆心,1为半径的⊙P上,∴1≤OQ≤3.当Q在Q1点或Q2点处,OQ=2.5,此时Q在⊙O上;当点Q在弧线Q1mQ2上(不包括端点Q1,Q2),则OQ>2.5,这时点Q 在⊙O外;当点Q在弧线Q1nQ2上(不包括端点Q1,Q2),则OQ<2.5,这时点Q在⊙O内.2 圆的对称性1.中心,过圆心的任一条直线,圆心2.60°3.2cm 4.5 5.3≤OP≤56.10 7.相等89.C 10.B 11.A 12.过O作OM⊥AB于M,则AM=BM.又AC=BD,故AM-AC=BM-BD,即CM=DM,又OM⊥CD,故△OCD是等腰三角形.即OC=OD.(还可连接OA、OB.证明△AOC≌△BOD) 13.过O作OC⊥AB于C,则BC=152cm.由BM:AM=1:4,得BM=15×5=3 ,故CM=152-3=92.在Rt△OCM中,OC2=229175824⎛⎫-=⎪⎝⎭.连接OA,则10=,即工件的半径长为10cm 14.是菱形,理由如下:由 BC= AC,得∠BOC=∠AOC.故OM⊥AB,从而AM=BM.在Rt △AOM中,sin∠AOM=AMOA=,故∠AOM=60°,所以∠BOM=60°.由于OA=OB=OC,故△BOC 与△AOC 都是等边三角形,故OA=AC=BC=BO=OC,所以四边形OACB是菱形.15.PC=PD.连接OC、OD,则∵ DB= BC,∴∠BOC=∠BOD,又OP=OP,∴△OPC≌△OPD,∴PC=PD.16.可求出长为6cm的弦的弦心距为4cm,长为8cm的弦的弦心距为3cm.若点O 在两平行弦之间,则它们的距离为4+3=7cm,若点O在两平行弦的外部,则它们的距离为4- 3=1cm,即这两条弦之间的距离为7cm或1cm.17.可求得OC=4cm,故点C在以O为圆心,4cm长为半径的圆上,即点C 经过的路线是O为圆心,4cm长为半径的圆.聚沙成塔作点B关于直线MN的对称点B′,则B′必在⊙O上,且 B N'= NB.由已知得∠AON=60°,故∠B′ON=∠BON= 12∠AON=30°,∠AOB′=90°.连接AB′交MN于点P′,则P′即为所求的点.此时AP+BP3 圆周角与圆心角1.120°2.3 1 3.160°4.44°5.50°67.A 8.C 9.B 10.C 11.B 12.C 13.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm 14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°,∴AC2+CD2=AD2,即2AC2=36,AC2=18,15.连接BD,则∴AB 是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴PD CDPB AB=.在Rt△PBD 中,cos∠BPD=PD CDPB AB==34,设PD=3x,PB=4x,则==,∴tan ∠BPD=BD PD == 16.(1)相等.理由如下:连接OD ,∵AB ⊥CD ,AB 是直径,∴ BC= BD ,∴∠COB= ∠DOB .∵∠COD=2∠P ,∴∠COB=∠P ,即∠COB=∠CPD ;(2)∠CP′D+∠COB=180°.理由如下:连接P′P ,则∠P′CD=∠P′PD ,∠P′PC=∠P′DC .∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD .∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB ,从而∠CP′D+∠COB=180° 17. 聚沙成塔 迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN 的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B ,即∠B>∠A , 从而B 处对MN 的张角较大,在B 处射门射中的机会大些.4 确定圆的条件1.三角形内部,直角三角形,钝角三角形 2. 3 4.其外接圆,三角形三条边的垂直平分线,三角形三个顶点 5 6.两 7.C 8.B 9.A 10.C11.B 12.C 13.略 14.略 15.(1)△FBC 是等边三角形,由已知得:∠BAF=∠MAD=∠DAC=60°=180°-120°=∠BAC ,∴∠BFC=∠BAC=60°,∠BCF=∠BAF=60°,∴△FBC 是等边三角形;(2)AB=AC+FA .在AB 上取一点G ,使AG=AC ,则由于∠BAC=60°,故△AGC 是等边三角形,从而∠BGC=∠FAC=120°,又∠CBG=∠CFA ,BC=FC ,故△BCG ≌△FCA ,从而BG=FA ,又AG=AC ,∴AC+FA=AG+BG=AB 16.(1)在残圆上任取三点A 、B 、C ; (2)分别作弦AB 、AC 的垂直平分线, 则这两垂直平分线的交点即是所求的圆心;(3)连接OA ,则OA 的长即是残圆的半径 17.存在.∵AB 不是直径(否则∠APB=90°,而由cos ∠APB=13知∠APB<90°,矛盾)∴取优弧AB 的中点为P 点,过P 作PD ⊥AB 于D ,则PD 是圆上所有的点中到AB 距离最大的点.∵AB 的长为定值,∴当P 为优弧AB 的中点时,△APB的面积最大,连接PA 、PB , 则等腰三角形APB 即为所求.S △APB= 12AB· 聚沙成塔 过O 作OE ⊥AB 于E ,连接OB ,则∠AOE=12∠AOB ,AE=12AB ,∴∠C=1∠AOB=∠AOE . 解方程x 2-7x+12=0可得DC=4,AD=3,故,可证Rt △ADC ∽Rt △AEO ,故AE AO AD AC=,又, AD=3,,故,从而S ⊙O=21254ππ⨯=⎝⎭. 5 直线与圆的位置关系1.相交 2.60 3.如OA ⊥PA ,OB ⊥PB ,AB ⊥OP 等 4.0≤d<4 5.65° 6.146°,60°,86° 7.A 8.B 9.C 10.C 11.D 12.B 13.(1)AD ⊥CD .理由:连接OC ,则OC ⊥CD .∵OA=OC ,∴∠OAC=∠OCA ,又∠OAC= ∠DAC ,∴∠DAC=∠OCA ,∴AD ∥OC ,∴AD ⊥CD ;(2)连接BC ,则∠ACB=90°由(1)得∠ADC=∠ACB ,又∠DAC=∠CAB .∴△ACD ∽△ABC ,∴AC AD AB AC=,即AC 2=AD·AB=80,故 14.(1)相等.理由:连接OA ,则∠PAO=90°.∵OA=OB ,∴∠OAB=∠B=30°, ∴∠AOP=60°,∠P=90°-60°=30°,∴∠P=∠B ,∴AB=AP ;(2)∵tan ∠APO=OA PA,∴OA=PA ,tan ∠0301tan ==,∴BC=2OA=2,即半圆O 的直径为2 15.(1)平分.证明:连接OT ,∵PT 切⊙O 于T ,∴OT ⊥PT ,故∠OTA=90°, 从而∠OBT=∠OTB=90°-∠ATB=∠ABT .即BT 平分∠OBA ; (2)过O 作OM ⊥BC 于M ,则四边形OTAM 是矩形,故OM=A T=4,AM=OT=5.在Rt △OBM 中,OB=5,OM=4,故=3,从而AB=AM-BM=5-3=2 16.作出△ABC 的内切圆⊙O ,沿⊙O 的圆周剪出一个圆,其面积最大 17.由已知得:OA=OE ,∠OAC=∠OEC ,又OC 公共,故△OAC ≌OEC ,同理,△OBD ≌△OED ,由此可得∠AOC=∠EOC ,∠BOD=∠EOD ,从而∠COD=90°,∠AOC=∠BDO . 根据这些写如下结论:①角相等:∠AOC=∠COE=∠BDO=∠EDO ,∠ACO=∠ECO=∠DOE=∠DOB ,∠A=∠B=∠OEC=∠OED ;②边相等:AC=CE ,DE=DB ,OA=OB=OE ;③全等三角形:△OAC ≌△OEC ,△OBD ≌△OED ;④相似三角形:△AOC ∽△EOC ∽△EDO ∽△BDO ∽△ODC .聚沙成塔 (1)PC 与⊙D 相切,理由:令x=0,得y=-8,故P(0,-8);令y=0,得故0),故OP=8,OC=2,CD=1,∴CD==3,又PC=,∴PC 2+CD 2=9+72=81=PD 2.从而∠PCD=90°,故PC 与⊙D 相切; (2)存在.点-12)或-4),使S △EOP =4S △CDO .设E 点坐标为(x ,y),过E 作EF ⊥y 轴于F ,则EF=│x│.∴S △POE =12PO·EF=4│x│.∵S △CDO =12CO·∴当时,;当时,.故E 点坐标为-4)或-12).6 圆与圆的位置关系1.2 14 2.外切 3.内切 4.45°或135° 5.1<r<8 6.外切或内切 7.A 8.B9.C 10.D 11.C 12.A 13.C 14.外切或内切,由│d -4│=3,得d=7或1,解方程得x 1=3,x 2=4,故当d=7时,x 1+ x 2=d ;当d=1时,x 2-x 1=d ,从而两圆外切或内切 15.过O 1作O 1E ⊥AD 于E ,过O 2作O 2F ⊥AD 于F ,过O 2作O 2G ⊥O 1E 于G ,则AE=DF=5cm ,O 1G=16-5-5=6cm ,O 2O 1=5+5=10cm ,故O 2,所以EF=8cm ,从而AD=5+5+8=18cm .16.如图所示.17.如:AC=BC ,O 1A 2+AF 2=O 1F 2,AC 2+CF 2=AF 2等 聚沙成塔 有无数种分法.如:过⊙O 2与⊙O 5的切点和点O 3画一条直线即满足要求.7 弧长及扇形的积1.240°3πcm 2.389mm 3.16π 4.50 5 6.2πcm 2 7.B 8.C9.C 10.B 11.A 12.A 13.设其半径为R ,则120180R π⨯=,R =cm ,过圆心作弦的垂线,则可求弦长为9cm 14.由已知得,S 扇形DOC=2150500203603ππ⨯=,S 扇形AOB=2150125103603ππ⨯=,故绸布部分的面积为S 扇形DOC- S 扇形AOB=125π 15.由已知得,2081809n ππ⨯=,得n=50,即∠AOC=50°.又AC 切⊙O 于点C ,故∠ACO=90 °,从而OA=812.446cos50cos50OC =≈︒︒,故AB=AO-OB=12.446-8≈4.45cm 16.设切点为C ,圆心为O ,连接OC ,则OC ⊥AB ,故AC=BC=15,连接OA ,则OA 2-OC 2=AC 2=152=225,故S 阴影=2222()225AO CO AO CO ππππ⨯-⨯=-=cm 2 17.如图所示r=22C B A r=4C A r=42-4r=2OB A聚沙成塔 (1)依次填2468,,,3333ππππ;(2)根据表可发现:23n l n π=⨯,考虑2264001000003n ππ⨯≥⨯⨯,得n≥1.92×109,∴n 至少应为1.92×109. 8 圆锥的侧面积1.6 2.10π 3.2000π 4.2cm 5.15π 6.18 7.D 8.D 9.B 10.B11.A 12.B 13.侧面展开图的弧长为2816ππ⨯=,设其圆心角为n°,则1516180n ππ⨯=,故n=192, 即这个圆锥的侧面展开图的圆心角是192° 14.可得△SAO ≌△SBO ,故∠ASO=∠BSO=60°,∠SBO=30°,由BO=27, tan ∠SBO=tan 30°=27SO SO BO =,得SO=27=≈15.6m ,即光源离地面的垂直高度约为15.6m 时才符合要求 15.过A 作AD ⊥BC ,则由∠C=45°,得AD=DC=12cn ,AB=2AD=24cm ,=BC=12,以A 为圆心的扇形面积为21051242360ππ⨯=cm 2,以B 为圆心的扇形面积为22302448360cm ππ⨯=,以C为圆心的扇形面积为224536360cm ππ⨯=, 故以B 为圆心取扇形作圆锥侧面时,圆锥的侧面积最大,设此时圆锥的底面半径为r ,则30224180r ππ=⨯, r=2cm ,直径为4cm 聚沙成塔 设圆的半径为r ,扇形的半径为R ,则1224R r ππ⨯⨯=⨯,故R=4r ,又,将R=4r 代入,可求得≈0.22a . 正多边形与圆1.正方形 2.十八 提示:正多边形的中心角等于外角,外角和为360°,360÷20=18 3.36° 提示:可求出外角的度数 4.正三角形 5.C 提示:其中正确的有②④⑤⑥⑦ 6.C7.D 提示:按正多边形的定义 8.C 9.3 提示:利用直角三角形中,30°角所对直角边等于斜边的一半 10.100cm 211:2 提示:设此圆的半径为R ,则它的内接正方R,内接正方形和外切正六边形的边长比为2 12.4πa 2 提示:如图所示,AB 为正n 边形的一边,正n 边形的中心为O ,AB •与小圆切于点C ,连接OA ,OC ,则OC ⊥AB ,12AC=12AB=a ,所以AC 2=14a 2=OA 2-OC 2,S 圆环=S 大圆-S 小圆=πOA 2-OC 2=π(OA 2-OC 2)=4πa 2 13.C 14.C 15.方法一:(1)用量角器画圆心角∠AOB=120°,∠BOC=120°;(2)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法二:(1)用量角器画圆心角∠BOC=120°;(2)在⊙O 上用圆规截取;(3)连接AC ,BC ,AB ,则△ABC 为圆内接正三角形.方法三:(1)作直径AD ;(2)以O 为圆心,以OA 长为半径画弧,交⊙O 于B ,C ;(3)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法四:(1)作直径AE ;(2)分别以A ,E 为圆心,OA 长为半径画弧与⊙O 分别交于点D ,F ,B ,C ;(3)连接AB ,BC ,CA (或连接EF ,ED ,DF ),则△ABC (或△EFD )为圆内接正三角形.16.解:相同点:都有相等的边;都有相等的角,都有外接圆和内切圆等.不同点:边数不同;内角的度数不同;内角和不同;对角线条数不同等 17.解:方法一:如题图①中,连接OB ,OC .∵正三角形ABC 内接于⊙O ,∴∠OBM=∠OCN=30°,∠BOC=120°.又∠OCN=30°,∠BOC=120°,而BM=CN ,OB=OC ,∴△OBM ≌△OCN ,∴∠BOM=∠CON ,∴∠MON=∠BOC=120°.方法二:如题图①中,连接OA ,OB .∵正三角形ABC 内接于⊙O ,∴AB=BC ,∠OAM=∠OBN=30°,∠AOB=120°,∴∠AOM=∠BON .∴∠MON=∠AOB=120°;(2)90° 72°;(3)∠MON=360n︒ 单元综合评价(一)一、1~5 AABDB 6~10 DDABD二、11.8 12.π213.9cm 14.120° 15.13 16.18πcm 2 17.60° 18.180° 19.7或1 20.(1)2;(2)3n +1三、21.10cm ,6cm 22.432m 2 23.2π6R (提示:连接CO ,DO ,S 阴影=S 扇形COD ) 24.(1)A (4,0),33y x =+;(2)3>m时相离,m =时相切,0m <<时相交 25.解:(1)42πr r +,82πr r +;(2)62πr r +,82πr r +,102πr r +,122πr r +;(3)162πr r +,图略单元综合评价(二)1.以点A 为圆心,2cm 长为半径的圆 2.点P 在⊙O 内 3.10 4.90° 5.2 6. 120°7.3 8.2cm 或8cm 9.(12+5π)cm 10.30π 11.B 12.D 13.D 14.C15.D 16.B 17.B 18.C 19.C 20.C 21.如图,所有点组成的图形是如图所示的阴影部分. 22.(1)连接CD ,=5,由CD=CA ,得∠CDA=∠A ,故tan ∠CDA=tanA=43BC AC =;(2)过C 作CF ⊥AD 于F ,则AD=2AF ,由cosA=AC AF AB AC=,得AC 2=AB·AF .故32=5·AF ,AF=95,所以AD=185. 23.(1)相切.理由:连接OC ,OB ,则OC ⊥AB ,由已知得BC=12AB=4,OB=5,故=3,从而圆心O 到直线AB 的距离等于小圆的半径,故AB 与小圆相切;(2) 22222(53)16OB OC cm ππππ-=-=. 24.(1)连接AB ,AM ,则由∠AOB=90°,故AB 是直径,由∠BAM+∠OAM=∠BOM+ ∠OBM=180°-120°=60°,得∠BAO=60°,又AO=4,故cos ∠BAO=AO AB,AB=048cos60=,从而⊙C 的半径为4;(2)由(1)得,=C 作CE ⊥OA 于E ,CF ⊥OB 于F ,则EC=OF=12BO=12⨯,CF=OE=12OA=2, 故C 点坐标为(-,2) 25.连接AC ,BC ,分别作AC ,BC 的垂直平 AC AB =分线,相交于点M ,则点M 即满足条件(图略) 26.(1)设扇形半径为Rcm ,则2120300360R ππ=,故R=30cm ,设扇形弧长为Lcm ,则113030022Rl l π=⨯=,故L=20π;(2)设圆锥的底面半径为rcm ,则220r ππ=,r=10cm = 27.如:∠D=30°,DC 是⊙O 的切线,△CBD 是等腰三角形,△ACD 是等腰三角形,AC=CD ,BD=BC ,△DCB ∽△DAC ,DC 2=DB·DA ,,等 28.略.只要符合题意即可得分.第四章 统计与概率1 50年的变化(1)1.条形,折线,扇形 2.条形,0 3.折线,同一单位长度 4.不能 5.(1)1:3;(2)从0开始 6.B 7.C 8.D 9.D 10.C 11.B 12.解:(1)左图给人的感觉是小明通过努力,数学成绩提高迅速,进步很大;而右图给你的感觉则是小明的学习成绩比较稳定,进小不是很大;(2)如果小明想向他的父母说明他数学成绩的提高情况,那么他应选择左图,理由是:左图看上去折线上升速度转快,表明小明的成绩提高迅速 13.解:(1)A 村的苹果产量占本村两种水果总产量的35%,梨占65%;B 村的苹果产量在本村两种水果总产量中占80%,梨占20%。

