ansys接触应力

合集下载

基于ANSYS的齿轮接触应力与啮合刚度研究共3篇

基于ANSYS的齿轮接触应力与啮合刚度研究共3篇

基于ANSYS的齿轮接触应力与啮合刚度研究共3篇基于ANSYS的齿轮接触应力与啮合刚度研究1齿轮作为一种常用的传动元件,在机械系统的运转中发挥着重要的作用。

因此,对于齿轮的力学性能研究具有重要的意义。

本文以ANSYS软件为工具,研究齿轮接触应力与啮合刚度的相关问题。

一、齿轮模型的建立齿轮模型的建立是研究齿轮力学性能的基础。

初步建模需要确定齿轮参数、材料参数等。

在本次研究中,我们选取了一个模数为4的齿轮进行建模,在材料参数选取方面,我们选择了常用的20CrMnTi材料,以其为基础进行实验。

建模之后需要进行网格划分,网格密度的选择会影响后续分析的准确性以及计算时间,因此需要选择合适的密度。

选取太粗的网格会导致结果失真,选取太细的网格则会消耗大量的计算时间。

本次研究选取了相对均匀的中等密度网格,以保证结果的准确性。

二、齿轮接触应力分析齿轮在啮合过程中会产生接触应力,这对于齿轮的寿命和工作效率都有着至关重要的作用。

因此,研究齿轮接触应力,选择适当的润滑方式,对齿轮寿命和传动效率都有着重要的意义。

在ANSYS中进行齿轮接触应力的分析和计算,需要考虑到许多复杂的因素,如齿形、材料参数、润滑方式等。

在本次研究中我们采用了基于有限元方法的接触分析(FEM),对齿轮接触应力进行评估。

得到接触应力的结果后,我们可以对齿轮的寿命进行评估,并针对接触应力过大的地方进行优化处理。

三、齿轮啮合刚度分析除了接触应力之外,齿轮的啮合刚度对于传动的效率和精度也有着重要的影响。

啮合刚度是指啮合中两齿之间相对于轴线方向的相对运动能力,也可以视为齿轮在啮合过程中的弹性变形程度。

齿轮的啮合刚度与齿轮副的堆叠误差、硬度、几何尺寸等的影响有关。

在本次研究中,我们采用了ANSYS的非线性有限元分析方法,对齿轮的啮合刚度进行建模和优化。

通过对啮合刚度的研究,我们可以指导齿轮的加工和优化,提高其传动效率和精度。

四、总结本次研究基于ANSYS对齿轮接触应力和啮合刚度进行了研究。

ansys接触应力计算公式

ansys接触应力计算公式

ansys接触应力计算公式
ANSYS软件中接触应力的计算公式可能会因具体的模型和算法而有所不同。

在ANSYS的罚函数法中,假设零件之间的接触假设成两个节点之间通过弹簧连接,通过以下计算公式来求解两个接触面之间的接触压力:
FNormal = KNormal × penetration
其中,KNormal为两个接触面之间的接触刚度,penetration为两个接触
面之间的穿透量。

