高等数学-第六章-定积分的应用(1)

合集下载

6高等数学-第六章 定积分及其应用

6高等数学-第六章 定积分及其应用

(2)定义中要求积分限 a < b ,我们补充如下规定:
当 a = b b时f,(x)dx 0 a
b f;(x当)dxa > b
a
f (x)dx
a
b
时, (3)定积分的存在性(两个充分条件) 。
定理 设 f (x) 在区间 [a, b] 上连续,则 f (x) 在 [a, b] 上
可积。 定义 设 f (x) 在区间 [a, b] 上有界且只有有限个间断点,
积 分 号
积 分 下 限


被 积
积 表
分 变
积 分
( 黎



和曼


式和 )
11
第一节 定积分的概念及性质 定积分定义的说明:
二、定积分的定义
(1)定积分表示一个数,它只与被积函数及积分区间 [a, b] 有关,
而与积分变量采用什么字母无关,即
b
b
b
a f (x)dx a f (t)dt a f (u)du
第一节 定积分的概念及性质
第一节 定积分的概念及性质 曲边梯形的面积:
一、定积分问题举例
设函数 y = f (x) 在区间 [a, b] 上连续,且 f (x) ≥ 0,则称由直
线 x = a, x = b, y = 0 及曲线 y = f (x) 所围成的平面图形为曲边梯
形。 其中曲线弧称为曲边,x 轴上对应区间[a, y b] 的线段称为底边。
则 f (x) 在 [a, b] 上可积。
12
第一节 定积分的概念及性质
三、定积分的几何意义
由定积分的定义可以知道,图
y
中曲边梯形的面积为:
y = f (x)

高等数学(同济第六版)课件 第六章 6.3定积分物理应用

高等数学(同济第六版)课件  第六章 6.3定积分物理应用
第三节 定积分在物理学上的应用
一、变力沿直线所作的功
F a x
F
x+dx b
常力 F 沿直线对物体所作的功为:W=F · S 若力是变力: F F ( x )
dW F ( x )dx
W F ( x )dx
a
b
例1 一个带 +q 电量的点电荷放在 r 轴上坐标原点处, 产生一个电场. 若将一个单位正电荷从r 轴上r = a 处 沿 r 轴移动到 r = b处,求场力 F 所作的功. 解 取r为积分变量,
20 x 20 x dW2 (10 0.05)dx (10 )dx 4 80
x
功元素
1 20 x dW [ x (10 )]dx 10 80
20

W
0
1 20 x [ x (10 )]dx 10 80
=217.5(千克米) =2131.5(焦耳)
l l 解 取y为积分变量 y [ , ], 2 2 取任一小区间[ y , y+dy ] 小段的质量为 dy ,
小段与质点的距离为 r a y ,
2 2
m dx 引力 dF k 2 , 2 a y amdy dFx k 2 , 2 (a y )
3 2
l y 2 y dy
解 建立坐标系如图
面积元素 2(a x )dx ,
dP ( x 2a ) 2(a x )dx
2a
o
a
2a
7 3 P 2( x 2a )(a x )dx a . 0 3
a
x
三、 引力
质量分别为m1, m2相距为 r 的两个质点间的引力 大小:F k m1m2 , 其中k为引力系数, r2 引力的方向沿着两质点的连线方向. 例6 有一长度为l、线密度为 的均匀细棒, 在其中垂线上距棒 a 单位处有一质量为 m 的 质点M, 计算该棒对质点 M 的引力.