苏科版八年级下册数学第7章 数据的收集、整理、描述 含答案

苏科版八年级下册数学第7章 数据的收集、整理、描述 含答案

苏科版八年级下册数学第7章数据的收集、整理、描述含答案一、单选题(共15题,共计45分)1、为了解参加运动会的2000名运动员的年龄情况,从中抽查了100•名运动员的年龄.就这个问题来说,下面说法中正确的是()A.2000名运动员是总体B.每个运动员是个体C.100名运动员是抽取的一个样本D.抽取的100名运动员的年龄是样本2、如图是某年参加国际教育评估的15个国家学生的数学平均成绩的扇形统计图,由图可知,学生的数学平均成绩在之间的国家占()A. B. C. D.3、已知数据:,,,π,-2,其中无理数出现的频率为( )A.0.2B.0.4C.0.6D.0.84、为了了解某市七年级8万名学生的数学学习情况,抽查了10%的学生进行一次测试成绩分析.下面四个说法中,正确的是()A.8000名学生是总体B.8000名学生的测试成绩是总体的一个样本 C.每名学生是总体的一个样本 D.样本容量是800005、下列调查中,调查方式选择合理的是()A.新冠肺炎疫情期间,为了解某小区的居民体温,选择抽样调查B.为了解曲江南湖公园全年的游客流量,选择全面调查C.为了解某品牌木地板的甲醛含量,选择全面调查D.为了解北斗三号卫星零件的质量,选择全面调查6、某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A.0.1B.0.17C.0.33D.0.47、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)25 25.5 26 26.5 27购买量(双)1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米8、下列调查方式适合用全面调查的是()A.了解我校学生每天完成回家作业的时间.B.了解台州市的空气污染指数.C.日光灯管厂要检测一批灯管的使用寿命.D.飞机起飞前的检查.9、九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是()A.80%B.70%C.92%D.86%10、下列说法正确的是()A.为了解一批电池的使用寿命,应采用全面调查的方式B.数据,,...,的平均数是,方差是,则数据,,...,的平均数是,方差是 C.通过对甲、乙两组学生数学成绩的跟踪调查,整理计算得到甲、乙两组数据的方差为,,则乙数据较为稳定 D.为了解官渡区九年级多名学生的视力情况,从中随机选取名学生的视力情况进行分析,则选取的样本容量为11、下列调查适合用普查的是()A.夏季冷饮市场上冰淇淋的质量B.某本书中的印刷错误C.公民安全意识D.一批灯泡的使用寿命12、如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A.九(3)班外出的学生共有42人B.九(3)班外出步行的学生有8人 C.在扇形图中,步行的学生人数所占的圆心角为82 D.如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人13、某射击运动员在训练中射击了10次,成绩如图所示:下列结论错误的是()A.众数是8B.中位数是8C.平均数是8.2D.方差是1.814、下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④15、如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是()A.平均数是6B.中位数是6.5C.众数是7D.平均每周锻炼超过6小时的人数占该班人数的一半二、填空题(共10题,共计30分)16、要从小华、小明两名射击运动员中选择一名运动员参加射击比赛,在赛前对他们进行了一次选拔赛,下图为小华、小明两人在选拔赛中各射击10次成绩的折线图和表示平均数的水平线.你认为应该选择________(填“小华”或“小明”)参加射击比赛;理由是________.17、某初一年级有500名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图),若要从身高在,,三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在内的学生中选取的人数为________.18、某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中A型保温杯的优势是________.19、在整理数据5、5、3、█、2、4时,█处的数据看不清,但从扇形统计图的答案上发现数据5的圆心角是180度,则█处的数据是________.20、某校“环保小组”的学生到某居民小区随机调查了户居民一天丢弃废塑料袋的情况,统计结果如下表:请根据表中提供的信息回答:每户居民丢弃废塑料袋的个数户数这户居民一天丢弃废塑料袋的众数是________个;若该小区共有居民户,你估计该小区居民一个月(按天计算)共丢弃废塑料袋________个.21、已知数据为100个,最大值为89,最小值为40,组距为8,则可分成组数为________组.22、某地区有36所中学,其中九年级学生共7000名.为了了解该地区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.排序:________ (只写序号)23、某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如下面的条形图所示.这15名同学进球数的众数是________.24、江涛同学统计了他家10月份的长途电话明细清单,按通话时间画出频数分布直方图.①他家这个月一共打了________次长途电话;②通话时间不足10分钟的________次;③通话时间在________分钟范围最多,通话时间在________分钟范围最少.25、下表是某批足球质量检验获得的数据,请根据此表回答,当抽取的足球数很大时,这批足球优等品的频率会在常数________ 附近摆动.抽取的足球数50 100 200 500 1000 2000优等品数47 95 194 472 953 1902三、解答题(共6题,共计25分)26、苏州市某校对九年级学生进行“综合素质”评价,评价的结果为A (优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽测了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?27、“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:类别组别PM2.5日平均浓度值m(微g/立方米)频数频率A1 15m<302 0.082 30m<453 0.12B 3 45m<60 a b4 60m<75 5 0.20C 5 75m<90 6 cD 6 90m<105 4 0.16合计以上分组均含最小值,不含最大值25 1.00根据图表中提供的信息解答下列问题:(1)统计表中的a,b,c分别是多少?(2)在扇形统计图中,A类所对应的圆心角是多少度?(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微g/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?28、春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.请根据以上信息解答问题:(1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.29、红星小学对全校同学进行最喜欢的运动项目调查,调查情况具体如图,其中150名同学喜欢羽毛球,喜欢跳绳的同学有多少名?30、请你设计一个调查方案,了解自己班的同学每位家庭的月用水量情况.参考答案一、单选题(共15题,共计45分)1、D3、C4、B5、D6、D7、D8、D9、C10、D11、B12、B13、D14、A15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、28、30、。