这种算法的精度较依赖于接触刚度和穿透量的大小。

在实际情况下,两个零件表面是不会有穿透的,这是一种为增强收敛性而进行的数值近似方法,因此,穿透量越小,计算结果精度越高,但同时收敛性较差。

另外,在ANSYS的拉格朗日算法中,接触压力作为一个自由度来满足接触兼容性。

不需要计算接触刚度和穿透量来计算接触压力,而是将他看做一个自由度。

以上内容仅供参考,如需更具体的信息,建议咨询专业的工程师或查阅ANSYS软件的使用手册。

ANSYS齿轮接触应力分析案例精品

ANSYS齿轮接触应力分析案例精品
Preprocessor>Modeling>Operate>Booleans>Add>Lines。 b.分别选择齿底上的两条线,点击【OK】。 c.把齿底上的所有线加起来。 (28)把所有线粘起来。 a.从主菜单选择
Preprocessor>Modeling>Operate>Booleans>Glue>Lines。
选择”Copied”,如下图。镜像结果。
齿轮的接触分析实例
齿轮的接触分析实例
(23)把齿顶上的两条线粘起来。 a.从主菜单选择
Preprocessor>Modeling>Operate>Booleans>Glue>Lines。 b.选择齿顶上的两条线,点击【OK】。 (24)把齿顶上的两条线加起来,成为一条线。 a.从主菜单选择
齿轮的接触分析实例
b.从主菜单选择Preprocessor>Modeling>Copy>Lines。 c.点击【Pick All】。 d.在弹出的提示框中按下图输入,点击【OK】。(Fit view)
齿轮的接触分析实例
(26)把齿底上的所有线粘起来。 a.从主菜单选择
Preprocessor>Modeling>Operate>Booleans>Glue>Lines。 b.分别选择齿底上的两条线,点击【OK】。 (27)把齿顶上的两条线加起来,成为一条线。 a.从主菜单选择
齿轮的接触分析实例
(20)将工作平面旋转13°。 a.从实用菜单中选择WorkPlane>Offset WP by Increments。 b.在“XY,YZ,ZX Angles”文本框中输入13,0,0,点击【OK】。 (21)将激活的坐标系设置为工作平面坐标系:

ANSYS接触问题(42页,详细)(图文)

ANSYS接触问题(42页,详细)(图文)

接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。

在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。

接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。

――罚函数法。

接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。

三种接触单元:节点对节点、节点对面、面对面。

接触单元的实常数和单元选项设置:FKN:法向接触刚度。

这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。

FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。

FTOLN:最大穿透容差。

穿透超过此值将尝试新的迭代。

这是一个与接触单元下面的实体单元深度(h)相乘的比例系数XX省为0.1。

此值太小,会引起收敛困难。

ICONT:初始接触调整带。

它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。

当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。

可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的) PMIN和PMAX:初始容许穿透容差。

这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。

初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。

ANSYS齿轮接触应力分析案例

ANSYS齿轮接触应力分析案例

ANSYS齿轮接触应力分析案例齿轮是机械传动系统中常用的零部件,用于传递动力和转速。

在齿轮的工作过程中,由于受力情况复杂,容易发生接触应力过大导致齿轮损坏的情况。

为了确保齿轮的工作性能和寿命,需要进行接触应力的分析和优化设计。

ANSYS作为常用的有限元分析软件,可以用于进行齿轮接触应力的模拟和分析。

本文将以一个齿轮接触应力分析案例为例,介绍如何使用ANSYS软件进行接触应力的分析。

本案例以一对齿轮为例,通过对齿轮的建模、加载和分析过程,展示如何通过ANSYS软件进行齿轮接触应力的分析。

1.齿轮建模首先,在ANSYS软件中建立齿轮的几何模型。

可以通过CAD软件绘制齿轮的几何形状,然后导入到ANSYS中进行网格划分。

在建模过程中,需要考虑齿轮的齿形、齿数、模数等参数,并根据实际情况设置合适的几何形状。

2.设置加载在建模完成后,需要设置加载条件。

在本案例中,以齿轮传递动力时的载荷为例,可以通过施加力或扭矩来模拟齿轮的工作情况。

根据实际情况设置载荷大小和方向,以便进行接触应力的仿真分析。

3.网格划分接着对齿轮的几何模型进行网格划分,生成有限元网格。

在ANSYS中,可以通过自动网格划分功能或手动划分网格,确保模型的几何形状与加载条件得到合理的分析精度。

4.设置材料属性在进行齿轮接触应力分析前,需要设置材料的力学性质。

根据齿轮的实际材料属性,设置材料的弹性模量、泊松比等参数,以便进行接触应力的仿真分析。

5.运行分析设置完加载和材料属性后,可以进行齿轮接触应力的仿真分析。

在ANSYS中选择适当的分析模型和求解器,进行接触应力的计算和分布分析。

通过分析结果可以得到齿轮接触区域的应力分布情况,确定是否存在应力集中的问题。

6.结果分析最后,分析计算结果并进行结果的分析和优化。

根据接触应力的分布情况,确定齿轮的工作性能是否满足要求,是否存在应力过大导致损坏的风险。

如果需要,可以对齿轮的设计参数进行调整和优化,以提高齿轮的工作性能和寿命。

ANSYS高级接触分析

ANSYS高级接触分析

图3-1
• 接触面和目标面确定准则
• 如凸面和平面或凹面接触,应指定平面或凹面为目标 面;
• 如一个面上的网格较粗而另一个面上的网格较细,应 指定粗网格面为目标面;
• 如一个面比另一个面的刚度大,应指定刚度大的面为 目标面;
• 如一个面为高阶单元而另一面为低阶单元,应指定低 阶单元面为目标面;
• 如一个面比另一个面大,应指定大的面为目标面。
• 接触单元就是掩盖在分析模型接触面上 的一层单元。
• 在 ANSYS 中可以承受三种不同的单元 来模拟接触:

面一面接触单元;

点一面接触单元;
§2 接触单元
• 不同的单元类型具有完全不同的单元特性和分 析过程。
• 1. 面一面接触单元用于任意外形的两个外表接 触
• 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例如: 面一面接触可以模拟金属成型,如轧制

面-面接触单元在面的高斯点处传递压力,这种先进技术使面-面接触
单元具有很多优点:

与低阶单元和高阶单元都兼容

供给更好的接触结果〔于后处理接触压力和摩擦应力〕

可考虑壳和梁的厚度,以及壳的厚度变化

半自动接触刚度计算

刚性外表由“把握节点 – pilot node”把握

热接触特性

众多的高级选项来处理简洁问题。
2、摩擦消耗能量,并且是路径相关行为。 为获得较高的精度,时间步长必需很小〔图2-1〕
图2-1
3、ANSYS 中,摩擦承受库仑模型,并有附加选项可 处理简洁的粘着和剪切行为。 库仑法则是宏观模型,表述物体间的等效剪力 FT 不能超过正压力 FN 的一局部: FT <= μ× FN 式中: μ- 摩擦系数 一旦所受剪力超过 FT,两物体将发生相对滑动。

基于ansys的过盈配合接触应力分析

基于ansys的过盈配合接触应力分析

基于ansys的过盈配合接触应力分析摘要介绍了基于ansys的接触分析步骤,并通过ansys软件,将对一个盘轴紧配合结构进行接触分析,来说明接触分析的有限元计算方法。

关键词ansys 过盈配合接触分析引言在工程结构中,经常会遇到大量的接触问题。

火车车轮与钢轨之间,齿轮的啮合是典型的接触问题。

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。

接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

本文以ansys软件为工具,以某转子中轴和盘的连接为例,分析轴和盘的过盈配合的接触应力。

1.面面接触分析的步骤:在涉及到两个边界的接触问题中,很自然把一个边界作为“目标”面而把另一个作为“接触”面,对刚体—柔体的接触,“目标”面总是刚性的,“接触”面总是柔性面,这种两个面合起来叫作“接触对”。

使用Targe169和Conta171或Conta172来定义2D接触对,使用Targe170和Conta173或Conta174来定义3D接触对,程序通过相同的实常数号来识别“接触对”。

在接触问题中,两个相互接触的物体必须满足边界不穿透的约束条件,施加边界不穿透约束的方法主要有罚函数算法和扩增的拉格朗日算法。

罚函数算法是在总势能泛函中加入惩罚项,来近似满足接触约束条件。

从物理意义上讲,罚函数法相当于在接触边界上加入线弹簧以防止接触面之间的相互渗透,而罚函数因子相当于弹簧的刚度系数。

罚函数法的优点在于不增加系统未知数总数,可保持刚度矩阵的对称性,提高了求解效率,但罚函数因子的取值对计算结果的精度影响很大,必须根据渗透情况对其进行多次调整。

扩增的拉格朗日算法是为了找到精确的拉格朗日乘子而对罚函数修正项进行反复迭代,与罚函数的方法相比,拉格朗日方法不易引起病态条件,对接触刚度的灵敏度较小,然而,在有些分析中,扩增的拉格朗日方法可能需要更多的迭代,特别是在变形后网格变得太扭曲时。

基于ANSYS的齿轮弯曲应力、接触应力以及模态分析

基于ANSYS的齿轮弯曲应力、接触应力以及模态分析

基于ANSYS的齿轮弯曲应力、接触应力以及模态分析随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。

为较好地改善齿轮传动性能,有必要对齿轮进行静力学以及动力学分析。

对于齿轮的静力学分析,本文利用ANSYS对齿轮进行了齿根弯曲应力分析以及齿轮接触应力分析。

对于齿轮的动力学分析,本文利用ANSYS对其进行了模态分析,提取了齿轮的前十阶固有频率和固有振型。

最后实验表明,基于ANSYS的齿轮弯曲应力和接触应力相比较传统方法具有一定的裕度,而模态分析能较形象地展现其振型。

标签:齿轮;弯曲应力;接触应力;模态分析引言随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。

改善齿轮传动性能成为齿轮设计中的重要内容。

为了避免由于齿轮接触疲劳而引发的行驶事故,有必要对齿轮的齿根弯曲应力和齿面接触应力进行分析和评估。

同理,为避免由于齿轮共振引起的轮体破坏,有必要对齿轮进行固有特性分析,通过调整齿轮的固有振动频率使其共振转速离开工作转速。

齿轮的工作寿命与最大弯曲应力值的六次方成反比,因此最大弯曲应力略微减小,齿轮工作寿命即会大大提高[1]。

齿轮的最大弯曲应力往往出现在齿轮的齿根过渡曲线处,因此精确计算渐开线齿轮齿根过渡曲线处的应力,进而合理设计过渡曲线,对延长齿轮工作寿命、提高齿轮承载能力至关重要。

