生物质燃料与其它燃料的对比
生物质燃料的化学成分和热值

生物质燃料的化学成分和热值生物质燃料被广泛应用于能源行业中,它们是利用自然过程中形成的有机物质,将其转化为可用于燃烧的固态、液态或气态燃料。
而生物质燃料的化学成分和热值则是影响其能量利用效率和环境影响的两个重要因素。
一、生物质燃料化学成分生物质燃料的化学成分主要包括碳、氢、氮、氧等元素,其中碳和氢元素是其主要成分。
木材、秸秆等固态生物质燃料的化学成分中,碳含量占65-70%,氢含量则占5-6%。
而沼气等气态生物质燃料的化学成分中,甲烷(CH4)含量占50-70%,二氧化碳(CO2)含量占30-50%。
液态生物质燃料则包括乙醇、生物柴油等,其化学成分与固态燃料比较相近。
燃烧生物质燃料时,会发生不同的化学反应。
整个反应过程中,主要有以下几个阶段:1. 热裂解阶段:在高温下,生物质中的大分子有机物质被分解成小分子有机物质,同时释放出热量。
2. 燃烧阶段:在氧气存在下,生物质燃料中的有机物质与氧气反应,产生二氧化碳、水和热量。
3. 潜热阶段:燃料中的水分开始蒸发,再加上燃烧产生的热量,燃料会发生升温。
4. 灰化阶段:生物质燃料中的杂质和不燃材料在高温下氧化,产生灰分,导致燃料重量减少。
二、生物质燃料热值生物质燃料的热值也是燃料选择和使用中的重要参考指标。
热值是指每单位质量燃料燃烧时释放出的热量,通常以MJ/kg或BTU/lb为单位。
不同种类的生物质燃料其热值各不相同,且同一种类的生物质燃料在不同燃烧条件下其热值也不同。
木材、秸秆等固态生物质燃料的热值通常在15-20MJ/kg左右,而沼气等气态生物质燃料的热值则比较低,一般在30MJ/m3左右。
生物柴油的热值一般在35-40MJ/kg左右,比较高。
燃料的热值不同,燃烧产生的热量也不同,最终影响燃料的利用效率。
同时,也需要考虑燃烧产生的废气排放对环境的影响。
其中,二氧化碳排放是目前燃烧生物质燃料时需要重视的问题之一。
三、生物质燃料的能源利用和发展生物质燃料的能源利用已经成为了世界各地进行环保和能源替代的热点之一。
生物质能源的种类

生物质能源的种类生物质能源是一种可再生能源,是指以生物质作为燃料来获取能量的过程。
生物质能源的种类丰富多样,包括生物质固体燃料、生物质液体燃料和生物质气体燃料等。
下面将分别介绍这三种生物质能源的特点和应用。
一、生物质固体燃料生物质固体燃料是指将植物秸秆、木材、农作物残渣等生物质材料进行加工处理后,转化为固体燃料供能使用的能源。
其主要特点是可再生性强、储存方便、燃烧效率高。
生物质固体燃料的应用广泛,主要用于生活热水供应、家庭取暖和工业生产过程中的能源供应等。
通过合理利用生物质固体燃料,可以减少对传统煤炭等化石能源的依赖,降低环境污染。
二、生物质液体燃料生物质液体燃料是指通过生物质的生物化学转化或热化学转化,将生物质转化为液体燃料,如生物柴油、生物乙醇等。
生物质液体燃料具有高能量密度、可储存性好、燃烧清洁等特点。
生物柴油主要由植物油或动物脂肪经酯交换反应制得,可用作柴油机的燃料;生物乙醇主要由植物秸秆、玉米等淀粉含量较高的生物质经发酵和蒸馏得到,可用作汽油的替代燃料。
生物质液体燃料的应用领域广泛,包括交通运输、航空航天、农业等。
生物柴油和生物乙醇的使用可以减少温室气体排放,降低对化石能源的依赖。
三、生物质气体燃料生物质气体燃料是指将生物质通过气化等技术转化为气体燃料,如生物质气、沼气等。
生物质气体燃料具有燃烧效率高、可再生性强、减少温室气体排放等特点。
生物质气主要由生物质经气化得到,可用于发电、供热和燃气灶等;沼气主要由有机废物经厌氧发酵得到,可用于生活用气和工业燃料等。
生物质气体燃料的应用范围广泛,既可以替代传统能源,又可以利用农业和城市生活中产生的有机废物,实现资源的循环利用。