高数6.3 定积分应用案例

高数6.3 定积分应用案例

F 1121.9767 0.91442 12.7, 37407.031(kg )
比较可知,此时租用客机比购买客机合算. 当 r 6% 时,
600 P (1 e 0.0615 ) 5934.3 (万美元), 0.06
此时购买客机比租用客机合算.
高等数学 第6章 定积分的应用
§6.3
定积分应用案例
二. 转售机器的最佳时间
(周)的减函数 由于折旧等因素,某机器转售价格 R( t )是时间 t
因此,加在整个窗面上的压力为
z0 z
dz
F d F 2 z l ( z ) dz
z0 z0
z1
z1
z1
图 5 -21
因为 A 2

z1 z0
l ( z )dz
2 z1 z l(z) d z 形心 z A z0
因此
F z A
高等数学 第6章 定积分的应用
§6.3
t 3 A ln 32 A 96ln 32 48 f (333) e e dt 12.01 A (元) 0 4 4
因此,
最大总利润
P f (333) A 11.01 A,
3A 机器卖了 (元 ) 128
高等数学 第6章 定积分的应用
§6.3
定积分应用案例
三. 潜艇的观察窗问题
第6章 定积分的应用
§6.3 定积分应用案例
高等数学 第6章 定积分的应用
§6.3
定积分应用案例
一、租客机还是买客机 某航空公司为了发展新航线的航运业务, 需要增加5架
波音747客机,如果购进一架客机需要一次支付5000万
美元现金, 客机的使用寿命为15年. 如果租用一架客机, 每年需要支付600万美元的租金,租金以均匀货币流的方

第六章 定积分的应用

第六章 定积分的应用

解:方法一,
如图,曲线的参数方程为
⎧ ⎨ ⎩
x y
= =
4 5
cos t + 4sin
t
,
0 ≤ t ≤ 2π ,那么
∫ ∫ 所求旋转体的体积为V =

−4

y12 ( x)dx


−4

y22 ( x)dx
∫ ∫ = 4π 0 (4sin t + 5)2d cos t − 4π 2π (4sin t + 5)2d cos t
解:如图,
∫ ∫ A =
2π a
ydx =
2π a2 (1− cos t )2 dt
0
0
= 3a2π
3、在[0,1] 上给定函数 y = x 2 ,问 t 取何值时,图中曲边三角形 OACO 与 ADBA 的面积之和最小?
何时最大?
解:设 A(t, t 2 ), (0 ≤ t ≤ 1) ,记曲边三角形 OACO 与 ADBA 的面积 y
这一小块闸门所受压力即压力元素为 dP = ρ gx 50 − x dx ,于是所求压力为 5
∫ P = 20 ρ gx 50 − x dx = 14373 (KN)
0
5
5、设有一长度为 l 、线密度为 μ 的均匀细直棒,在与棒的一端平行距离为 a 单位处有一质量为 m 的质点 M ,试求这细棒对质点的引力。 解:如图,去 y 轴经过细直棒,棒的一端为原点,质点 M 位于 x 轴上,取 y 为积分变量,其变化
62
∫ ∫ S = 2[
π 6
1(
02
2 sinθ )2 dθ +
π 4 π 6
1 2

高等数学第六章《定积分的应用》

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

高等数学 第六章定积分

高等数学 第六章定积分

把区间[a,b] 分成 n个 y 小区间[ xi1, xi ],长度为
y f (x)
xi xi xi1;
(2) 取近似
Ai
在每个小区间[ xi1, xi ] O a x1 xi1i xi xnb1 x
上任取一点i,以 [ xi1, xi ]为底,f (i )为高的小矩形,
面积近似代替 Ai , 有Ai f (i )xi , i 1, 2,L n
极限I, 称这个极限I为函数f(x)在区间[a,b]上的
定积分.记为
积分上限
积分和
b
n
a
f ( x)dx
I
lim
0
i 1
f (i )xi
积分下限 被 积 被
[a,b]积分区间
积 函
分积 变表
数 量达


n
(1) S f (i )xi是与[a, b]的分法及在[ xi1 , xi ]
i 1
一点 i (i xi ), 作乘积 f (i )xi (i 1,2, , n)
(3)
n
并作和 S f (i )xi
(4)
i 1
记 max{ x1, x2 , , xn },如果不论对 [a,b]
怎样的分法,也不论在小区间[ xi1 , xi ]上点 i
怎样的取法,只要当 0时,和S总趋于确定的
lim na sin xdx lim sinn a 0
n n
x
n n
证明 求证 lim 4 sin nx sinn x dx 0 n 0

