模型建构在高中生物新课程教学中的应用
浅谈模型建构教学在高中生物教学中的应用

物的手段,生物模型方法是利用模型方法 寻找变量关系,借助模型获取客体认识方 法。模型是学生学习科学知识的手段,学 生将模型方法内化为认知图式能获得认 知水平跃进。高中生应在学习中运用类 比,归纳等建模思维方法构建不同模型, 解决生物学问题中运用模型方法。
二、高中生物模型教学的意义 1.适应新课标要求。 当今世界生物学科技飞速发展,生命 科技地位日益提升,对生命科学人才需求 日益精品。中学生物教学中向学生传授基 本知识已经不能满足科学发展的要求,如 何帮助学生培养生物科学思维,就成为了 中学生物教学研究热点问题。随着《高中 生物课程标准》发布,新课标首次将生物 模型教学作为课程目标,目前生物学模型 教学成为中学生生物教学热点问题。 新课标要求学生了解模型科学方法 在生物学科研中的应用,新课标内容中规 定不同板块需要学生掌握的模型内容。建 模活动是科学家思维的核心要素。新课标 对生物模型要求体现出生物模型科研方 法是中学生物教学中的重要内容。模型教 学中最初将模型方法作为工具引入课堂 教学中,建构主义教学理论发展,教育者 关注学习者对模型的主动构建,建构主义 教学理论与模型构建紧密联系,目前模型 教学研究基于建构主义教学理论开展。 2.提升生物教学效果。 高中生物教学中使用模型具有悠久 的历史,如常见的挂图等为模型,各种实 物很早在生物课堂出现沿用至今,但学生 对模型使用处于被动接受状态,传统教学 模型使用处于初级阶段。通过调查发现课 堂教学中学生亲自参与模型使用中,会激
高中生物学教学中模型建构及应用

高中生物学教学中模型建构及应用生物学是一门关于生物体的结构、功能、发育和演化的科学,是我们了解自然界中丰富多样生命现象的基础。
在高中生物学教学中,模型建构及应用是一种重要的教学手段和学习工具,旨在帮助学生更好地理解和应用生物学知识。
本文将浅谈关于高中生物学教学中模型建构及应用的意义、原则与方法,并举例说明其在教学实践中的应用。
一、模型建构的意义1.帮助学生建立概念框架。
生物学知识繁多复杂,通过建立模型可以将这些知识有机地组织起来,形成概念框架。
概念框架是学生对生物学知识的认知基础,有助于学生理解生物体的内部结构、功能和相互关系。
2.提高学生的观察和思维能力。
模型建构过程中,学生需要通过观察、分析和推理来理解生物现象,并将其抽象为模型。
这种过程培养了学生的观察和思维能力,提高了他们对生物学问题的解决能力。
3.启发学生的创造力。
模型建构不仅要求学生理解现有的知识,还需要他们具备一定的创造能力。
通过模型建构,学生可以体验到科学探究的乐趣,并激发他们的创造力和创新思维。
二、模型建构的原则1.符合生物学知识体系。
模型建构应基于科学原理,并与生物学知识体系相一致。
模型的构建应遵循生物学的基本概念和规律,确保学生对生物学知识的理解是正确和全面的。
2.简单易懂。
模型应简单明了,避免过于复杂的结构和步骤。
学生通常是通过模型来对抽象的生物学知识进行理解和记忆,因此模型的设计应尽可能提供清晰简单的表达,容易被学生接受和理解。
3.体现层次关系。
模型建构的过程应体现生物体的层次关系。
生物体由细胞、组织、器官、系统等多个层次组成,模型的构建过程中应该将这些层次逐步呈现,帮助学生理解生物体的组织结构及相互关系。
三、模型建构的方法1.绘制图示法。
通过绘制生物体的示意图或结构图,来描述和分析生物体的结构和功能。
图示法可以简化复杂的生物结构,突出关键部位,方便学生理解。
2.搭建模型法。
通过使用适当的材料,搭建生物体的模型,帮助学生形象地观察和理解生物现象。
数学模型的建构在高中生物教学中的应用实例-最新教育资料

数学模型的建构在高中生物教学中的应用实例高中生物学教学中常用到模型构建来辅助教学,以加深学生对知识的理解。
模型是人们为了某种特定的目的而对认识对象所作的一种简化的概括性的表达形式,这种描述可以是定性的,也可以是定量的,包括物理模型、概念模型、数学模型等。