为了进行齿面接触强度计算,分析齿面失效和润滑状态,必须分析齿面的接触应力。

经典的齿面接触应力计算公式是建立在弹性力学基础上,而对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础。

但由于齿轮副啮合齿面的几何形状十分复杂,采用上面的方法准确计算轮齿应力和载荷分配等问题非常困难甚至无法实现。

随着计算机的普及,齿轮接触问题的数值解法获得了越来越广泛的应用。

齿轮副在工作时,在内部和外部激励下将发生机械振动。

振动系统的固有特性,一般包括固有频率和主振型,它是系统的动态特性之一,同时也可以作为其它动力学分析的起点,对系统的动态响应、动载荷的产生与传递以及系统振动的形式等都具有重要的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般的接触分类 (2)ANSYS接触能力 (2)点─点接触单元 (2)点─面接触单元 (2)面─面的接触单元 (3)执行接触分析 (4)面─面的接触分析 (4)接触分析的步骤: (4)步骤1:建立模型,并划分网格 (4)步骤二:识别接触对 (4)步骤三:定义刚性目标面 (5)步骤4:定义柔性体的接触面 (8)步骤5:设置实常数和单元关键字 (10)步骤六: (21)步骤7:给变形体单元加必要的边界条件 (21)步骤8:定义求解和载步选项 (22)第十步:检查结果 (23)点─面接触分析 (25)点─面接触分析的步骤 (26)点-点的接触 (35)接触分析实例(GUI方法) (38)非线性静态实例分析(命令流方式) (42)接触分析接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。

接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。

ANSYS接触能力ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。

为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。

如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。

点─点接触单元点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。

点─面接触单元点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。

如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。

Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。

面─面的接触单元ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用Conta171,Conta172,Conta173,Conta174来模拟。

一个目标单元和一个接单元叫作一个“接触对”程序通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常的号。

与点─面接触单元相比,面─面接触单元有好几项优点,·支持低阶和高阶单元·支持有大滑动和摩擦的大变形,协调刚度阵计算,单元提法不对称刚度阵的选项。

·提供工程目的采用的更好的接触结果,例如法向压力和摩擦应力。

·没有刚体表面形状的限制,刚体表面的光滑性不是必须允许有自然的或网格离散引起的表面不连续。

·与点─面接触单元比,需要较多的接触单元,因而造成需要较小的磁盘空间和CPU时间。

·允许多种建模控制,例如:·绑定接触·渐变初始渗透·目标面自动移动到补始接触·平移接触面(老虎梁和单元的厚度)·支持死活单元使用这些单元,能模拟直线(面)和曲线(面),通常用简单的几何形状例如圆、抛物线、球、圆锥、圆柱采模拟曲面,更复杂的刚体形状能使用特殊的前处理技巧来建模。

执行接触分析不同的接触分析类型有不同的过程,下面分别讨论面─面的接触分析在涉及到两个边界的接触问题中,很自然把一个边界作为“目标”面而把另一个作为“接触”面,对刚体─柔体的接触,“目标”面总是刚性的,“接触”面总是柔性面,这两个面合起来叫作“接触对”使用Targe169和Conta171或Conta172来定义2-D接触对,使用Targe170和Conta173或Conta174来定义3-D 接触对,程序通过相同的实常收号来识别“接触对”。

接触分析的步骤:执行一个典型的面─面接触分析的基本步骤列示如下:1.建立模型,并划分网格2.识别接触对3.定义刚性目标面4.定义柔性接触面5.设置单元关键字和实常的6.定义/控制刚性目标面的运动7.给定必须的边界条件8.定义求解选项和载荷步9.求解接触问题10.查看结果步骤1:建立模型,并划分网格在这一步中,你需要建立代表接触体几何形状的实体模型。

