激光器种类及应用

合集下载

激光器的种类和特点及应用简介

激光器的种类和特点及应用简介

激光器的种类和特点及应用简介
激光设备现在已经广泛应用于各种行业,种类丰富令人惊叹,从视频播放设备,图像识别打印设备,手机扫码技术,到激光打标、雕刻、切割设备,这些设备都应用了激光器和技术,那么激光和普通的灯光有什么区别,有哪些特点和种类?
激光从被发现到现在,也就100多年,1916年现代物理的奠基者-爱因斯坦发现了激光现象,提出了激光的理论,经过众多物理学家的不懈努力,在二十世纪五十年代才研制出来第一台激光器,激光技术应用于工业是七十年代后期才开始的,但是激光的独特优点使得激光技术和设备迅速的被各个行业广泛应用。

激光和我们日常见的灯光日光有什么区别呢?关键的区别在于灯光日光是散射光,光线是无方向性的散射,而且是多种波长的光,不能聚集能量,而激光器产生的激光是方向高度一致的光线,而且是单一波长的光,激光是单色的光,能量高度密集,这就使得激光能够达到雕刻切割的能力了。

激光器有很多种类,一般按激光介质的不同,分类有固态激光器、液态激光器、气态激光器、半导体激光器等几大类,应用于雕刻、切割行业的主要是固态激光器和气态激光器,具体常见的就是光纤激光器和CO₂激光器。

激光设备在加工过程中,没有空气污染,没有水污染和噪声污染,而且能耗低,切割速度快,再利用数控技术和计算机软件,数控激光雕刻机,激光切割机充分发挥出了激光的优势,成为现代工业加工中高精度、高效率的首选和必备设备。

2018.08.10。

激光器和探测器

激光器和探测器
柔性探测器
柔性探测器具有可弯曲、可折叠、轻便等优点,未来将广 泛应用于可穿戴设备、智能家居等领域。
激光器和探测器的融合技术
激光雷达技术
激光雷达是一种集激光扫描、测距和测角于 一体的传感器技术,未来将进一步优化激光 雷达的扫描速度、精度和可靠性,提高其在 自动驾驶、机器人等领域的应用效果。
光子集成电路
发展
随着新材料、新工艺和新技术的不断涌现,探测器的性能和功能也在不断得到提升。未来,探测器将 朝着更灵敏、更快速、更可靠的方向发展,同时还将拓展其在物联网、智能制造等领域的应用。
03 激光器和探测器的比较
工作原理的比较
激光器的工作原理
激光器通过激发原子或分子,使 其跃迁到高能级状态,然后释放 光子,形成相干光束。
微型激光器
微型激光器具有体积小、重量轻、易于集成等优点,未来将广泛应用 于光通信、生物医疗、传感等领域。
新型探测器的研发
高灵敏度探测器
随着科学技术的不断发展,对探测器的灵敏度要求越来越 高,未来将研发出更高灵敏度、更低噪声的探测器,以满 足各种应用需求。
宽波段探测器
为了适应不同波段的光信号探测,未来将研发出宽波段、 多波段探测器,以提高探测器的应用范围和灵活性。
探测器的性能受环境因素影响较大,如温 度、压力和电磁噪声等,需要采取相应的 措施进行补偿和校准。
04 激光器和探测器的未来发 展
新型激光器的研发
高功率激光器
随着工业、医疗和科研等领域对高功率激光器的需求增加,未来将 研发出更高功率、更稳定、更可靠的激光器,以满足各种应用需求。
新型激光器材料
随着材料科学的进步,未来将探索和开发新型激光器材料,如新型 晶体、非线性光学材料等,以提高激光器的性能和降低成本。