数学模型既可以定性描述也可以定量描述,笔者在教学中结合高中数学的知识内容,建构一些数学模型取得一定的效果,实例如下:实例1:新课程标准教科书《遗传与进化》模块,遗传规律是教学中的一个重点,又是一个难点。
基因自由组合定律以及伴性遗传学生按照教科书上的方法理解很难的,因为教科书是按照孟德尔和摩尔根研究过程来编排这段知识,那时的科学技术以及数学方法都比现在落伍很多,当时的科学家花了很多时间才弄清楚其中的规律性,现在大凡的学习者理解就很困难了。
利用高中数学方法构建模型,就能有用地突破这个难点。
建构数学模型:控制生物相对性状的一对基因是一个事件;控制生物另外一相对性状的一对基因是另一事件。
在基因自由组合定律中,这两对基因位于非同源染色体上,所控制的两对性状就是两个相互独立的随机事件。
相对性状中例外的表现是互斥事件如豌豆的圆粒与皱粒,表现为圆粒性状就不可能是皱粒,反过来也一样。
假设一性状的遗传为事件A,其出现的概率为m,则其相对性状则记为■其概率为1-m,因为他们是互斥事件。
另一性状的遗传为事件B,其出现的概率为n,则其相对性状记为■其概率为1-n。
那么两事件同时出现的概率就是P(A,B)=P(A)×P(B)=mn。
以孟德尔豌豆杂交实验为例说明。
豌豆的遗传性状中,种子籽粒的颜色是种性状,有黄色和绿色两种,他们是互斥事件,若记黄色为事件A则绿色为■。
种子籽粒形状是种性状,有圆粒和皱粒两种,他们也是互斥事件,若记圆粒为事件B,则皱粒为■。
籽粒的颜色与性状是两相互独立的随机事件。
在杂交试验中黄色圆粒豌豆与绿色皱粒豌豆杂交,F1全为黄色圆粒;再自交,后代F2出现四种性状组合:黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒,性状分离比为9∶3∶3∶1。
模型建构在高中生物教学中的应用

模型建构在高中生物教学中的应用一、教学任务及对象1、教学任务本教学任务围绕“模型建构在高中生物教学中的应用”展开,旨在通过引导学生构建生物学模型,提高学生对生物概念、原理和过程的理解与应用能力。
课程内容主要包括:模型的定义与分类、模型建构的方法与步骤、模型在生物教学中的应用实例等。
通过本教学任务,使学生能够掌握模型建构的基本技能,并能在实际生物学习过程中运用模型进行分析、解决问题。
2、教学对象本教学任务针对的是高中学生,特别是对生物学科有一定兴趣和基础的学生。
考虑到学生的年龄特点和认知水平,教学过程中将采用生动形象、贴近生活的案例,以及具有启发性的问题,激发学生的学习兴趣和探究欲望。
同时,注重培养学生的团队合作意识和批判性思维,使他们在学习过程中形成良好的学习习惯和科学素养。
二、教学目标1、知识与技能(1)理解模型的定义、分类及其在生物科学中的应用。
(2)掌握模型建构的基本方法与步骤,包括数据收集、假设提出、模型构建、模型验证等。
(3)运用模型分析生物现象,解释生物学原理,解决实际问题。
(4)运用数学和逻辑思维,将生物学问题抽象为模型,提高分析问题的能力。
2、过程与方法(1)通过小组合作,培养学生团队协作能力和沟通技巧。
(2)学会运用比较、分析、综合等思维方式,提高解决问题的策略和方法。
(3)培养学生自主探究、批判性思维和创新能力,形成科学的研究方法。
(4)通过实例分析,让学生在实践中学会如何运用模型,提高学习的针对性和实用性。
3、情感,态度与价值观(1)培养学生对生物学科的兴趣,激发他们探索生命奥秘的欲望。
(2)通过模型建构的过程,让学生体验科学研究的艰辛与快乐,培养他们坚持不懈、勇于探索的精神。
(3)提高学生的环保意识,使他们认识到保护生物多样性和生态环境的重要性。
(4)培养学生尊重事实、严谨求实的科学态度,形成正确的价值观。
(5)通过团队合作,培养学生互相尊重、包容合作的品质,增强集体荣誉感。
数学模型的建构在高中生物教学中的应用实例

数学模型的建构在高中生物教学中的应用实例摘要:建构数学模型辅助生物学教学,对生物学教学有极大的促进作用。
新课程标准教科书大量采用数学函数曲线以及各种数学表格、数学术语对生物学有关现象原理进行定性或定量描述。
在教学中应用数学模型可以训练学生严谨的科学思维和加强对生物知识的理解。