与其它分析过程一样,设置单元类型,实常的,材料特性。

用恰当的单元类型给接触体划分网格。

命令:AMESHVMESHGUI:Main Menu>Preprocessor>mesh>Mapped>3 or4 SidedMain Menu>Pneprocessor>mesh>mapped>4 or 6 sided步骤二:识别接触对你必须认识到,模型在变形期间哪些地方可能发生接触,一是你已经识别出潜在的接触面,你应该通过目标单元和接触单元来定义它们,目标和接触单元跟踪变形阶段的运动,构成一个接触对的目标单元和接触单元通过共享的实常号联系起来。

接触环(区域)可以任意定义,然而为了更有效的进行计算(主要指CPU 时间)你可能想定义更小的局部化的接触环,但能保证它足以描述所需要的接触行为,不同的接触对必须通过不同的实常数号来定义(即使实常数号没有变化)。

由于几何模型和潜在变形的多样形,有时候一个接触面的同一区域可能和多个目标面产生接触关系。

在这种情况下,应该定义多个接触对(使用多组覆盖层接触单元)。

每个接触对有不同的实常数号。

步骤三:定义刚性目标面刚性目标面可能是2—D的或3─D的。

在2—D情况下,刚性目标面的形状可以通过一系列直线、圆弧和抛物线来描述,所有这些都可以用TAPGE169来表示。

另外,可以使用它们的任意组合来描述复杂的目标面。

在3—D情况下,目标面的形状可以通过三角面,圆柱面,圆锥面和球面来推述,所有这些都可以用TAPGE170来表示,对于一个复杂的,任意形状的目标面,应该使用三角面来给它建模。

控制结点(Pilot)刚性目标面可能会和“pilot结点“联系起来,它实际上是一个只有一个结点的单元,通过这个结点的运动可以控制整个目标面的运动,因此可以把pilot结点作为刚性目标的控制器。

整个目标面的受力和转动情况可以通过pilot结点表示出来,“pilot结点”可能是目标单元中的一个结点,也可能是一个任意位置的结点,只有当需要转动或力矩载荷时,“pilot结点”的位置才是重要的,如果你定义了“pilot结点”ANSYS程序只在“pilot结点”上检查边界条件,而忽略其它结点上的任何约束。

对于圆、圆柱、圆锥、和球的基本图段,ANSYS总是使用条一个结点作为“pilot结点”基本原型你能够使用基本几形状来模拟目标面,例如:“圆、圆柱、圆锥、球。

直线、抛物线、弧线、和三角形不被允许、虽然你不能把这些基本原型彼此合在一起,或者是把它们和其它的目标形状合在一起以便形成一个同一实常数号的复杂目标面。

但你可以给每个基本原型指定它自己的实常的号。

单元类型和实常数在生成目标单元之前,首先必须定义单元类型(TARG169或TARG170)。

命令:ETGUI:main menu>preprocessor>Element Type> Add/Edit/Delete随后必须设置目标单元的实常数。

命令:RealGUI:main menn>preprocessor>real constants对TARGE169和TARGE170仅需设置实常数R1和R2,而只有在使用直接生成法建立目标单元时,才需要从为指定实常数R1、R2,另外除了直接生成法,你也可以使用ANSYS网格划分工具生成目标单元,下面解释这两种方法。

使用直接生成法建立刚性目标单元为了直接生成目标单元,使用下面的命令和菜单路径。

命令:TSHAPGUI:main menu>preprocessor>modeling-create>Elements>Elem Attributes 随后指定单元形状,可能的形状有:·straight line (2D)·parabola (2-D)·clockwise arc(2-D)·counterclokwise arc (2-D)·circle(2-D)·Triangle (3-D)·Cylinder (3-D)·Cone (3-D)·Sphere (3-D)·Pilot node (2-D和3-D)一旦你指定目标单元形状,所有以后生成的单元都将保持这个形状,除非你指定另外一种形状。

然后你就可以使用标准的ANSYS直接生成技术生成结点和单元。

命令:NEGUI:main menu>pnoprocessor> modeling- create> nodesmain menu>pnoprocessor> modeling- create>Elements 在建立单元之后,你可以通过列示单元来验证单元形状命令:ELISTGUI:utility menu>list>Elements>Nodes+Attributes使用ANSYS网格划分工具生成刚性目标单元你也可以使用标准的ANSYS网格划分功能让程序自动地生成目标单元,ANSYS程序将会以实体模型为基础生成合适的目标单元形状而忽略TSHAP命令的选项。

相关文档
最新文档