生物质能源是一种可再生能源,具有广泛的应用前景。
生物质固体燃料、生物质液体燃料和生物质气体燃料是生物质能源的主要种类,它们在不同领域中发挥着重要的作用。
通过合理利用和开发生物质能源,可以实现能源的可持续利用,减少对化石能源的依赖,同时也能够降低环境污染和温室气体排放。
生物质能的利用技术和经济效益评估

生物质能的利用技术和经济效益评估生物质能是指生命体自然生长过程中获得的可再生有机物质,它包括生物质能原、生物质废弃物和生物质中的其他有机成分。
生物质能是一种环保、生态、可再生的能源,与传统能源相比,在节能减排、替代石化能源等方面具有明显优势。
本文将探讨生物质能的利用技术和经济效益评估。
一、生物质能的利用技术1. 生物质颗粒燃料技术生物质颗粒燃料技术是目前生物质能利用的主流技术之一。
它将木材、秸秆、稻草、芦苇等生物质废弃物压制成颗粒状的生物质颗粒燃料,进行燃烧。
生物质颗粒燃料的优点在于能够有效地利用生物质资源,提高能源利用效率,降低能源消耗,减少二氧化碳等有害气体排放。
2. 生物质液体燃料技术生物质液体燃料技术是一种将生物质颗粒燃料转化为液态燃料的技术。
生物质液体燃料包括生物质油和生物乙醇等。
生物质液体燃料技术的优点在于能够有效地降低温室气体排放,同时具有可再生性,能够大幅度减少对化石能源的依赖。
3. 生物质气体燃料技术生物质气体燃料技术是将生物质废弃物通过生物质发酵等方式转化为气态燃料的技术。
生物质气体燃料主要包括沼气、生物气和合成气等。
生物质气体燃料技术的优点在于能够有效地利用生物质废弃物,降低温室气体排放,同时具有可再生性。
二、生物质能的经济效益评估生物质能作为一种新型能源,具有很高的发展前景。
但是,在考虑生物质能的利用时需要综合考虑其经济效益。
下面将对生物质能的经济效益评估进行探讨。
1. 投资成本生物质能的利用需要建设生产线、设备及相关基础设施,因此投资成本较高。
根据不同的生物质能利用技术,投资成本也有所不同。
例如,生物质颗粒燃料技术的投资成本较低,而生物质液体燃料技术需要建设相应的生产线和设备,投资成本相对较高。
2. 生产能力生物质能的生产能力除了受到投资成本的限制外,还需要考虑生物质资源的可持续性。
生物质能的生产能力应当根据当地的生物质资源充分发挥其潜力。
3. 能源代替效应生物质能作为可再生能源,可替代一部分石化能源,使能源结构更加多样化,也能够降低国家对外能源的依赖程度,具有很高的社会经济效益。
生物质能源的利用方法和环保优势

生物质能源的利用方法和环保优势随着人类社会的发展,对能源的需求越来越大,但化石能源的消耗也带来了很多环境问题。
为了满足能源需求,保护环境,生物质能源的利用方法就显得越来越重要。
本文将从生物质能源的种类和利用方法以及环保优势等方面进行探讨。
一、生物质能源的种类和利用方法生物质能源可以分为三类:生物质固体燃料、生物质液体燃料和生物质气体燃料。
其中,生物质固体燃料主要包括木材、秸秆、麦秸、稻草等,这些燃料主要用于生产热能和电能。
生物质液体燃料包括生物柴油、生物酒精、生物油等,这些燃料可以替代传统石油等燃料。
生物质气体燃料包括生物气、沼气等,主要用于生产热能和电能,也可以替代传统的燃气。
生物质能源的利用方法包括生物质热能利用、生物质发电和生物质化工等。
其中,生物质热能利用主要包括生物质燃烧和生物质气化两种方式。
生物质燃烧是指将生物质材料进行直接燃烧,用于加热、供暖等方面。
生物质气化是指将生物质材料进行高温气化,生成可燃性气体,用于发电和供气等方面。
生物质发电是指将生物质转化为电能,主要有生物质燃烧发电和生物质气化发电两种方式。
生物质化工主要是指将生物质转化为液体燃料或化学品,如生物柴油、生物酒精等。