青岛版八年级数学下册《一次函数》评课稿

青岛版八年级数学下册《一次函数》评课稿一、前言本评课稿旨在对青岛版八年级数学下册的《一次函数》单元进行全面评价,通过分析该单元的教学内容、教学目标、教学方法等方面的优势和亮点,以及存在的问题和改进方向,为进一步提高数学教学质量提供借鉴和思考。

二、教学内容概述《一次函数》单元是八年级数学下册的重要内容之一,主要涉及以下几个方面的知识点和技能:1.一次函数的概念和特性;2.一次函数的表示方法和简化形式;3.一次函数的图像及其性质;4.一次函数的应用问题。

学生通过该单元的学习,能够全面了解一次函数的定义和性质,掌握一次函数的表示方法和简化形式,能够绘制一次函数的图像并分析其性质,能够应用一次函数解决实际问题。

三、教学目标分析1. 知识目标通过本单元的学习,学生应该掌握以下知识点:•理解一次函数的含义和性质;•掌握一次函数的表示方法和简化形式;•理解一次函数的图像及其性质;•学会应用一次函数解决实际问题。

2. 能力目标通过本单元的学习,学生应培养以下能力:•分析和解决一次函数相关的问题;•运用数学方法进行推理和证明;•运用一次函数解决实际问题的能力。

3. 情感目标通过本单元的学习,培养学生的以下情感态度:•对数学感兴趣,理解数学的实际应用价值;•培养学生的数学思维和逻辑推理能力;•提高学生的合作交流和问题解决能力。

四、教学方法与手段本单元的教学应采用多种教学方法和手段,以提高学生的学习兴趣和积极性,培养学生的自主学习能力和合作精神。

1. 创设情境、激发兴趣通过引入生活中的实际问题,创设情境,激发学生对一次函数的兴趣。

例如,通过实际的线性关系,如物体的运动、经济的增长等,引导学生思考,并提出问题,让学生积极参与讨论和解决问题。

2. 示范演示、启发思考通过教师的示范演示,引导学生学会运用一次函数的表示方法和简化形式。

同时,采用启发式讲解,激发学生的思考和探索欲望,培养学生独立解决问题的能力。

3. 组织合作学习、共同探究设计合作学习的小组活动,让学生充分发挥个人优势,共同合作解决问题。

八年级上册数学学习与评价答案

八年级上册数学学习与评价答案在八年级上册的数学学习中,答案不仅仅是一个简单的数字或结论,它更是我们理解知识、掌握方法和提升能力的重要依据。

然而,对于答案的正确使用和理解,却有着许多需要我们注意的地方。

首先,我们要明确,答案不是学习的终点,而是检验学习效果和帮助我们发现问题的工具。

当我们完成一份数学作业或练习后,对照答案可以让我们迅速了解自己的解题思路是否正确,计算过程有无失误。

但如果仅仅满足于得到一个正确的答案,而不去思考解题的过程和方法,那么我们的学习就会变得肤浅,无法真正掌握数学的精髓。

比如,在学习一次函数这一章节时,我们会遇到各种求函数解析式、图像性质以及应用的问题。

当我们做完练习题,对照答案时,不能只是看最后的数字结果是否一致,而要仔细分析答案中给出的解题步骤和思路。

如果我们的方法与答案不同,要思考哪种方法更简便、更通用;如果我们做错了,要找出错误的原因,是对概念理解不清,还是计算失误,或者是解题思路完全错误。

在学习三角形全等的证明这部分内容时,答案中的证明过程是非常规范和严谨的。

我们对照答案时,要注意每一个步骤的依据和逻辑,学习如何准确地运用定理和公理进行推理证明。

同时,也要注意答案中的书写格式和规范,养成良好的解题习惯。

然而,有些同学可能会过度依赖答案,甚至直接抄袭答案。

这是一种极其错误的学习方式。

抄袭答案不仅无法提高自己的数学能力,还会让我们养成不思考、不努力的坏习惯。

长期下去,我们在考试中遇到新的问题时,就会感到无从下手,成绩也会一落千丈。

正确使用答案的方法应该是,先自己独立思考和解题,然后再对照答案进行检查和反思。

对于做错的题目,要认真分析原因,及时进行改正和总结。

同时,我们还可以将答案作为一种学习资源,通过研究答案中的解题方法和技巧,拓宽自己的思路,提高解题能力。

另外,在使用答案的过程中,我们还可以和同学一起讨论。

对于一些有争议或者不太理解的答案,通过相互交流和讨论,往往能够让我们对问题有更深入的理解。

人教版八年级下册数学资源与评价电子版

人教版八年级下册数学资源与评价电子版一、单选题1、如图,在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水,看不清所印的字,请问被墨迹遮盖了的文字应是() [单选题] *A.四边形B.梯形(正确答案)C.矩形D.菱形2、如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、 E分别为AC、 AB中点,连接DE,则DE长为()[单选题] *A. 4B. 3(正确答案)C. 8D. 53、已知四边形ABCD是平行四边形,下列结论中错误的是() [单选题] *A. 当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形(正确答案)4、如图,平行四边形ABCD的对角线交于点E,已知AB=5cm,△ABE的周长比△BEC的周长小3cm,则AD的长度为( ) [单选题] *A.8cm(正确答案)B.5cmC.3cmD.2cm5、如图,在四边形ABCD中,E是BC边的中点,连接DE并延长DE,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件当中可以选择的是() [单选题] *A.AD=BCB.CD=BFC.∠A=∠CD.∠F=∠CDF(正确答案)6、如图,正方形ABCD的面积为8,菱形AECF的面积为4,则EF的长是()[单选题] *A.4B.C.2(正确答案)D.17、如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A'B'表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中,OP()[单选题]A. 下滑时,OP增大B. 上升时,OP减小C. 无论怎样滑动,OP不变(正确答案)D. 只要滑动,OP就变化8、以下四个条件中可以判定四边形是平行四边形的有( )①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线相等. [单选题] *A. 1个B. 2个C. 3个(正确答案)D.4个9、如图,在平行四边形ABCD中,∠B<90º,BC>AB.作AE⊥BC于点E,AF⊥CD于点F,记∠EAF的度数为α,AE=a,AF=b.则以下选项错误的是( )[单选题] *A. ∠D的度数为αB. a∶b=CD∶BCC. 若α=60º,则平行四边形ABCD的周长为D.若α=60º,则四边形AECF的面积为平行四边形ABCD面积的一半(正确答案)10、如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论中,错误的是() [单选题]A.AE=BFB.AE⊥BFC.AO=OE(正确答案)D.二、填空题11、在平行四边形ABCD中,若∠A+∠C=140°,则∠B=________. [填空题] *空1答案:110°12、 Rt△ABC中∠ABC=90°,斜边AC=10cm,D为斜边上的中点,斜边上的中线BD=________. [填空题] *空1答案:5cm13、如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于________. [填空题] *_________________________________(答案:12)14、如图,在平行四边形ABCD中,以点A为圆心,以任意长为半径画圆弧,分别交边AD、 AB于点M、 N ,再分别以点M、 N为圆心,以大于长为半径画圆弧,两弧交于点P ,作射线AP交边CD于点E ,过点E作EF∥AD交AB于点F .若AB=5,CE=2,则四边形ADEF的周长为________. [填空题] *_________________________________(答案:12)15、如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=10,则EF的长为________. [填空题] *_________________________________(答案:3)16、如图,点O是▱ABCD的对角线交点,AD>AB,E、F是AB边上的点,且EF= AB;G、 H是BC边上的点,且GH=BC,若S1 , S2分别表示△EOF和△GOH的面积,则S1:S2=________ . [填空题] *_________________________________(答案:3:2)17、如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为________. [填空题] *_________________________________(答案:5)三、解答题18、(6分)如图,在▱ABCD中,AE⊥BD于点E,BM⊥AC于点M,CN⊥BD 于点N,DF⊥AC于点F.求证:EF∥MN.[上传文件题] *19、(6分)如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.求证:AF=GB [上传文件题] *20、(8分)已知:如图,四边形ABCD中,AC⊥BD , E、 F、 G、 H分别为AB、 BC、 CD 、 DA的中点,判断EG与FH的数量关系并加以证明. [上传文件题] *21、已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD 的中点,且AG=AB,CG的延长线交BA的延长线于点F,连接FD.试探究当∠BCD=________°时,四边形ACDF是矩形,证明你的结论. [上传文件题] *四、综合题22、(10分)如图:在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D 为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE ,[矩阵题] *(1) 当点D是AB的中点时,四边形BECD________________________是什么特殊四边形?说明你的理由(2) 在(1)的条件下,当________________________∠A=________时四边形BECD是正方形.23、(12分)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E、F分别是AC、BC上的点(点E不与端点A、C重合),连接EF 并取EF的中点O,连接DO并延长至点G,使 GO=OD,连接DE、GE、GF.[矩阵题] *(1) 求证:四边形EDFG________________________是平行四边形;(2) 若________________________AE=CF,。