当x
0,
4
时,
|
s in nx
sinn
x
|
sin

高等数学 第六章 第7节 定积分的几何应用(中央财经大学)

高等数学 第六章 第7节 定积分的几何应用(中央财经大学)

一、微分元素法)( 或称为积分元素法法数学建模中的微分元素 ,当把非均匀变化的问题实际中在物理、几何以及工程 , ,则通积达形式能表示为某两个量的乘看作是均匀变化时. 分问题来处理常可将问题归结为定积 . 具有对区间的可加性要求量运用定积分处理问题时A取极限”—求和—近似“分划—,局利用整体上变化的量在局部问题的步骤将整体问题化成 , ,替“变”在局部上以“不变”代关系部上近似于不变的辩证,采用按照定积分的概念]. ,[ )( 111i i i ni i i ni i x x x f A A −==∈∆≈∆=∑∑ξξ便有关系式, ,个将具有代表性的第略去下标为简便和醒目起见i i, , ]d ,[ ] ,[ 1且取称之为典型小区间表示为小区间x x x x x i i +−, 则有为区间的左端点x i ξ. d )(x x f A ≈∆, )( d )( 记为或积分元素的微分元素为量通常称A x x f. d )(d x x f A =( 0d , 相当于取极限过程对区间的可加性由量→x A ] ,[ d , 0)||||上“无限累加”起来在区间将微分元素b a A x →∆] ,[ )(上的值:在区间就得到量即作定积分b a A. d )(d ∫∫==babax x f A A. ,加解为微分元素的无限累我们在这里将定积分理简言之一、平面图形的面积1解解解解y2解3解二、旋转体的体积一轴旋转一周所生成的将平面图形绕平面上某 . ,该轴称为旋转轴几何体称为旋转体 . , 间的可加性旋转体的体积具有对区上在区间I:旋转体的特点 ,截旋转体所得的的平面任何一个垂直于旋转轴. 图形均为圆截口1 y1 y2解Oaa b解解2πy三、平行截面面积为已知的几何体的体积解解。

高等数学第6章

高等数学第6章

• 另外,如果这个极限存在,也称广义积分 • 收敛,否则称广义积分
发散。
• 同样可定义广义积分 及其收敛
• 和发散。对广义积分 •

存在的充分必要条件是对任意 实数a,两个广义积分 和
都收敛。
• 6.5.2 无界函数的定积分
• 定义6.5.2 设函数 f (x)在[a,b)有定义,且当 x→b-时,f (x)→∞,设δ>0,积分
• 如果极限
• 存在,这个极限就称为无界函数 f (x)在[a,b] 上的广义积分,记为
• 也称广义积分
极限 •
收敛。否则,如果
不存在,就称广义积分
是发散的。
• 类似地,如果当x→a+时,f(x)→∞,可以类
似地定义广义积分 为:
• 而对当a<c<b,当x→c时,f(x)→∞,规定广
义积分 • 和 存在当且仅当广义积分 都存在,且
• 6.3 微积分学基本定理 • 6.3.1 变限定积分 • 定理6.3.1 如果函数f (x)是区间[a,b]上的一个
连续函数,那么当a≤x≤b时,变上限积分
• 是一个可导函数,且
• 定理6.3.2 在区间[a,b]上连续的函数 f (x)的
• 原函数一定存在,且变上限积分
• 就是它的一个原函数。 • 例6.3.4 设 f (x),g(x)和h(x)都是连续函数,
• 令各小区间的最大长度