二、生物质能源的环保优势相比传统化石能源,生物质能源具有很多环保优势。
首先,生物质能源的使用对大气环境影响小。
生物质燃烧和气化释放的二氧化碳是通过植物自然吸收的,不会增加空气中的二氧化碳含量。
而煤炭、石油等化石能源的燃烧会释放大量的二氧化碳和其他有害气体,加重空气污染问题。
其次,生物质能源的开发利用有助于土地的保护和开发。
传统的化石能源的开采会对环境和土地产生很大的影响,而生物质能源可以利用农作物秸秆、山林废弃物等进行生产,有助于土地资源的回收利用。
同时,生物质能源的利用有助于减少固体废弃物对环境的污染。
生物质燃烧和气化生产的固体废弃物可以做为肥料、动物饲料等利用,减少了化学肥料和饲料的使用量,降低了污染风险。
生物质能源的利用现状与发展趋势

生物质能源的利用现状与发展趋势随着环保意识的不断提高, 生物质能源成为了新的热门话题。
它是指从活性生物质中提取能量的技术或方式,包括来自农作物、林木、稻壳、废纸和废弃物等的能源。
相较于传统的化石燃料,生物质能源具有更为环保的优势,被认为是一种重要的可再生能源。
本文将会讨论目前生物质能源的利用现状以及未来的发展趋势。
一、生物质能源的利用现状目前,生物质能源主要有两种形式,一种是通过生物质发电和热能利用的方式,另一种是通过制氢等技术来生产生物质燃料。
这些技术都已经在实际应用中得到很好的运用。
1.生物质发电生物质发电是目前生物质利用的主要方式。
通过生物质发电可以转换生物质的化学能为电能,同时还可以产生热能。
这项技术广泛应用于农业、林业、能源和环境等领域。
生物质燃烧发电的原理主要是利用生物质中的碳、氢、氧等元素以及其他的一些元素质和能量状态的变化而产生的热能来驱动机组发电。
目前,我国的生物质燃烧发电主要使用的是垃圾焚烧、污泥焚烧和农作物秸秆焚烧等方式。
2.生物质燃料生物质燃料通过生物质的生化反应来生产氢气、甲烷、醇类等燃料。
利用这些燃料可以替代传统的石油和天然气等有限资源,从而实现环保和可持续发展的目标。
二、生物质能源的未来发展趋势随着生物质能源技术的不断发展和完善,它有望成为未来能源开发的主要方向之一。
1.技术创新生物质能源技术的发展方向主要集中在改进发电和燃料生产技术,提高燃烧效率和经济效益,并且减少对环境的影响。
2.政策支持政府的政策支持也是未来发展生物质能源的关键。
未来的发展会需要广泛的政策支持,包括资金、税收和能源政策等。
政府的支持将会鼓励更多的企业和科研机构投入到生物质能源的研发和应用中。
3.市场需求未来市场需求也是生物质能源发展的重要驱动力。
人们对环保和可持续发展的关注将会逐渐提高,这将推动生物质能源的市场需求,同时也鼓励企业投资生物质能源的开发和生产。
4.产业升级未来生物质能源的产业升级是不可避免的趋势。
生物质与天然气对比汇编3篇

生物质与天然气对比汇编第一篇:生物质与天然气对比汇编——能源产出能源是人类社会生产生活不可或缺的资源之一。
传统的煤炭、石油和天然气等化石能源越来越受到人们的关注和限制,因此,可再生能源越来越受到了人们的青睐。
在可再生能源中,生物质和天然气是两种常见的能源,两者有许多相似和不同之处。
本文将从能源产出方面对生物质和天然气进行对比。
1.生物质能源产出生物质作为一种可再生能源,与其他常见的可再生能源(如太阳能、风能等)相比,其优点在于它可以作为可持续的生产性资源被广泛使用。
生物质主要来自于农林业产业和城市垃圾、食品垃圾等产业的废弃物。
生物质还可以通过种植高效的作物(如玉米、油菜等)和林木等方式进行生产。
从生物质能产出的角度来看,有以下几个方面的表现。
2.生物质能的产能生物质能产能因具体生物质种类、生产技术、用途等因素而异。