数学 八年级下 资源与评价答案

第二章 分解因式2.1分解因式1.整式,积;2.整式乘法;3.因式分解;4.C ;5.A ;6.D ;7.D ;8.B ;9.2,1-=-=n m ; 10.0; 11.C; 12.能;2.2提公因式法1.ab 2;2.3+x ;3.)43)(2(++a a ;4.(1)x+1;(2)b-c;5.22432y xy x +-;6.D;7.A;8.(1)3xy(x-2); (2))5(522x y y x -; (3))1382(22+--m m m ; (4))72)(3(--a a ;(5))223)((y x m y x +--; (6))25()(62a b b a --;(7) )413(522y xy y x -+;(8)2(x+y)(3x-2y); (9)))((c b a a x ---; (10))(2n m q +;9.C;10.10;21;11.)1(2n n a a a ++;12.)1(2+=+n n n n ;13.6-;14.6;2.4运用公式法(1)1.B;2.B;3.C;4.(1)))((x y x y -+;(2))3)(3(41y x y x -+; 5.(1)800;(2)3.98; 6.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b); (5)-3xy(y+3x)(y-3x); (6)4a 2(x+2y)(x-2y); (7)(a+4)(a-4); (8))3)(3)(9(22y x y x y x -++;(9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x m+1(x+1)(x-1); 8.A; 9.2008; 10.40162009; 2.3运用公式法(2)1.±8;2.1;3.2)121(-x ; 4.(1)5x+1;(2)b-1;(3)4;2;(4)±12mn;2m ±3n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12.(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9)22)3(n m n +; (10)-2ax n-1(1-3x)2; 13.x=2;y=-3; 14.(1)240000;(2)2500;15.7;16.31-;17.A;18.B;19.B;20.1; 单元综合评价1.C; 2.B; 3.B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3x 2y+2xy-1); 17.(a-b)2(a+b); 18.2)21(--x a ;19.(x+y)2(x-y)2; 20.45000; 21.14; 22.2)1(1)1(+=+++n n n n第三章 分式3.1分式(1)1.②和④,①和③;2.43;3.23+-m m ,-2;4.31,-5;5.为任意实数,1;6.32-,3±;7.⑴t s ,⑵)(a m b a m --,⑶ba bn am ++,⑷p n m -;8.B ;9.C ;10.C ;11.⑴3±≠x ,⑵a x 4±≠;12.⑴x=2,⑵x=1;13.a=6;14.2<x ;15.-3,-1,0,2,3,5;四.109=+b a . 1分式(2):1.⑴ab a +2,⑵x ,⑶4n ,⑷x-y ;2.1≠x 且0≠x ;3.①y x 32,②x x --112,③x x x -+-2122,④1312-++x x x ;4.①y x y x 560610+-,②15203012+-x y x ,③y x y x 20253940+-,④b a b a 1512810+-;5.B ;6.71-;7.①-6xyz ,②m m 2-,③42+-m ,④22+-a a ;8.5;9.53;10.-3,11;11.5642++x x ;四.1.M=N ;2.1.3.2分式的乘除法 1.⑴bc a 2,⑵22xy ;2.2-≠x 且3-≠x 且4-≠x ;3.ba x 265;4.515;5.D ;6.D ;7.C ;8.⑴y x 2-,⑵55b a -,⑶2-x x ,⑷11-+-m m ;9.⑴-1,⑵34-,⑶41.四.1. 3.3分式的加减法(1)1.⑴abc -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1. 3.3分式的加减法(2)1.B;2.B;3.C;4.27;5.1;6.⑴11-x ,⑵2)2(4--x x x ,⑶y ,⑷3-x ;7.31或21;8.81;9.A=1,B=1;10.12;11.-3;四.解:由13ab a b =+,得3a b ab +=,即113a b +=……① 同理可得114b c +=……②,115a c+=……③,①+②+③得22212a b c ++=,∴1116a b c ++=,∴6bc ac ab abc ++=,∴abc ab bc ca ++=16 3.4分式方程(1)1.整式方程,检验;2.12-x ;3.D ;4.0;5.x=20;6.-1;7.5;8.x=2;9.3;10.C ;11.D ;12.3;13.4;14.-1;15.A ;16.⑴原方程无解,⑵x=2,⑶x=3,⑷3-=x ;四.221+-n n . 3.4分式方程(2)1.B ;2.C ;3.3;4.22;5.D ;6.⑴x200,⑵5x ,(200-5x),⑶55200+-x x ,⑷1552005200++-+=x x x ;⑸20;7.3±;8.⑴x=4,⑵x=7;9.1>m 且9≠m ;10.解:设公共汽车的速度为x 千米/时,则小汽车速度为3x 千米/时,根据题意得xx x 38031380=+-解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x 元,则今年价格为1.25x 元,根据题意得,6181.2536=-xx ,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x 个,则需要横式3x 个,根据题意得,)3354x x ⨯+⨯(∶)325(x x ⨯+=29x ∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.单元综合评价1.D ;2.B ;3.D ;4.C ;5.B ;6.B ;7.C ;8.)1()1(2-+x x x ;9.21≠x 且43-≠x ;10.2;11.53;12.-3;13.av v a +25;14.x=2;15.1<m 且3-≠m ;16.1210222++-x x x ;17.x -22;18.21;19.56-=x ;20.5-=x ;21.解:设改进前每天加工x 个,则改进后每天加工2.5个,根据题意得155.210001000+=x x ,解得x=40,经检验x=40是所列方程的解,所以2.5x=100.答:改进后每天加工100个零件.22.解:设甲原来的速度为x 千米/时,则乙原来的速度为(x-2)千米/时,根据题意得240844-40-=-+x x x ,解得x=12,经检验x=12是所列方程的解,所以x-2=10.答:甲原来的速度为12千米/时,乙原来的速度为10千米/时.第四章 相似图形4. 1线段的比⑴1.2:5,57;2.58;3.269;4.5; 5.1:50000;6.45;7.1:2:2;8.D ;9.B ;10.C ;11.B ;12.D ;13.⑴√⑵×;14.BC=10cm .4.1线段的比⑵1.3;2.32;3.53;4.C ;5.B ;6.B ;7.D ;8.B ;9.PQ=24;10.⑴3;⑵54-;11.⑴38;⑵76-;(3)-5;12.a :b:c=4:8:7;13.分两种情况讨论:⑴a +b+c≠0时,值为2;⑵a +b+c=0时,值为-1.4.2黄金分割1.AP 2=BP·AB 或PB 2=AP·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN·MN 即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形. 4.3形状相同的图形1.相同⑶⑸;不同(1)(2)(4)(6).2.(a )与⑷,(b)与⑹,(c)与⑸是形状相同的;3.略;4.⑴AB=13,BC=26,AC=5,⑵A /B /=213,B /C /=226,A /C /=10,⑶成比例,⑷相同.4.4相似多边形1.×2.√3.×4.√5.√6.①④⑤;7.B ;8.B ;9.C ;10.C ;11.A ;12.27;13.66;14.一定;15.不一定;16.2;17.都不相似,不符合相似定义;18.各角的度数依次为650,650,1150;1150.B 'C '=A 'D '=415cm ;19.BC·CF=1;20.相似;21.2;22.b 2=2a 2.4.5相似三角形1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.4.6探索三角形相似的条件⑴1.2;2.6;3.2;4.4;△CDF ,1:2,180;5.4:3;6.2.4;7.572;8.B ;9.B ;10.C ;11.C ;12D ;13.BF=10cm ;14.⑴略.⑵BM=3. 15.由已知可得:AE AF BE FG =, AEAF DE FC =,BE=DE ,所以,FG=FC . 16.由已知可得: AG AF CG BF =,AG AF GD EF =,所以GD EF CG BF =.17. 由已知得:BFDF CF GF =,BF DF EF CF =,可得EF CF CF GF =,即: CF 2=GF·EF . 18.由已知得: PB PD PA PQ =,PBPD PR PA =,可得: 22PB PD PR PQ =. 19.不变化,由已知得: BC CP AB PE =,BCBP CD PF =,得:1=+CD PF AB PE ,即PE+PF=3. 20.提示:过点C 作CG//AB 交DF 于G .21.23.22.⑴由已知得:21===CD OE FC OF GC EG ,所以32=CE GC ,即31=BC GC .问题得证.⑵连结DG 交AC 于M ,过M 作MH ⊥BC 交BC 于H ,点H 即为所求.23.⑴证△AEC ≌△AEF 即可.⑵EG=4.24.⑴过点E 作EG//BC 交AE 于G .可得: nn m EC BE +=.⑵由⑴与已知得:2=+n n m 解得:m=n ,即AF=BF .所以:CF ⊥AB .⑶不能,由⑴及已知可得:若E 为中点,则m=0与已知矛盾.4.6探索三角形相似的条件⑵1.三;2.22,26;3.6;4;15-55;5.310;6.2.4;7.A ;8.C ;9.B ;10.A ;11.B ;12.A ;13.⑴略.⑵相似,由⑴得∠AFE=∠BAC=600,∠AEF 公共.⑶由△BDF ∽△ABD 得: ADBD BD DF =,即BD 2=AD·DF . 14.⑴∠BAC=∠D 或∠CAD=∠ACB .⑵由△ABC ∽△ACD 得BC AC AC AD =,解得:AD= 4,所以中位线的长= 6.5.15.证: △ADF ∽△BDE 即可.16.AC = 43.17.提示:连结AC 交BD 于O .18.连结PM ,PN .证: △BPM ∽△CPN 即可.19.证△BOD ∽△EOC 即可.20.⑴连结AF .证; △ACF ∽△BAF 可得AF 2=FB·FC ,即FD 2=FB·FC .⑵由⑴相似可得: CF AF AC AB =,AF BF AC AB =,即CF BF ACAB =22. 21.⑴略.⑵作AF//CD 交BC 与F .可求得AB=4.⑶存在.设BP=x ,由⑴可得xx -⨯=74834,解得x 1=1, x 2= 6.