关键词:数学模型;生物教学;实验高中生物学教学中常用到模型构建来辅助教学,以加深学生对知识的理解。
模型是人们为了某种特定的目的而对认识对象所作的一种简化的概括性的表达形式,这种描述可以是定性的,也可以是定量的,包括物理模型、概念模型、数学模型等。
数学模型既可以定性描述也可以定量描述,笔者在教学中结合高中数学的知识内容,建构一些数学模型取得一定的效果,实例如下:实例1:新课程标准教科书《遗传与进化》模块,遗传规律是教学中的一个重点,又是一个难点。
基因自由组合定律以及伴性遗传学生按照教科书上的方法理解很难的,因为教科书是按照孟德尔和摩尔根研究过程来编排这段知识,那时的科学技术以及数学方法都比现在落后很多,当时的科学家花了很多时间才弄清楚其中的规律性,现在一般的学习者理解就很困难了。
利用高中数学方法构建模型,就能有效地突破这个难点。
建构数学模型:控制生物相对性状的一对基因是一个事件;控制生物另外一相对性状的一对基因是另一事件。
在基因自由组合定律中,这两对基因位于非同源染色体上,所控制的两对性状就是两个相互独立的随机事件。
相对性状中不同的表现是互斥事件如豌豆的圆粒与皱粒,表现为圆粒性状就不可能是皱粒,反过来也一样。
假设一性状的遗传为事件a,其出现的概率为m,则其相对性状则记为■其概率为1-m,因为他们是互斥事件。
另一性状的遗传为事件b,其出现的概率为n,则其相对性状记为■其概率为1-n。
那么两事件同时出现的概率就是p(a,b)=p(a)×p(b)=mn。
以孟德尔豌豆杂交实验为例说明。
豌豆的遗传性状中,种子籽粒的颜色是种性状,有黄色和绿色两种,他们是互斥事件,若记黄色为事件a则绿色为■。
高中生物学教学中模型建构及应用

高中生物学教学中模型建构及应用高中生物学教学中模型建构及应用现代科学研究中,模型的建构和应用是十分重要的方法之一。
在生物学教学中,模型也扮演着至关重要的角色。
它们是我们理解生命现象和探索自然世界的关键工具。
本文将浅谈关于高中生物学教学中模型建构及应用的重要性,并探讨了一些模型的使用方法和案例。
模型是对现实世界的简化和概括。
在生物学教学中,模型可以是物理模型(如层叠玻片模型或立体拼图模型)、数学模型(如方程或图表)或者概念模型(如流程图或概念图)。
这些模型可以帮助学生更好地理解和记忆抽象的生物学概念和过程。
通过观察、实验、整合信息和推理等方法,学生可以利用模型来解释和预测生物现象。
在教学中,模型的建构可以通过不同的方法实现。
一种常见的方法是通过描述和绘图来构建模型。
例如,在遗传学教学中,教师可以通过将基因表达过程绘制成图表或图像的方式来帮助学生理解基因间的相互作用和遗传变异。
另一种方法是使用计算机模型或模拟软件。
这些工具可以模拟出生物系统的运作,并让学生进行交互式的实验和观察。
此外,还可以通过实物模型,让学生亲自动手构建模型,加深对相关生物概念的理解。
模型的应用在生物学教学中有着广泛的意义。
首先,模型可以帮助学生更好地理解和应用抽象的生物学概念。
生物学中的一些概念,如细胞结构、基因传递、物种进化等,往往非常抽象和复杂。
而模型的使用可以将这些概念转化成更直观和易于理解的形式,使学生更容易掌握和应用。
其次,模型能够培养学生的实证推理和批判性思维能力。
通过模型的使用,学生可以学习如何观察和记录生物现象,提出假设和推理,进行实验和验证。
这种实证推理的过程培养了学生的科学思维和逻辑能力,使他们具备解决问题和探索新知识的能力。
此外,模型还可以促进学生的合作学习和实践操作能力。
生物学研究往往需要团队合作和实践操作。
通过模型的建构和应用,学生可以在小组中进行合作,分享信息和协作解决问题。
同时,模型还可以让学生亲身实践和操作,培养他们的操作技能和实验方法。
高中生物教学中的模型建构探讨

高中生物教学中的模型建构探讨
模型建构是高中生物教学中的重要内容,在教学中可以帮助学生建立科学的思维方式,促进创新思维的培养。
本文将探讨高中生物教学中的模型建构的概念、方法和应用。
一、模型建构的概念
模型建构是指通过对事物的描述和解释,构造出能够系统地反应和描述事物的图形、