以生物质发电为例,生物质发电产能大体上在10-30MW之间,这与生物质供应、技术水平、设备投资和运营管理等因素有关。
据生态环保部数据,截至2018年底,全国生物质能源总装机容量达到1516.2万千瓦,其中生物质发电容量达到992.1万千瓦。
未来生物质能的产能将继续提高,大力发展生物质能是我国应对能源安全挑战和减少温室气体排放的必然选择。
3.天然气的能源产出天然气是一种由各种有机质经过长期埋藏、热解而形成的天然气体矿藏,含有丰富的甲烷等可燃气体。
天然气的能源产出是判断其发展前景的重要指标之一。
从能源产出的角度来看,有以下几个方面的表现。
4.天然气的产量天然气产量是衡量天然气能源供给的重要指标。
我国天然气产量的增长主要依赖于煤层气开发和深水气藏开发。
截止2019年,我国年产天然气量达到了3242.9亿立方米,成为全球第二大天然气生产国。
与生物质相比,天然气在产量上有很大的优势,但天然气的供给不稳定,一旦发生石油气灾,后果将会非常严重。
综上所述,生物质与天然气在能源产出中有相同和不同之处,生物质作为一种可再生能源,可以作为可持续的生产性资源被广泛使用,生物质能的产能在不断提高中。
生物质燃料与天然气对比与选择

对比与选择
生物质成型燃料
管道天然气
投 资
设备+仓储
设备+开户费+入户管网
建 设
报批报建、土建工程、安装调试
报批报建、工程发标、设备采购发标、工程项目管理
运 营
设备操作、控制、维护
设备操作、控制、维护、安全管理
燃气锅炉自动化程度高、危险性高,一旦出现问题造成的后果比较严重,因此对操作人员的业务素质要求高,尤其是自动化方面的技术和维护人员更需要配置到位,才能将燃气锅炉操作好、维护好。
2.人员配置、项目管理所有风险由我们承担。
3.我们将把株洲新芦淞洗水工业园项目作为示范工程,全心全意做好服务。
专业公司 专业技术 专业管理
实力更强大 服务更到位 合作更愉快
燃 料
可再生能源
原料来源广泛
使用天然气燃料,冬季用气紧张时,会有限制用气的风险。
天然气管道维护改造停气风险
石化能源不可再生,有枯竭Hale Waihona Puke 险先缴费后供气,有气源垄断风险
成 本
燃料成本+设备维护成本+运营管理成本合计260元/吨蒸汽
燃料成本+设备维护成本+运营管理成本合计320元/吨蒸汽
如果选择我们:
1.从投资、建设、运营到成本控制全部由我们承担。
生物燃料优势初一生物知识点

生物燃料优势初一生物知识点
生物燃料优势初一生物知识点
1,生物质燃料发热量大,发热量在3900~4800千卡/kg左右,经炭化后的发热量高达7000—8000千卡/kg。
2,生物质燃料纯度高,不含其他不产生热量的杂物,其含炭量75—85%,灰份3—6%,含水量1—3%
3,绝对不含煤矸石,石头等不发热反而耗热的杂质,将直接为企业降低成本。
4,生物质燃料不含硫磷,不腐蚀锅炉,可延长锅炉的使用寿命,企业将受益匪浅。
5,由于生物质燃料不含硫磷,燃烧时不产生二氧化硫和五氧化二磷,因而不会导致酸雨产生,不污染大气,不污染环境。
6,生物质燃料清洁卫生,投料方便,减少工人的劳动强度,极大地改善了劳动环境,企业将减少用于劳动力方面的成本。
7,生物质燃料燃烧后灰碴极少,极大地减少堆放煤碴的场地,降低出碴费用。
8,生物质燃料燃烧后的灰烬是品位极高的优质有机钾肥,可回收创利。
9,生物质燃料是大自然恩赐于我们的'可再生的能源,它是响应中央号召,创造节约性社会,工业反哺农业的急先锋。
总结:对世界各地的生态环境和植物类型进行了分析,探讨了在现有技术条件下,用植物或农作物中不能吃的部分生产高效生物燃料的可持续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物质燃料与其它燃料的对比
什么是生物质成型燃料?