• 如果不论小区间怎样划分,也不论在小区
间[xk-1,xk]上如何取ξk,当λ→0时,极限

• 为
总是存在,则这一极限就称
为函数 f (x)在区间[a,b]上的定积分。记 ,即:
• 关于定积分的定义,我们做如下说明:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fy
2 k m a
l 2
dx
0
(a2
x2
3
)2
y a M d Fx d Fay
k
m
a
a2
x
l 2
a2 x2
0
dF xdx
2k m l 1
l 2
O x lx
2
a 4a2 l 2
利用对称性
棒对质点引力的水平分力 Fx 0 .
故棒对质点的引力大小为
F
2k m
a
l
1
4a 2 l2
说明:
因此所求立体体积为
b
V a A(x) d x
A(x)
ax
bx
特别 , 当考虑连续曲线段
轴旋转一周围成的立体体积时, 有
V
b
π[
f
(
x)]2
dx
a
y
y f (x)
当考虑连续曲线段
O ax b x
绕 y 轴旋转一周围成的立体体积时,

V d π[( y)]2dy c
y
d
y x (y)
c
O
弧线段部分
3
1 1 4 y2 dy
直线段部分
3
dy
1
O 1
x2y3 0 x
x y2
作业
P284 3; 12; 18
第三节
第六章
定积分在物理学上的应用
一、 变力沿直线所作的功 二、 液体的侧压力 三、 引力问题
一、 变力沿直线所作的功
设物体在连续变力 F(x) 作用下沿 x 轴从 x a 移动到 力的方向与运动方向平行, 求变力所做的功 .
y b
O x ax

V 2
a
π
y2 dx

ab2 sin3t d t
0
2 π ab2 2 1 3
4 π ab2 3
特别当b
=
a
时,
就得半径为a
的球体的体积
4 3
πa3 .
例14. 计算摆线
的一拱与 y=0
所围成的图形分别绕 x 轴 , y 轴旋转而成的立体体积 . 0≤ t ≤2π
解: 绕 x 轴旋转而成的体积为
q 1 1
则功的元素为
dW
k r
q
2
d
r
O
a
r r dr b r
所求功为
kq
1 r
b
a
kq
(
1 a
1 b
)
说明:
kq a
例2. 在底面积为 S 的圆柱形容器中盛有一定量的气 体, 由于气体的膨胀, 把容器中的一个面积为S 的活塞从 点 a 处移动到点 b 处 (如图), 求移动过程中气体压力所 作的功 .
一段的弧长 .
解: ds r2( ) r2( ) d a2 2 a2 d
a 1 2 d
2πa
O
r
r a

sa
1 2 d
0
a2
1 2 1 ln
2
1 2
2π 0
三、已知平行截面面积函数的立体体积
设所给立体垂直于x 轴的截面面积为A(x),
上连续, 则对应于小区间
的体积元素为
dV A(x) d x
边长 →0 时, 折线的长度趋向于一个确定的极限 , 则称
此极限为曲线弧 AB 的弧长 , 即
n
s lim 0
M i1M i
i1
并称此曲线弧为可求长的.
y Mi1
A M0 O
定理: 任意光滑曲线弧都是可求长的.
(证明略)
Mi
B Mn x
(1) 曲线弧由直角坐标方程给出:
弧长元素(弧微分) :
第六章 定积分的应用
利用元素法解决: 定积分在几何上的应用 定积分在物理上的应用
第一节
第六章
定积分的元素法
一、什么问题可以用定积分解决 ? 二 、如何应用定积分解决问题 ?
一、什么问题可以用定积分解决 ?
1) 所求量 U 是与区间[a , b]上的某分布 f (x) 有关的 一个整体量 ;
2) U 对区间 [a , b] 具有可加性 , 即可通过 “大化小, 常代变, 近似和, 取极限”
y y f1(x) y f2 (x)
右下图所示图形面积为
b
A a f1(x) f2 (x) dx
O axxdx b x
例1. 计算两条抛物线 图形的面积 .
解: 由
得交点 (0, 0) , (1, 1) d A ( x x2)dx
1 3
在第一象限所围
y
y2 x (1,1) y x2
a2 2
1
3
3
2π 0
4 π3 a2 3
对应 从 0 变
2πa
O
x
d
例6. 计算心形线
面积 . 解:
1 a2 (1 cos )2 d
2
a2
π
4
cos
4
d
0
2
令t
2
π
8a2 2 cos4t dt 0
3π a2 2
所围图形的
(利用对称性)
d
O
2a x
二、平面曲线的弧长
定义: 若在弧 AB 上任意作内接折线 , 当折线段的最大
0
π a3