所以BP 的长为1cm 或6cm .22.⑴由∠AFC=∠BCE=∠BCF+450,∠A=∠B=450可证得相似.⑵由⑴得AF·BE=AC·BC =2S .23. ⑴略. ⑵△ABP ∽△DPQ ,DQ PD AP AB =,x y x -+=522,得y =-21x 2+25x -2.(1<x <4).24. ⑴略. ⑵不相似.增加的条件为: ∠C=300或∠ABC=600.4.6探索三角形相似的条件⑶1.√;2.√;3.相似;4.90;5.相似;6.相似;7.D ;8.C ;9.C ;10.略;11.略;12.易得BCEF OC OF AC DF OA OD AB DE ====. 13.证: 22===AG AF CG AC AC CF 得△ACF ∽△ACG ,所以∠1=∠CAF ,即∠1+∠2+∠3=900. 14.A .15. ⑴略. ⑵AQ 平分∠DAP 或△ADQ ∽△AQP 等.4.6探索三角形相似的条件⑷1.相似;2.4.1;3.310;4.4;5.ABD ,CBA ,直角;6.D ;7.A ;8.C ;9.B ;10.C ;11.DE//BC ;12.证△AEF ∽△ACD ,得∠AFE=∠D ;13.易得△ABD ∽△CBE , ∠ACB=∠DEB .14.证△ABD ∽△ACE 得∠ADB=∠AEC 即可.15.略.16. ⑴CD 2=AC·BD .⑵∠APB=1200.17.分两种情况讨论: ⑴CM=55,⑵CM=552. 18. ⑴证明△ACD ∽△ABE , ⑵AD AC DE BC =或AE AB DE BC =.由⑴得: AD AE AC AB =,△ABC ∽△AED 问题即可得证.19.650或1150.20.易得2==CEDF CF AD ,△CEF ∽△DAF ,得2=EF AF 与∠AFE=900.即可得到. 21. ⑴证明△CDE ∽△ADE ,⑵由⑴得BC AD CE DM 212=,即BC AD CE DM =,又∠ADM=∠C .⑶由⑵得∠DBF=∠DAM ,所以AM ⊥BE . 22.易得:AC=6,AB=10.分两种情况讨论: 设时间为t 秒.⑴当AC CQ BC PC =时, 6828t t =-,解得t=512.⑵同理得8628t t =-,解得t=1132. 23. ⑴相似,提示可延长FE ,CD 交于点G . ⑵分两种情况:①∠BCF=∠AFE 时,产生矛盾,不成立.②当∠BCF=∠EFC 时,存在,此时k=23.由条件可得∠BCF=∠ECF=∠DCE=300,以下略.4.6探索三角形相似的条件⑸1.B ;2.C ;3.B ;4.C ;5.C ;6.C ;7.C ;8.A ;9.C ;10.B ;11.2等(答案不 唯一);12.DE//BC(答案不唯一);13. △ABF ∽△ACE , △BDE ∽△CDF 等;14.②③;15. ∠B=∠D(答案不 唯一);16.略;17.略(只要符合条件即可);18. ⑴七. ⑵△ABE ∽△DCA ∽△DAE ;19.利用相似可求得答案: x = 2cm .20. ⑴相似,证略.⑵BD=6.21.BF 是FG ,EF 的比例中项.证△BFG ∽△EFB 即可.22.证△ACF ∽△AEB .23. 2.24. ⑴AQ=AP ,6-t=2t 解得t=2.⑵S=12×6-21×12t -21×6(12-2t)=36.所以四边形的面积与点P ,Q 的位置无关.⑶分两种情况:①t=3.②t=56. 4.7测量旗杆的高度1.20;2.5;3.14;4.C ;5.C ;6.AB=25346米;7.MH=6m ;8. ⑴DE=310m ;⑵3.7m/s ;9.由相似可得: ⎪⎪⎩⎪⎪⎨⎧+==1284.37.18.17.1BC AB BC AB 解得AB=10.所以这棵松树的高为10m .10.略.4.8相似多边形的性质1.2:3;2.2:5,37.5;3.1:4,1:16;4.1:4;5.75;6.1:16;7.22;8.60;9.C ;10.C ;11.C ;12.D ;13.B ;14.B ;15.C ;16.B ;17.4.8cm ;18.25;19.16;20.⑴提示:延长AD ,BF 交于G .AE:EC=3:2.⑵4.21.⑴S 1:S=1:4.⑵141+-=x y (0<x <4).22.提示:延长BA ,CD 交于点F .面积=16217.23. ⑴可能,此时BD=72108180-.⑵不可能,当S FCE ∆的面积最大时,两面积之比=925<4. 24.⑴S AEF ∆=x x 512522+-.⑵存在.AE=266-. 25.略.26. ⑴640元.⑵选种茉莉花.⑶略.27. ⑴利用勾股定理问题即可解决.⑵答:无关.利用△MCG ∽△MDE 的周长比等于相似比可求得△MCG 的面积=4a .28. ⑴CP=22.⑵CP=724.⑶分两种情况①PQ=3760,②PQ=49120. 29.提示:作△ABC 的高AG . ⑴略.⑵DE=38.30. ⑴x =310s .⑵2:9.⑶AP=940或20. 31.⑴DE=AD ,AE=BE=CE . ⑵有: △ADE ∽△ACE 或△BCD ∽△ABC . ⑶2:1.4.9图形的放大与缩小1.点O ,3:2;2.68,40;3. △A 'B 'C ',7:4, △OA 'B ',7:4;4.一定;5.不一定;6.略;7.(-1,2)或(1, -2),(-2,1)或(1, -2);8.2:1;9.D ;10.C ;11.B ;12.D ;13.C ;14.D ;15.略;16.略;17.略;18.略;19. ⑴略; ⑵面积为445. 单元综合评价⑴ 1.C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.B ;8.C ;9.95;10.80;11.5;12.8;13.7.5;14.5;15.8:27;16.a 22;17.1:3; 18.相似.证明略.19.10:2.20.25:64.21.边长为6.22.y x :=3:2.23.略.24. △ABF ∽△ACE ,AB AF AC AE =得△AEF ∽△ACB . 25.菱形的边长为320cm . 26.证明略. 27. ⑴边长为48mm .⑵分两种情况讨论:①PN=2PQ 时,长是7480mm ,宽是7240mm .②PQ=2PN 时,长是60mm .宽是30mm . 单元综合评价⑵1.64cm ;2.4:9;3.30;4.三;5.72;6. △AEC ;7.1:4;8.②③④;9.8:5;10.7;11.C ;12.B ;13.B ;14.C ;15.C ;16.D ;17.D ;18.C ;19.B ;20.A ;21.略;22.EC= 4.5cm ;23.21. 6cm 2;24.略;25.边长是48mm . 26. ⑴AC AO BC OE =,DC DF BC OF =,DCDF AC AO =,所以:OE= OF . ⑵易得OE=712,EF=2OE=724. 27. ⑴PM=43厘米. ⑵相似比为2:3.⑶由已知可得:t=a a +66≤3,解得a ≤6,所以3<a ≤6.⑷存在.由条件可得:⎪⎪⎩⎪⎪⎨⎧-=-+=t t a at a a t 3)(66 解得: a 1=23,a 2=-23(不合题意,舍去).28. ⑴600,450.⑵900-21α.⑶900-21α,900+21α.证明略. 第五章 数据的收集与处理5.1 每周干家务活的时间1、(1)普查 (2)抽样调查 (3)抽样调查 (4)抽样调查2、(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10 (2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.3、D4、B5、(1)适合抽样调查 (2)适合普查 (3)适合抽样调查 (4)适合普查6、(1)缺乏代表性 (2)缺乏代表性 (3)有代表性7、8001512000=÷条8、估计该城市一年(以365天计)中空气质量达到良以上的天数为219天. 四、聚沙成塔(略)5.2 数据的收集1、抽样调查2、A3、C4、7万名学生的数学成绩、每名考生的数学成绩、1500名考生的数学成绩5、D6、(1)丘陵,平原,盆地,高原,山地;山地的面积最大(2)59%(3)丘陵和平原(4)各种地形的面积占总面积的百分比,100%(5)略(6)不能(7)96万平方千米,249.6万平方千米.7、原因可能是:样本的容量太小,或选区的样本不具有代表性、广泛性、随机性.8、(1)否(2)抽样调查(3)200(4)不一定,抽查的样本不具有代表性和广泛性.9、(1)平均质量为2.42千克. (2)900只可以出售.四、聚沙成塔能装电话或订阅《文学文摘》杂志的人在经济上相对富裕,而占人口比例多数、收入不高的选民却选择了罗斯福,因此抽样调查既要关注样本的大小,又要关注样本的代表性.5.3 频数与频率1、C2、0.323、0.54、0.185、D6、(1)48人(2)12人,0.257、0.258、(1)0.26 24 3 0.06(2)略 9、(1)8,12,0.2,0.24 (2)略 (3)900名学生竞赛成绩, 每名学生竞赛成绩, 50名学生竞赛成绩,50 (4)80.5~90.5 (5)216人四、聚沙成塔(1)89分(2)甲的综合得分=92(1-a )+87a 乙的综合得分=89(1-a )+88a 当0.5 ≤a < 0.75, 甲的综合得分高;当0.75 <a ≤0.8, 乙的综合得分高.5.4 数据的波动1、B2、A3、24、C5、B6、B7、D8、9 s ²9、2 10、4牛顿 11、(1)90分、70分、甲组(2)172、256、甲组成绩比较整齐. 12、甲x =8,乙x =8,x 丙=7.6,2甲s =4.4,2乙s =2.8,2s 丙=5.44;(2)乙 13、(1)8,7,8,2,60% (2)略四、聚沙成塔(1)701.6 699.3 (2)65.84 284.21 (3)甲稳定 (4)甲,乙单元综合评价1、 某校八年级学生的视力情况,每名八年级学生的视力情况,85八年级学生的视力情况.2、 (2), (1)、(3)3、3.2 、964、不可信,样本不具有代表性5、50,20、0.46、3,5,12克 7、(1)50,(2)60%(3)15 8、3,2.25,1.5 9、A 10、B 11、D 12、B 13、C 14、B 15、B 16、B 17、C 18、B 19、(1)102、113,106 (2)3180(3)y=53x 20\(1)21人 (2)0.96 (3)答题合理即可 21、(1)7、7、7.5、3(2)①甲的成绩较为稳定②乙的成绩较好③乙要比甲成绩好④尽管甲的成绩较为稳定,单从折线图的走势看,从第四次射击后,乙每次成绩都比甲高,并成上升趋势,乙的潜力比较大.第六章 证明(一)6.1 你能肯定吗?1、 观察可能得出的结论是(1)中的实线是弯曲的;(2)a 更长一些;(3)AB 与CD 不平 行.而我们用科学的方法验证可发现:(1)中的实线是直的;(2)a 与b 一样长;(3)AB 与CD 平行. 2、一样长.计算略. 3、(1)不正确;(2)不正确;(3)不正确. 4.A 5.B 6.能 7、原式=n 4,,所以一定为4的倍数.8、(1)正确的结论有①②③;(2)略 9.将此长方体从右到左数记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,由Ⅱ,Ⅳ可知,白颜色的面与红、黄两种颜色的面必相邻,又由Ⅰ知,白颜色的面应是蓝色的对面,恰为Ⅰ中的下底面,由Ⅲ知红与紫必相邻,再与Ⅰ相比较知,黄色的对面必为紫色了,从而红色的对面必为绿色了,通过上面的推理可以知道Ⅰ的下底面为白颜色,有4朵花,Ⅱ的下底面为绿色,有6朵花,Ⅲ的下底面为黄色,有2朵花,Ⅳ的下底面的紫色有5朵花,故这个长方体的下底面有(4+6+2+5)朵花,即共17朵花.