二氧化碳激光器分类特点与应用

二氧化碳激光器分类特点与应用

二氧化碳激光器分类特点与应用一、分类:CO2激光器主要分为封闭式和开放式两种类型。

1.封闭式CO2激光器:封闭式CO2激光器通常由气体激光管、泵浦器和腔镜组成。

其中,气体激光管内充填有二氧化碳、氮气和稀有气体混合气体。

通过泵浦器向激光管内添加能量,使气体分子激发至亚稳态,产生激光放大。

腔镜用来折射和反射激光,形成激光束输出。

封闭式CO2激光器适用于医疗美容、雕刻切割等高精度和高功率需求的场合。

2.开放式CO2激光器:开放式CO2激光器通常由气体激光管、泵浦器、扩束镜和输出镜组成。

其中,气体激光管内充填有二氧化碳和氮气混合气体。

泵浦器提供能量,使气体分子激发到受激发射态,在输出镜的作用下,形成激光束输出。

开放式CO2激光器适用于雕刻、切割等对功率要求较低的场合。

二、特点:CO2激光器具有以下几个特点:1.波长长:CO2激光器的激光波长为10.6微米,属于远红外光,对很多物质有很强的穿透能力。

2.高功率:CO2激光器可以达到很高的功率输出,通常可达到几十瓦至几百瓦。

3.高效率:CO2激光器的光电转换效率较高,可达到10%左右。

4.良好的光束质量:CO2激光器的光束质量较好,光斑比较小和聚焦性能好。

5.易于操控:CO2激光器的输出功率和频率可以通过调整泵浦能量和稀有气体含量等参数进行调节。

6.长寿命:CO2激光器的寿命较长,使用寿命可达数千小时以上。

三、应用:CO2激光器具有广泛的应用领域,如医疗、工业、科学研究等。

1.医疗方面:CO2激光器主要用于皮肤整形、手术切割、疤痕修复等医疗美容领域。

由于CO2激光器的波长与水分子吸收特性相匹配,因此可以控制热损伤范围,减少手术切割对周边组织的影响。

2.工业方面:CO2激光器广泛用于工业加工领域,如切割、雕刻、焊接等。

其高功率和良好的光束质量使其成为金属切割和非金属切割的重要手段。

3.科学研究方面:CO2激光器在科学研究中也有广泛应用,如光学实验、量子物理研究等。

激光器的分类介绍

激光器的分类介绍

激光器的分类介绍激光器是一种产生聚集一束光的装置,其主要特点是具有极高的单色性、方向性和相干性。

激光器广泛应用于医学、通信、制造、科学研究等领域。

根据原理和应用的不同,激光器可以分为多种类型。

下面将对常见的激光器分类进行介绍。

1.固体激光器固体激光器是利用其中一种固态材料产生激光的装置,通常包括晶体激光器和玻璃激光器。

其中,晶体激光器利用激活态离子在晶体内部的能级跃迁发射激光,常见的晶体有Nd:YAG晶体、Nd:YVO4晶体等;而玻璃激光器则是利用包含稀土离子(如Nd、Er)的玻璃产生激光。

固体激光器具有高效率、长寿命、较高的功率输出等优点,广泛应用于医学激光手术、材料加工等领域。

2.气体激光器气体激光器是利用气体的分子、原子激发态跃迁产生激光的装置,常见的气体激光器有氦氖激光器、氩离子激光器等。

氦氖激光器(He-Ne激光器)是最早发展起来的激光器之一,主要用于教学演示、测量和光学仪器中;而氩离子激光器则具有较高的功率输出和较宽的光谱范围,适用于多种应用领域,如材料加工、光刻、医学等。