表格、方程等表达形式。
它是科学研究的重要手段之一,能够帮助我们更好地理解和解释
科学现象。
1.实验法
实验法是研究科学现象的一种直接方法,可以通过实验来验证模型的正确性。
在高中
生物教学中,实验法可以用来验证各种生物模型,如营养循环模型、遗传模型等,以此帮
助学生理解生物学中的各种现象。
2.对比法
对比法是一种通过对某种事物的对比,来构建模型或解释现象的方法,可以通过对比
已有的生物学研究成果,构建出更完整的生物学模型。
3.统计法
统计法是研究科学现象的一种方法,可以通过数据分析和统计得出生物学现象的规律性,进而构建出生物学模型。
4.数学建模
1.帮助学生理解生物学基本概念
通过对生物学基本概念的模型建构,可以帮助学生更好地理解生物学中的各种现象,
如细胞分裂、遗传规律、进化等。
2.培养学生科学思维
模型建构能够帮助学生建立科学的思维方式,培养他们的科学研究能力和创新思维能力,帮助他们更好地应对未来的科学挑战。
3.激发学生的探究兴趣
通过模型建构,可以激发学生对生物学的探究兴趣,使他们更加主动地发现和解决生
物学问题,培养他们的自主学习能力。
模型构建在高中生物教学中的应用与思考

模型构建在高中生物教学中的应用与思考【摘要】生物学科核心素养主要由生命观念、理性思维、科学探究和社会责任等四个要素构成。
高中生物作为一门实验性较强的学科,在培养学生核心素养方面发挥着重要的作用。
在高中生物教学中,通过对不同教学模式的比较研究,发现注重引导学生进行模型构建,既可以更好地让学生理解和阐释生物学的基本理论和知识,获得动手能力和观察能力的提升,还可以让学生更好地领悟生物学家在研究过程中所持有的观点以及所运用到的基本思路和方法,增强学生的理性思维,发展学生的核心素养。
模型构建法作为一种有效的教学手段和方法,有利于促进学生知识、情感、态度和能力的快速提升。
但是在进行模型构建教学时,也要注意一些问题,从而更好地促进模型构建教学法在高中生物教学中的合理应用。
【关键词】高中生物;模型构建;教学策略模型构建属于现代教育背景下的一种重要教学方式,对提高学生分析、解决问题的能力有积极意义。
在高中生物的教学课堂上,教师从学生的学习特点出发,通过模型建构来开展教学活动,可以让学生更深刻、轻松的理解生物知识,提高学生生物学习效率。
在课堂教学上,模型构建的教学方式,可以将抽象的问题具体化,提高学生问题解决的效率、能力。
在此种环境下的生物课堂中,学生对生物知识的认识和理解更为深刻,进而有效促进学生生物学科核心素养的形成。
一、有计划地构建“物理模型”,提高模型构建课堂效率生物课堂教学中使用物理模型,能让学生更近距离、更生动地学习知识,对学生细致化、全面化、直观化、可感化地理解相关内容十分有效。
所谓“物理模型”,是教师构建一种情境,简化描述学生所要学习的知识,并且以实物和图形进行展示,以便让学生更有效地理解、掌握知识的一种教学方法。
物理模型应用于高中生物教学早已屡见不鲜。
但对于生物教师而言,需要认真设计,量化探究哪些内容适合构建物理模型,怎么构建物理模型,怎样安排基于“物理模型构建”的生物课堂。
如讲解“细胞的分裂”等相关内容时,教师便可构建立体、形象、生动、有趣的物理模型,激发学生的兴趣与好奇心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析模型建构在高中生物新课程教学中的应用
《普通高中生物课程标准》有三个知识目标,首个知识目标指出:“获得生物学基本事实、概念、原理、规律和模型等方面的基础知识,知道生物科学和技术的主要发展方向和成就,知道生物科学发展史上的重要事件。
”模型建构已经成为高中生物学课程内容的一个重要组成部分。
高中生物新课程教学中的模型建构活动,其主要目的是让学生通过尝试建构模型,体验建构模型中的思维过程,领悟模型方法,并获得或巩固有关生物学概念。
必修一教材对模型的定义是“人们为了某种特定目的而对认识对象所作的一种简化的概括性的描述,这种描述可以是定性的,也可以是定量的;有的借助于具体的实物或其他形象化的手段,有的则通过抽象的形式来表达”。