??? 众所周知,人类的生存和发展离不开能源。
随着世界能源需求量的迅猛增长,以煤、石油、天然气为代表的常规能源将最终被开采殆尽,同时大量使用这些化石燃料会导致一系列严重的环境污染问题。
因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。
??? 在众多的可再生能源中,生物质能以其资源储量丰富、清洁方便和可再生的特点,具有极大的开发潜力。
生物质能是指绿色植物通过叶绿素将太阳能转化为化学能而储存在生物质内部的能量,即以生物质为载体的能量,是太阳能的一种表现形式。
生物质是太阳能最主要的吸收器和储存器。
太阳能照射到地球后,一部分转化为热能,一部分被植物吸收,转化为生物质能;由于转化为热能的太阳能能量密度很低,不容易收集,只有少量能被人类所利用,其他大部分存于大气和地球中的其他物质中;生物质通过光合作用,能够把太阳能富集起来,储存在有机物中,这些能量是人类发展所需能源的源泉和基础。
基于这一独特的形成过程,生物质能既不同于常规的矿物能源,又有别于其他新能源,兼有两者的特点和优势,是人类最主要的可再生能源之一。
我国有着丰富的生物质资源,据统计,全国桔杆年产量约5. 7亿吨,人畜粪便约3. 8亿吨,薪柴年产量(包括木材砍伐的废弃物)为1. 7亿吨,还有工业排放的大量有机废料、废渣,每年生物质资源总量折合成标准煤约3 亿吨。
我国直接利用生物质能已有几千年的历史, 但利用效率极低,即使是目前农村已较普遍推广的省柴节煤灶, 热效率也仅20 % 左右。
近年来,在一些经济发达的城市周边地区, 农民大量使用优质高效燃料, 用于炊事、取暖,而将农作物桔杆直接放在农田焚烧,浪费了能源,也污染了环境。
生物质能资源结构疏松,能量密度低,仅是标准煤的一半多一些,且不易贮运。
生物质成型燃料是将秸秆、稻壳、锯末、木屑等生物质废弃物,用机械加压的方法,使原来松散、无定形的原料压缩成具有一定形状、密度较大的固体成型燃料,其具有体积小、密度大、储运方便;燃烧稳定、周期长;燃烧效率高;灰渣及烟气中污染物含量小等优点。
生物质成型燃料由可燃质、无机物和水分组成,主要含有碳(C)、氢(H)、氧(O)及少量的氮(N)、硫(S)等元素,并含有灰分和水分。
各种成分构成其中:
◆碳:生物质成型燃料燃料含碳量少(约为40-45%),尤其固定碳的含量低,易于燃烧。
◆氢:生物质成型燃料燃料含氢量多(约为8-10%),挥发分高(约为75%)。
◆生物质燃料中碳多数和氢结合成低分子的碳氢化合物,遇到一定的温度后热分解而析出挥发物。
◆硫:生物质成型燃料燃料中含硫量少于%,燃烧时不必设置烟气脱硫装置,降低了成本,又有利于环境的保护。
◆氮:生物质成型燃料燃料中含氮量少于%,NOx排放完全达标。
◆灰分:生物质成型燃料,燃料采用高品质的木质类生物质作为原料,灰分极低,只有1%左右。
◆生物质成型燃料的热值:生物质成型燃料的密度一般为~m3,热值约为4,100±100Kcal/Kg。
1吨生物质成型燃料相当于~吨标准煤或吨柴油/燃料油。
生物质成型燃料除具有生物质燃料的一般特点外,还具有以下优点:
(1)密封塑料袋包装,装运方便,清洁安全;
(2)固体颗粒,密度大、体积小,贮存方便;
(3)燃料挥发分高,易于点燃和燃烧;