聚沙成塔.m 4.107371000201.030≈÷⨯,比五层楼和电视塔都高.6.2 定义与命题1.(1)题设:两个角是对顶角;结论:这两个角相等(2)题设: 22b a =;结论:b a =(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等(4)题设:同旁内角互补;结论:两直线平行(5)题设:经过两点作直线;结论:有且只有一条直线.2.C3.C4.C5.B6.D7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知,,C B AC AB ∠=∠=求证:AD AE =是真命题.(只要答案合理即可)18.先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河.6.3 为什么它们平行1.C2. C3.B4.C5.B6. D7.A8.B9.(1)AD ∥BC (2) AD ∥BC (3)AB ∥CD 10.平行11.平行 12.平行,同位角相等,两直线平行. 13——16答案略 17.因为∠A=∠1,∠2+∠ACE+∠1=180º,又AC ⊥CE ,故∠ACE=90º,∴∠1+∠2=90º,∴∠A+∠2=90º,∴∠ABC=90º,同理∠EDC=90º,∴AB ∥DE. 18.提示:∠B+∠A=90º,∠AEF=∠B ,∴∠AEF+∠A=90º19.提示:∠A=90º,∠B=60º,∠C=30º ,∠A :∠B :∠C=3:2:1 6.4 如果两条直线平行1.C 2.C 3.C 4.B 5.A 6. 110º 7. 123º 8. 180º 9.南偏东70º 10. 证明:(1)∵AD ∥BC ,∴∠1=∠B ,∠2=∠C.又∠B=∠C ,∴∠1=∠2,即AD 平分∠EAC ;(2)由∠B+∠C+∠BAC=180º,且∠1+∠2+∠BAC=180º知,∠1+∠2=∠B+∠C ,又AD 平分∠EAC ,∴∠1=∠2,而∠B=∠C ,故∠1=∠B ,或∠2=∠C ,从而AD ∥BC. 11. 148º12.提示:过点C 做CP ∥AB 13. 121º49ˊ 14. (1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD , 故∠B+∠F=∠BCF.(2)过C 作CD ∥AB ,∴∠B+∠BCD=180º,又AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180º,故∠B+∠F+∠BCF=360º.6.5 三角形内角和定理的证明1.B2.D3.C4.D5.B6. 90º7. 50º, 100º8. 40º9. 63º 10. 100º 11. 50º12.略13.略 14.连CE ,记∠AEC=∠1,∠ACE=∠2,∴∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+21∠DEA+21∠BCD=180º 由 ∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º. ∴21(∠D+∠B )+∠1+∠2+21∠BCA+21∠DEA=180º ∴∠1+∠2+21∠BCA+21∠DEA=180º-21(∠D+∠B ), 即∠F+180º-21(∠D+∠B )=180º,∴∠F=21(∠B+∠D ); ( 2)设∠B=2α,则∠D=4α,∴∠F= 21(∠B+∠D )=3α, 又∠B :∠D :∠F=2:4:x ,∴x=3.2.略. 15.略6.6 关注三角形的外角1.C 2.C 3.C 4.B 5C 6. 35° 7. 37.5° 8. 260° 9. 55°或70° 10. 120°或115°或125°11.AF ⊥DE 12. ∠D=70° ∠D=90°12A +∠ 13. 证法一:延长CD 交AB 于点E ; 证法二:过点B 做BF ⊥AD ,交AD 的延长线于点F.14.证法1: 360BDC BDA CDA∠=-∠-∠ 又180BDA B BAD ∠=-∠-∠ 180CDA C CAD ∠=-∠-∠ 360(180)BDC B BAD ∴∠=--∠-∠- (180)C CAD BAD CAD B C -∠-∠=∠+∠+∠+∠ 即BDC BAC B C ∠=∠+∠+∠;证法2略. 15.略 16.延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A .证明略.提示:单元综合评价一、1.A 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.略12.80° 13.60° 14.115° 15.88° 16.45°>∠B>30°17.360 ° 18.118° 19.3 20.68°三、21.10022.证明: ∵∠ADE=∠B ,∴ED ∥BC . ∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD ∥FG .∵FG ⊥AB , ∴CD ⊥AB .23. ∵L 1∥L 2, ∴∠ECB+∠CBF=180°. ∴∠ECA+∠ACB+∠CBA+∠ABF=180°. ∵∠A=90°, ∴∠ACB+∠CBA=90°. 又∠ABF=25°, ∴∠ECA=180°-90°-25°=65°.24.解:分两种情况(1)当ABC ∆为锐角三角形时,70B ∠= (2) 当ABC ∆为钝角三角形时,20B ∠=25.略 33.FD EC ⊥ 90EFD FEC ∴∠=-∠ 而FEC B BAE ∴∠=∠+∠又AE 平分BAC ∠ 11(180)22BAE BAC B C ∴∠=∠=-∠-∠ =190()2B C -∠+∠ 则19090()2EFD B B C ⎡⎤∠=-∠+-∠+∠⎢⎥⎣⎦ =1()2C B ∠-∠ (2)成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 分解因式2.1分解因式1.整式,积;2.整式乘法;3.因式分解;4.C ;5.A ;6.D ;7.D ;8.B ;9.2,1-=-=n m ; 10.0; 11.C; 12.能;2.2提公因式法1.ab 2;2.3+x ;3.)43)(2(++a a ;4.(1)x+1;(2)b-c;5.22432y xy x +-;6.D;7.A;8.(1)3xy(x-2); (2))5(522x y y x -; (3))1382(22+--m m m ; (4))72)(3(--a a ;(5))223)((y x m y x +--; (6))25()(62a b b a --;(7) )413(522y xy y x -+;(8)2(x+y)(3x-2y); (9)))((c b a a x ---; (10))(2n m q +;9.C;10.10;21;11.)1(2n n a a a ++;12.)1(2+=+n n n n ;13.6-;14.6;2.4运用公式法(1)1.B;2.B;3.C;4.(1)))((x y x y -+;(2))3)(3(41y x y x -+; 5.(1)800;(2)3.98; 6.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b); (5)-3xy(y+3x)(y-3x); (6)4a 2(x+2y)(x-2y); (7)(a+4)(a-4); (8))3)(3)(9(22y x y x y x -++;(9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x m+1(x+1)(x-1); 8.A; 9.2008; 10.40162009; 2.3运用公式法(2)1.±8;2.1;3.2)121(-x ; 4.(1)5x+1;(2)b-1;(3)4;2;(4)±12mn;2m ±3n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12.(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9)22)3(n m n +; (10)-2ax n-1(1-3x)2; 13.x=2;y=-3; 14.(1)240000;(2)2500;15.7;16.31-;17.A;18.B;19.B;20.1; 单元综合评价1.C; 2.B; 3.B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3x 2y+2xy-1); 17.(a-b)2(a+b); 18.2)21(--x a ;19.(x+y)2(x-y)2; 20.45000; 21.14; 22.2)1(1)1(+=+++n n n n第三章 分式3.1分式(1)1.②和④,①和③;2.43;3.23+-m m ,-2;4.31,-5;5.为任意实数,1;6.32-,3±;7.⑴t s ,⑵)(a m b a m --,⑶ba bn am ++,⑷p n m -;8.B ;9.C ;10.C ;11.⑴3±≠x ,⑵a x 4±≠;12.⑴x=2,⑵x=1;13.a=6;14.2<x ;15.-3,-1,0,2,3,5;四.109=+b a . 1分式(2):1.⑴ab a +2,⑵x ,⑶4n ,⑷x-y ;2.1≠x 且0≠x ;3.①y x 32,②x x --112,③x x x -+-2122,④1312-++x x x ;4.①y x y x 560610+-,②15203012+-x y x ,③y x y x 20253940+-,④b a b a 1512810+-;5.B ;6.71-;7.①-6xyz ,②m m 2-,③42+-m ,④22+-a a ;8.5;9.53;10.-3,11;11.5642++x x ;四.1.M=N ;2.1.3.2分式的乘除法 1.⑴bc a 2,⑵22xy ;2.2-≠x 且3-≠x 且4-≠x ;3.ba x 265;4.515;5.D ;6.D ;7.C ;8.⑴y x 2-,⑵55b a -,⑶2-x x ,⑷11-+-m m ;9.⑴-1,⑵34-,⑶41.四.1. 3.3分式的加减法(1)1.⑴ab c -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1. 3.3分式的加减法(2)1.B;2.B;3.C;4.27;5.1;6.⑴11-x ,⑵2)2(4--x x x ,⑶y ,⑷3-x ;7.31或21;8.81;9.A=1,B=1;10.12;11.-3;四.解:由13ab a b =+,得3a b ab +=,即113a b +=……① 同理可得114b c +=……②,115a c+=……③,①+②+③得22212a b c ++=,∴1116a b c ++=,∴6bc ac ab abc ++=,∴abc ab bc ca ++=16 3.4分式方程(1)1.整式方程,检验;2.12-x ;3.D ;4.0;5.x=20;6.-1;7.5;8.x=2;9.3;10.C ;11.D ;12.3;13.4;14.-1;15.A ;16.⑴原方程无解,⑵x=2,⑶x=3,⑷3-=x ;四.221+-n n . 3.4分式方程(2)1.B ;2.C ;3.3;4.22;5.D ;6.⑴x 200,⑵5x ,(200-5x),⑶55200+-x x ,⑷1552005200++-+=x x x ;⑸20;7.3±;8.⑴x=4,⑵x=7;9.1>m 且9≠m ;10.