模型建构方法有很多,主要包括物理模型、概念模型、数学模型。
以下是笔者结合普通高中课程标准实验教科书中的具体实例谈谈三种模型方法在高中生物新课程教学中
的应用。
一、物理模型在新课程教学中的应用
物理模型就是根据相似原理,把真实事物按比例放大或缩小制成的模型,以实物或图画形式直观地表达现出对象的特征,它可以模拟真实事物的某些功能和性质,其最显著的特点是形象直观。
1、实物物理模型
必修教材安排了很多有关实物物理模型建构方面的活动,其中最具代表性的是制作dna双螺旋结构模型。
在教学中,笔者向学生介
绍模型建构的方法和基本原则,鼓励学生以小组合作的方式,在课后选择合适的材料用具动手制作dna双螺旋结构模型。
在学生建构好模型后,在班级中开展模型展示和评比,各小组代表向其他同学汇报本小组制作模型的科学性、美观性和创造性。
其他同学可以对模型的不足之处提出质疑,然后拿出自己的模型进行说明,学生在交流的过程中实现了学习的合作与共享。
学生通过制作模型,其主要目的不是揭示dna分子的结构,而是通过制作模型再现难以直接观察到的dna分子的结构,加深对dna分子结构特点的认识和理解,并体验实物物理模型形象直观的特点。
2、图画物理模型
实物物理模型对材料用具、具体制作有一定的要求,在生物教学中运用有局限性。
但是以图画形式构建物理模型就非常普遍。
如真核细胞结构图、物质跨膜运输过程图、光合作用和呼吸作用、噬菌体侵染细菌过程图、人体细胞与外界环境的物质交换模型等。
通过构建图画物理模型,培养学生的读图、识图、绘图和分析图形的能力,使学生尝试用简单的图形理解抽象的生物学结构和过程。
二、概念模型在新课程教学中的应用
概念模型是对生物学中某个问题或事物进行描述,概念模型包括:中心概念、内涵、内延。
在高中新课程生物教材中,概念模型通常以概念图、流程图的形式出现,表达概念之间的相互关系,体现知识的网络结构。
生态系统的能量流动是生态系统中最难的一个教学内容,尤其是
能量流动的过程。
如果仅仅由教师讲述,学生局限在识记水平上,很难真正理解。
笔者尝试通过建立能量流动过程概念模型来突破难点。
首先向学生介绍什么是生态系统中能量的输入、传递、转化和散失,引导学生理解摄入量和同化量的含义。
然后让学生在纸片上画出一条食物链,并在食物链上添加相关概念,构建概念模型。
概念模型在高中生物新课程教学中应用很广泛,比如细胞的基本结构、分泌蛋白的形成、内环境的成分、血糖调节、体温调节、特异性免疫等都可以用简明扼要的概念模型归纳。
通过概念模型,将复杂的知识简单化,有利于学生形成完整、清晰、系统、科学的知识体系,还能培养学生分析、综合、概括的思维能力。
三、数学模型在新课程教学中的应用
数学模型是用来描述一个系统或它的性质的数学形式。
新课程教材中很多内容涉及到数学模型的构建。
比如:蛋白质合成时有关水分子、氨基酸分子等数目的计算,dna分子结构中碱基数量及比例计算,遗传规律的比例计算,遗传疾病概率计算、基因频率计算、种群密度调查、能量流动传递效率计算,坐标曲线的建立等。
下面以“有丝分裂和减数分裂”为例谈谈数学模型建构的方法。
减数分裂中同源染色体、四分体、染色体、染色单体等概念学生容易混淆不清,通过建立数学模型可以理清它们之间的关系:1个四分体=1对同源染色体=2条配对的染色体=4条染色单体=4个dna 分子。
另外,有丝分裂和减数分裂过程中染色体、染色单体、dna 分子数目变化的规律是教学的重点。
在学习有丝分裂时,笔者引导
学生按照有丝分裂的五个过程构建表格式数学模型,然后转换成坐标曲线。
最后让学生把染色体、染色单体、dna的变化曲线绘在一张坐标图上,学生通过比较,很快掌握了染色体、染色单体、dna 的数目变化规律。
减数分裂的学习时,笔者用了同样的方法,取得了良好的教学效果。
通过构建数学模型,有利于学生理解和掌握知识,也使学生学会从具体的生物学现象中揭示出本质和规律。
由于模型建构是高中新课程标准中新提出的概念,学生对模型建构原理的理解和具体操作过程都感到陌生,需要广大教师在教学过程中引导,不断向学生渗透模型建构思想,逐步培养学生运用模型建构的方法解决生物学问题的能力。