(4)燃料热值高,水份低,燃烧效果好;
(5)CO2可达到生态“零”排放,SO2、NOx优于柴油,排放完全达标,实现减排目标。
生物质成型燃料的主要用途:
◆1、小型炉窑:主要用来家庭取暖、供应生活热水。
这种应用主要以生物质颗粒燃料为主,北欧采用的比较多,国内因为无相关产品开发,其应用几乎为空白。
此类产品小型化,便于流水线生成,单品美观大方,适合家庭使用。
◆2、未加工的生物质燃料直接燃烧,此类多为中小型锅炉,由于燃料不加工,节省投资成本,国内多为此种锅炉。
这类锅炉燃料以工业废料为主,燃烧投料方式粗放,且多为人工投料方式,炉膛漏风严重,存在安全隐患,锅炉总体效率不高。
但是从此类锅炉用户企业自身来说,因为利用了自身废料来产生蒸汽或供热,大大节省了其他燃料的投资和之前废料处理的开支,生物质燃料燃烧污染少等特点,企业应用积极性非常高。
◆3、对原料进行粗加工,然后直接燃烧发电或者产汽。
如将秸秆打碎,将木块、木条打碎,然后用输送机(气力输送或者机械输送)送入燃烧室。
这类应用要求厂房建设在原料产地附近,以降低运输费用。
生物质成型燃料燃料与各种油、气燃料运行成本的比较:目前我国城镇4t/h以下的小型锅炉主要以燃油(气)居多,其中广东省就有数万台之多。
以生物质成型燃料代替油(气)燃烧,经济效益非常显着,下表以蒸汽锅炉为例,列示了生物质成型燃料燃料与各种油、气燃料运行成本的比较:
项目生物质成型燃料天然气柴油重油
热值(kcal/kg) 4100 8600 10200 10000
锅炉热效率(%) 89% 90% 90% 89%
吨蒸汽燃料耗量(kg/t)
吨蒸汽燃料费用(元/t)
燃料费用节约率(-%)? ---21% 42% 22%
燃料费用比:
◆生物质成型燃料∶天然气∶轻柴油∶重油= 1 ∶∶∶
人类的生存和发展离不开能源,随着世界能源需求量的迅猛增长,然而作为人类目前主要能源来源的石油、天然气和煤炭却正在迅速地减少。
根据国际能源机构的统计,如按目前的势头发展下去,不加节制的话,那么,地球上这三种能源供人类开采的年限分别只有40 年、50 年和240年了。
因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。
生物质能源是一种理想的可再生能源,它来源广泛,每年都有大量的工业、农业及森林废弃物产出。
即使不被用于生产能源,这些废弃物的处理也是令人头疼的事情。
仅欧盟每年便产出五亿吨(干基) 这类物质。
另外,
世界上87 %的能源需求来源于化石燃料,这些燃料燃烧时,向大气中排放出大量的CO2 ,而生物质作为燃料时,由于生物质在生长时需要的CO2 量相当于它燃烧时排放的CO2 量,因而大气中的CO2 净排放量近似为零。
而且,生物质中硫的含量极低,基本上无硫化物的排放。
所以,利用生物质作为替代能源,对改善环境,减少大气中的CO2 含量,从而减少“温室效应”都有极大的好处。
因此,将生物质作为化石燃料的替代能源,便能向社会提供一种各方面都可被接受的可再生能源。
从矿物能源资源有限和因大量使用会造成环境状态恶化的战略观点出发,结合我国拥有丰富生物质资源的现实,逐步发展工业锅炉生物质的燃烧技术,对节约常规能源、优化我国能源结构,将有积极意义。