解:设公共汽车的速度为x 千米/时,则小汽车速度为3x 千米/时,根据题意得xx x 38031380=+-解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x 元,则今年价格为1.25x 元,根据题意得,6181.2536=-xx ,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x 个,则需要横式3x 个,根据题意得,)3354x x ⨯+⨯(∶)325(x x ⨯+=29x ∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.单元综合评价1.D ;2.B ;3.D ;4.C ;5.B ;6.B ;7.C ;8.)1()1(2-+x x x ;9.21≠x 且43-≠x ;10.2;11.53;12.-3;13.av v a +25;14.x=2;15.1<m 且3-≠m ;16.1210222++-x x x ;17.x -22;18.21;19.56-=x ;20.5-=x ;21.解:设改进前每天加工x 个,则改进后每天加工2.5个,根据题意得155.210001000+=x x ,解得x=40,经检验x=40是所列方程的解,所以2.5x=100.答:改进后每天加工100个零件.22.解:设甲原来的速度为x 千米/时,则乙原来的速度为(x-2)千米/时,根据题意得240844-40-=-+x x x ,解得x=12,经检验x=12是所列方程的解,所以x-2=10.答:甲原来的速度为12千米/时,乙原来的速度为10千米/时.第四章 相似图形4. 1线段的比⑴1.2:5,57;2.58;3.269;4.5; 5.1:50000;6.45;7.1:2:2;8.D ;9.B ;10.C ;11.B ;12.D ;13.⑴√⑵×;14.BC=10cm .4.1线段的比⑵1.3;2.32;3.53;4.C ;5.B ;6.B ;7.D ;8.B ;9.PQ=24;10.⑴3;⑵54-;11.⑴38;⑵76-;(3)-5;12.a :b:c=4:8:7;13.分两种情况讨论:⑴a +b+c≠0时,值为2;⑵a +b+c=0时,值为-1. 4.2黄金分割1.AP 2=BP·AB 或PB 2=AP·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN·MN 即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形. 4.3形状相同的图形1.相同⑶⑸;不同(1)(2)(4)(6).2.(a )与⑷,(b)与⑹,(c)与⑸是形状相同的;3.略;4.⑴AB=13,BC=26,AC=5,⑵A /B /=213,B /C /=226,A /C /=10,⑶成比例,⑷相同.4.4相似多边形1.×2.√3.×4.√5.√6.①④⑤;7.B ;8.B ;9.C ;10.C ;11.A ;12.27;13.66;14.一定;15.不一定;16.2;17.都不相似,不符合相似定义;18.各角的度数依次为650,650,1150;1150.B 'C '=A 'D '=415cm ;19.BC·CF=1;20.相似;21.2;22.b 2=2a 2.4.5相似三角形1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.4.6探索三角形相似的条件⑴1.2;2.6;3.2;4.4;△CDF ,1:2,180;5.4:3;6.2.4;7.572;8.B ;9.B ;10.C ;11.C ;12D ;13.BF=10cm ;14.⑴略.⑵BM=3. 15.由已知可得:AE AF BE FG =, AEAF DE FC =,BE=DE ,所以,FG=FC . 16.由已知可得: AG AF CG BF =,AG AF GD EF =,所以GD EF CG BF =.17. 由已知得:BFDF CF GF =,BF DF EF CF =,可得EF CF CF GF =,即: CF 2=GF·EF . 18.由已知得: PB PD PA PQ =,PBPD PR PA =,可得: 22PB PD PR PQ =. 19.不变化,由已知得: BC CP AB PE =,BCBP CD PF =,得:1=+CD PF AB PE ,即PE+PF=3. 20.提示:过点C 作CG//AB 交DF 于G .21.23.22.⑴由已知得:21===CD OE FC OF GC EG ,所以32=CE GC ,即31=BC GC .问题得证.⑵连结DG 交AC 于M ,过M 作MH ⊥BC 交BC 于H ,点H 即为所求.23.⑴证△AEC ≌△AEF 即可.⑵EG=4.24.⑴过点E 作EG//BC 交AE 于G .可得: nn m EC BE +=.⑵由⑴与已知得:2=+n n m 解得:m=n ,即AF=BF .所以:CF ⊥AB .⑶不能,由⑴及已知可得:若E 为中点,则m=0与已知矛盾.4.6探索三角形相似的条件⑵1.三;2.22,26;3.6;4;15-55;5.310;6.2.4;7.A ;8.C ;9.B ;10.A ;11.B ;12.A ;13.⑴略.⑵相似,由⑴得∠AFE=∠BAC=600,∠AEF 公共.⑶由△BDF ∽△ABD 得: ADBD BD DF =,即BD 2=AD·DF . 14.⑴∠BAC=∠D 或∠CAD=∠ACB .⑵由△ABC ∽△ACD 得BC AC AC AD =,解得:AD= 4,所以中位线的长= 6.5.15.证: △ADF ∽△BDE 即可.16.AC = 43.17.提示:连结AC 交BD 于O .18.连结PM ,PN .证: △BPM ∽△CPN 即可.19.证△BOD ∽△EOC 即可.20.⑴连结AF .证; △ACF ∽△BAF 可得AF 2=FB·FC ,即FD 2=FB·FC .⑵由⑴相似可得: CF AF AC AB =,AF BF AC AB =,即CF BF ACAB =22. 21.⑴略.⑵作AF//CD 交BC 与F .可求得AB=4.⑶存在.设BP=x ,由⑴可得xx -⨯=74834,解得x 1=1, x 2= 6.所以BP 的长为1cm 或6cm .22.⑴由∠AFC=∠BCE=∠BCF+450,∠A=∠B=450可证得相似.⑵由⑴得AF·BE=AC·BC =2S .23. ⑴略. ⑵△ABP ∽△DPQ ,DQ PD AP AB =,x y x -+=522,得y =-21x 2+25x -2.(1<x <4).24. ⑴略. ⑵不相似.增加的条件为: ∠C=300或∠ABC=600.4.6探索三角形相似的条件⑶1.√;2.√;3.相似;4.90;5.相似;6.相似;7.D ;8.C ;9.C ;10.略;11.略;12.易得BCEF OC OF AC DF OA OD AB DE ====. 13.证: 22===AG AF CG AC AC CF 得△ACF ∽△ACG ,所以∠1=∠CAF ,即∠1+∠2+∠3=900. 14.A .15. ⑴略. ⑵AQ 平分∠DAP 或△ADQ ∽△AQP 等.4.6探索三角形相似的条件⑷1.相似;2.4.1;3.310;4.4;5.ABD ,CBA ,直角;6.D ;7.A ;8.C ;9.B ;10.C ;11.DE//BC ;12.证△AEF ∽△ACD ,得∠AFE=∠D ;13.易得△ABD ∽△CBE , ∠ACB=∠DEB .14.证△ABD ∽△ACE 得∠ADB=∠AEC 即可.15.略.16. ⑴CD 2=AC·BD .⑵∠APB=1200.17.分两种情况讨论: ⑴CM=55,⑵CM=552. 18. ⑴证明△ACD ∽△ABE , ⑵AD AC DE BC =或AE AB DE BC =.由⑴得: AD AE AC AB =,△ABC ∽△AED 问题即可得证.19.650或1150.20.易得2==CEDF CF AD ,△CEF ∽△DAF ,得2=EF AF 与∠AFE=900.即可得到. 21. ⑴证明△CDE ∽△ADE ,⑵由⑴得BC AD CE DM 212=,即BC AD CE DM =,又∠ADM=∠C .⑶由⑵得∠DBF=∠DAM ,所以AM ⊥BE . 22.易得:AC=6,AB=10.分两种情况讨论: 设时间为t 秒.⑴当AC CQ BC PC =时, 6828t t =-,解得t=512.⑵同理得8628t t =-,解得t=1132. 23. ⑴相似,提示可延长FE ,CD 交于点G . ⑵分两种情况:①∠BCF=∠AFE 时,产生矛盾,不成立.②当∠BCF=∠EFC 时,存在,此时k=23.由条件可得∠BCF=∠ECF=∠DCE=300,以下略.4.6探索三角形相似的条件⑸1.B ;2.C ;3.B ;4.C ;5.C ;6.C ;7.C ;8.A ;9.C ;10.B ;11.2等(答案不 唯一);12.DE//BC(答案不唯一);13. △ABF ∽△ACE , △BDE ∽△CDF 等;14.②③;15. ∠B=∠D(答案不 唯一);16.略;17.略(只要符合条件即可);18. ⑴七. ⑵△ABE ∽△DCA ∽△DAE ;19.利用相似可求得答案: x = 2cm .20. ⑴相似,证略.⑵BD=6.21.BF 是FG ,EF 的比例中项.证△BFG ∽△EFB 即可.22.证△ACF ∽△AEB .23. 2.24. ⑴AQ=AP ,6-t=2t 解得t=2.⑵S=12×6-21×12t -21×6(12-2t)=36.所以四边形的面积与点P ,Q 的位置无关.⑶分两种情况:①t=3.②t=56. 4.7测量旗杆的高度1.20;2.5;3.14;4.C ;5.C ;6.AB=25346米;7.MH=6m ;8. ⑴DE=310m ;⑵3.7m/s ;9.由相似可得: ⎪⎪⎩⎪⎪⎨⎧+==1284.37.18.17.1BC AB BC AB 解得AB=10.所以这棵松树的高为10m .10.略.4.8相似多边形的性质1.2:3;2.2:5,37.5;3.1:4,1:16;4.1:4;5.75;6.1:16;7.22;8.60;9.C ;10.C ;11.C ;12.D ;13.B ;14.B ;15.C ;16.B ;17.4.8cm ;18.25;19.16;20.⑴提示:延长AD ,BF 交于G .AE:EC=3:2.⑵4.21.⑴S 1:S=1:4.⑵141+-=x y (0<x <4).22.提示:延长BA ,CD 交于点F .面积=16217.23. ⑴可能,此时BD=72108180-.⑵不可能,当S FCE ∆的面积最大时,两面积之比=925<4. 24.⑴S AEF ∆=x x 512522+-.⑵存在.AE=266-. 25.略.26. ⑴640元.⑵选种茉莉花.⑶略.27. ⑴利用勾股定理问题即可解决.⑵答:无关.利用△MCG ∽△MDE 的周长比等于相似比可求得△MCG 的面积=4a .28. ⑴CP=22.⑵CP=724.⑶分两种情况①PQ=3760,②PQ=49120. 29.提示:作△ABC 的高AG . ⑴略.⑵DE=38.30. ⑴x =310s .⑵2:9.⑶AP=940或20. 31.⑴DE=AD ,AE=BE=CE . ⑵有: △ADE ∽△ACE 或△BCD ∽△ABC . ⑶2:1.4.9图形的放大与缩小1.点O ,3:2;2.68,40;3. △A 'B 'C ',7:4, △OA 'B ',7:4;4.一定;5.不一定;6.略;7.(-1,2)或(1, -2),(-2,1)或(1, -2);8.2:1;9.D ;10.C ;11.B ;12.D ;13.C ;14.D ;15.略;16.略;17.略;18.略;19. ⑴略; ⑵面积为445. 单元综合评价⑴ 1.C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.B ;8.C ;9.95;10.80;11.5;12.8;13.7.5;14.5;15.8:27;16.a 22;17.1:3; 18.相似.证明略.19.10:2.20.25:64.21.