(t
sin
t)2
sin
t
dt
0

例16. 一平面经过半径为R 的圆柱体的底圆中心 , 并
与底面交成 角, 计算该平面截圆柱体所得立体的体积 .
解: 如图所示取坐标系, 则圆的方程为
x2 y2 R2
垂直于x 轴 的截面是直角三角形, 其面积为
A(x) 1 (R2 x2 ) tan (R x R)
所围图形的面积 .
解: 利用对称性 , 有 d A y dx
a
A 40 y d x
利用椭圆的参数方程
x a cos t y bsin t
(0 t 2 π)
y
b
O xxdxa x
应用定积分换元法得
4
ab
1 2
π 2
π ab
π
4ab 2 sin2 t dt 0
当 a = b 时得圆面积公式
解: 建立坐标系如图. 由波义耳—马略特定律知压强
p 与体积 V 成反比 , 即
故作用在活塞上的
力为 功元素为 所求功为
S
O a x x dx b x
二、液体的侧压力
设液体密度为
深为 h 处的压强: p g h
• 当平板与水面平行时,
h
平板一侧所受的压力为
P pA
• 当平板不与水面平行时,
(3) 曲线弧由极坐标方程给出:
令 x r( )cos , y r( )sin , 则得
弧长元素(弧微分) :
ds [x( )]2 [ y( )]2 d r 2 ( ) r2 ( ) d (自己验证)
因此所求弧长
s r 2 ( ) r2 ( ) d
例11. 计算摆线
一拱
的弧长 .
2
2
R0
g R3
O
x
y
xdx
R
x
三、 引力问题
质量分别为
的质点 , 相距 r ,
m2
二者间的引力 :
r
大小:
m1
方向: 沿两质点的连线
若考虑物体对质点的引力, 则需用积分解决 .
例5. 设有一长度为 l, 线密度为 的均匀细直棒, 在
其中垂线上距 a 单位处有一质量为 m 的质点 M, 试计算
R
P
R
0
2g
x
R2
x2
dx
2g R3 x
小窄3 条上各点的压强
pgx
说明: 当桶内充满液体时, 小窄条上的压强为 g (R x), 侧压力元素 dP 2 g (R x) R2 x2 dx ,
故端面所受侧压力为
4R g R R2 x2 dx 0 令 x R sin t
奇函数
4R g x R2 x2 R2 arcsin x R
在其上所作的功元
素为
dW F(x)dx
a x xdx b x
因此变力F(x) 在区间 上所作的功为
b
W a F (x) dx
例1. 在一个带 +q 电荷所产生的电场作用下, 一个单
位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) ,
求电场力所作的功 . 解: 当单位正电荷距离原点 r 时,由库仑定律电场力为
y
1) 当细棒很长时,可视 l 为无穷大 ,
b
此时引力大小为 2k m
y
a
方向与细棒垂直且指向细棒 .
y
解:
ds
(
d d
xt )2
(
d d
y t
)
2
d
t
O
a2 (1 cos t)2 a2 sin2 t d t
a 2(1 cos t) d t
2a sin t dt 2
s
2 0
π
2a
sin
t 2
d
t
2a
2
cos
t 2
2 0
Байду номын сангаас
π
8a
2πa x
例12. 求阿基米德螺线 r a (a 0)相应于 0≤≤2
x
例13. 计算由椭圆
所围图形绕 x 轴旋转而
转而成的椭球体的体积. 解: 方法1 利用直角坐标方程
相关文档
最新文档