边长为6.22.y x :=3:2.23.略.24. △ABF ∽△ACE ,AB AF AC AE =得△AEF ∽△ACB . 25.菱形的边长为320cm . 26.证明略. 27. ⑴边长为48mm .⑵分两种情况讨论:①PN=2PQ 时,长是7480mm ,宽是7240mm .②PQ=2PN 时,长是60mm .宽是30mm . 单元综合评价⑵1.64cm ;2.4:9;3.30;4.三;5.72;6. △AEC ;7.1:4;8.②③④;9.8:5;10.7;11.C ;12.B ;13.B ;14.C ;15.C ;16.D ;17.D ;18.C ;19.B ;20.A ;21.略;22.EC= 4.5cm ;23.21. 6cm 2;24.略;25.边长是48mm . 26. ⑴AC AO BC OE =,DC DF BC OF =,DCDF AC AO =,所以:OE= OF . ⑵易得OE=712,EF=2OE=724. 27. ⑴PM=43厘米. ⑵相似比为2:3.⑶由已知可得:t=a a +66≤3,解得a ≤6,所以3<a ≤6.⑷存在.由条件可得:⎪⎪⎩⎪⎪⎨⎧-=-+=t t a at a a t 3)(66 解得: a 1=23,a 2=-23(不合题意,舍去).28. ⑴600,450.⑵900-21α.⑶900-21α,900+21α.证明略. 第五章 数据的收集与处理5.1 每周干家务活的时间1、(1)普查 (2)抽样调查 (3)抽样调查 (4)抽样调查2、(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10 (2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.3、D4、B5、(1)适合抽样调查 (2)适合普查 (3)适合抽样调查 (4)适合普查6、(1)缺乏代表性 (2)缺乏代表性 (3)有代表性7、8001512000=÷条8、估计该城市一年(以365天计)中空气质量达到良以上的天数为219天. 四、聚沙成塔(略)5.2 数据的收集1、抽样调查2、A3、C4、7万名学生的数学成绩、每名考生的数学成绩、1500名考生的数学成绩5、D6、(1)丘陵,平原,盆地,高原,山地;山地的面积最大(2)59%(3)丘陵和平原(4)各种地形的面积占总面积的百分比,100%(5)略(6)不能(7)96万平方千米,249.6万平方千米.7、原因可能是:样本的容量太小,或选区的样本不具有代表性、广泛性、随机性.8、(1)否(2)抽样调查(3)200(4)不一定,抽查的样本不具有代表性和广泛性.9、(1)平均质量为2.42千克. (2)900只可以出售.四、聚沙成塔能装电话或订阅《文学文摘》杂志的人在经济上相对富裕,而占人口比例多数、收入不高的选民却选择了罗斯福,因此抽样调查既要关注样本的大小,又要关注样本的代表性.5.3 频数与频率1、C2、0.323、0.54、0.185、D6、(1)48人(2)12人,0.257、0.258、(1)0.26 24 3 0.06(2)略 9、(1)8,12,0.2,0.24 (2)略 (3)900名学生竞赛成绩, 每名学生竞赛成绩, 50名学生竞赛成绩,50 (4)80.5~90.5 (5)216人四、聚沙成塔(1)89分(2)甲的综合得分=92(1-a )+87a 乙的综合得分=89(1-a )+88a 当0.5 ≤a < 0.75, 甲的综合得分高;当0.75 <a ≤0.8, 乙的综合得分高.5.4 数据的波动1、B2、A3、24、C5、B6、B7、D8、9 s ²9、2 10、4牛顿 11、(1)90分、70分、甲组(2)172、256、甲组成绩比较整齐. 12、甲x =8,乙x =8,x 丙=7.6,2甲s =4.4,2乙s =2.8,2s 丙=5.44;(2)乙 13、(1)8,7,8,2,60% (2)略四、聚沙成塔(1)701.6 699.3 (2)65.84 284.21 (3)甲稳定 (4)甲,乙单元综合评价1、 某校八年级学生的视力情况,每名八年级学生的视力情况,85八年级学生的视力情况.2、 (2), (1)、(3)3、3.2 、964、不可信,样本不具有代表性5、50,20、0.46、3,5,12克 7、(1)50,(2)60%(3)15 8、3,2.25,1.5 9、A 10、B 11、D 12、B 13、C 14、B 15、B 16、B 17、C 18、B 19、(1)102、113,106 (2)3180(3)y=53x 20\(1)21人 (2)0.96 (3)答题合理即可 21、(1)7、7、7.5、3(2)①甲的成绩较为稳定②乙的成绩较好③乙要比甲成绩好④尽管甲的成绩较为稳定,单从折线图的走势看,从第四次射击后,乙每次成绩都比甲高,并成上升趋势,乙的潜力比较大.第六章 证明(一)6.1 你能肯定吗?1、 观察可能得出的结论是(1)中的实线是弯曲的;(2)a 更长一些;(3)AB 与CD 不平 行.而我们用科学的方法验证可发现:(1)中的实线是直的;(2)a 与b 一样长;(3)AB 与CD 平行. 2、一样长.计算略. 3、(1)不正确;(2)不正确;(3)不正确. 4.A 5.B 6.能 7、原式=n 4,,所以一定为4的倍数.8、(1)正确的结论有①②③;(2)略 9.将此长方体从右到左数记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,由Ⅱ,Ⅳ可知,白颜色的面与红、黄两种颜色的面必相邻,又由Ⅰ知,白颜色的面应是蓝色的对面,恰为Ⅰ中的下底面,由Ⅲ知红与紫必相邻,再与Ⅰ相比较知,黄色的对面必为紫色了,从而红色的对面必为绿色了,通过上面的推理可以知道Ⅰ的下底面为白颜色,有4朵花,Ⅱ的下底面为绿色,有6朵花,Ⅲ的下底面为黄色,有2朵花,Ⅳ的下底面的紫色有5朵花,故这个长方体的下底面有(4+6+2+5)朵花,即共17朵花.聚沙成塔.m 4.107371000201.030≈÷⨯,比五层楼和电视塔都高.6.2 定义与命题1.(1)题设:两个角是对顶角;结论:这两个角相等(2)题设: 22b a =;结论:b a =(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等(4)题设:同旁内角互补;结论:两直线平行(5)题设:经过两点作直线;结论:有且只有一条直线.2.C3.C4.C5.B6.D7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知,,C B AC AB ∠=∠=求证:AD AE =是真命题.(只要答案合理即可)18.先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河.6.3 为什么它们平行1.C2. C3.B4.C5.B6. D7.A8.B9.(1)AD ∥BC (2) AD ∥BC (3)AB ∥CD 10.平行11.平行 12.平行,同位角相等,两直线平行. 13——16答案略 17.因为∠A=∠1,∠2+∠ACE+∠1=180º,又AC ⊥CE ,故∠ACE=90º,∴∠1+∠2=90º,∴∠A+∠2=90º,∴∠ABC=90º,同理∠EDC=90º,∴AB ∥DE. 18.提示:∠B+∠A=90º,∠AEF=∠B ,∴∠AEF+∠A=90º19.提示:∠A=90º,∠B=60º,∠C=30º ,∠A :∠B :∠C=3:2:16.4 如果两条直线平行1.C 2.C 3.C 4.B 5.A 6. 110º 7. 123º 8. 180º 9.南偏东70º 10. 证明:(1)∵AD ∥BC ,∴∠1=∠B ,∠2=∠C.又∠B=∠C ,∴∠1=∠2,即AD 平分∠EAC ;(2)由∠B+∠C+∠BAC=180º,且∠1+∠2+∠BAC=180º知,∠1+∠2=∠B+∠C ,又AD 平分∠EAC ,∴∠1=∠2,而∠B=∠C ,故∠1=∠B ,或∠2=∠C ,从而AD ∥BC. 11. 148º12.提示:过点C 做CP ∥AB 13. 121º49ˊ 14. (1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD , 故∠B+∠F=∠BCF.(2)过C 作CD ∥AB ,∴∠B+∠BCD=180º,又AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180º,故∠B+∠F+∠BCF=360º.6.5 三角形内角和定理的证明1.B2.D3.C4.D5.B6. 90º7. 50º, 100º8. 40º9. 63º 10. 100º 11. 50º12.略13.略 14.连CE ,记∠AEC=∠1,∠ACE=∠2,∴∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+21∠DEA+21∠BCD=180º 由 ∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º. ∴21(∠D+∠B )+∠1+∠2+21∠BCA+21∠DEA=180º ∴∠1+∠2+21∠BCA+21∠DEA=180º-21(∠D+∠B ), 即∠F+180º-21(∠D+∠B )=180º,∴∠F=21(∠B+∠D ); ( 2)设∠B=2α,则∠D=4α,∴∠F= 21(∠B+∠D )=3α, 又∠B :∠D :∠F=2:4:x ,∴x=3.2.略. 15.略6.6 关注三角形的外角1.C 2.C 3.C 4.B 5C 6. 35° 7. 37.5° 8. 260° 9. 55°或70° 10. 120°或115°或125°11.AF ⊥DE 12. ∠D=70° ∠D=90°12A +∠ 13. 证法一:延长CD 交AB 于点E ; 证法二:过点B 做BF ⊥AD ,交AD 的延长线于点F.14.证法1: 360BDC BDA CDA∠=-∠-∠o Q 又180BDA B BAD ∠=-∠-∠o Q 180CDA C CAD ∠=-∠-∠o 360(180)BDC B BAD ∴∠=--∠-∠-o o (180)C CAD BAD CAD B C -∠-∠=∠+∠+∠+∠o 即BDC BAC B C ∠=∠+∠+∠;证法2略. 15.略 16.延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A .证明略.提示:单元综合评价一、1.A 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.略12.80° 13.60° 14.115° 15.88° 16.45°>∠B>30°17.360 ° 18.118° 19.3 20.68°三、21.100o22.证明: ∵∠ADE=∠B ,∴ED ∥BC . ∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD ∥FG .∵FG ⊥AB , ∴CD ⊥AB .23. ∵L 1∥L 2, ∴∠ECB+∠CBF=180°. ∴∠ECA+∠ACB+∠CBA+∠ABF=180°. ∵∠A=90°, ∴∠ACB+∠CBA=90°. 又∠ABF=25°, ∴∠ECA=180°-90°-25°=65°.24.解:分两种情况(1)当ABC ∆为锐角三角形时,70B ∠=o (2) 当ABC ∆为钝角三角形时,20B ∠=o25.略 33.FD EC ⊥Q 90EFD FEC ∴∠=-∠o 而FEC B BAE ∴∠=∠+∠又AE Q 平分BAC ∠ 11(180)22BAE BAC B C ∴∠=∠=-∠-∠o =190()2B C -∠+∠o 则19090()2EFD B B C ⎡⎤∠=-∠+-∠+∠⎢⎥⎣⎦o o =1()2C B ∠-∠ (2)成立。

相关文档
最新文档