3.半导体激光器半导体激光器是利用半导体材料,通过注入电子与空穴的复合辐射出激光的装置。

半导体激光器具有体积小、功率效率高、寿命短、驱动电流低等优点,广泛用于信息通信、光存储、激光打印等领域。

另外,半导体激光器还可以通过堆积多个激光二极管,形成多模或多波长激光,提高输出功率和多功能应用。

4.准分子激光器准分子激光器是利用被激发态分子在材料内部的能级跃迁产生激光的装置。

其中,较常见的准分子激光器是二氧化碳激光器(CO2激光器),通常工作在中红外光谱区域,广泛应用于工业加工(切割、焊接)、医学手术、测量等领域。

此外,还有氟化氢激光器(HF激光器)、分子氮激光器等。

5.光纤激光器光纤激光器是利用光纤内的激光表面反射和倍增效应产生激光的装置。

光纤激光器的输出光束质量好,功率密度高,可以实现对光束的精细调控和方向性扩展。

光纤激光器具有高可靠性、耐用性强等特点,广泛应用于通信、材料加工、医学等领域。

激光的种类种类及应用

激光的种类种类及应用

激光的种类种类及应用激光(Laser)原指具有高效率,窄束,高单色性(即色散小),高相干性(即随机性小)的光。

自1964年发明激光以来,激光技术在多个领域得到广泛应用。

根据不同激光产生机制、波长范围和功率等特性的不同,激光可以分为多种种类。

1. 气体激光器(Gas Laser)气体激光器是最早被开发和应用的激光器之一。

根据不同的气体填充和激发方式,气体激光器可以分为氦氖激光器(He-Ne),二氧化碳激光器(CO2),氙离子激光器(Xe-ion)等。

氦氖激光器广泛应用于测量、光学实验、医学等领域;二氧化碳激光器在加工和切割材料、医学手术、雷达等领域得到广泛应用;氙离子激光器适合生物医学、光化学、实验等领域。

2. 固体激光器(Solid-State Laser)固体激光器是利用一些固态材料来产生激射光的装置。

常见的固体激光器包括钕:锗酸玻璃激光器(Nd:glass)、二极管激光器(Diode laser)、钕:YAG激光器(Nd:YAG)、掺铒光纤激光器(Er-doped fiber laser)等。

固体激光器在材料加工、激光雷达、医学手术、通信等领域得到广泛应用。

3. 半导体激光器(Semiconductor Laser)半导体激光器是利用半导体材料来产生激射光的装置。

半导体激光器又称为激光二极管(Laser Diode),它具有尺寸小、寿命长、高效率等特点。

半导体激光器广泛应用于通信、照明、显示、激光打印等领域。

4. 纤维激光器(Fiber Laser)纤维激光器是利用光纤结构的光介质来产生激射光的激光器。

纤维激光器具有体积小、易于集成、输出功率稳定等特点。

纤维激光器在制造业、材料加工、通信、医疗等领域得到广泛应用。

5. 液体激光器(Liquid Laser)液体激光器是利用液体介质来产生激射光的装置。

由于液体特性的不稳定性,液体激光器并不常见,但在一些特殊领域如核聚变、舰船激光武器等方面得到应用。

激光常见的分类

激光常见的分类

激光常见的分类激光(Laser)是一种以光学放大的原理产生的高度聚焦的光束。

它的特点是单色性、同相性和高亮度,广泛应用于各个领域,包括医疗、通信、制造等。

根据激光器的工作原理和应用领域的不同,激光可以被分为多种分类。

一、气体激光器气体激光器是一种利用气体放电形成的激发能量来激发激光发射的装置。

根据使用的气体种类不同,气体激光器可以分为氦氖激光器、二氧化碳激光器、氩离子激光器等。

其中,氦氖激光器是最早被发现的激光器,其工作波长为632.8纳米,广泛应用于医疗、测量和教育领域;二氧化碳激光器的工作波长为10.6微米,主要用于切割、焊接和雕刻等工业应用;氩离子激光器的工作波长为488纳米和514纳米,常用于生物医学研究和材料加工等领域。

二、固体激光器固体激光器是利用固体材料中的活性离子或色心离子来产生激光的装置。

常见的固体激光器有Nd:YAG激光器、Nd:YVO4激光器等。

其中,Nd:YAG激光器的工作波长为1064纳米,是目前应用最广泛的固体激光器之一,可用于切割、焊接、标记等工业应用;Nd:YVO4激光器的工作波长为1064纳米,它具有更高的光转换效率和更窄的线宽,适用于高精度的激光加工和科学研究等领域。

三、半导体激光器半导体激光器是利用半导体材料中的电子和空穴复合产生激光的装置。

半导体激光器具有体积小、功耗低和价格便宜等优点,广泛应用于通信、显示和医疗等领域。

根据结构和工作方式的不同,半导体激光器可以分为激光二极管、垂直腔面发射激光器(VCSEL)等。

激光二极管是最常见的半导体激光器,其工作波长范围广泛,可从红外到可见光,适用于光存储、医疗和传感等应用;VCSEL是一种垂直发射的半导体激光器,具有窄的光谱线宽和高的发射功率,主要用于光通信和3D成像等领域。

四、光纤激光器光纤激光器是利用光纤中的增益介质来放大激光的装置。

光纤激光器具有体积小、可靠性高和抗干扰能力强等优点,广泛应用于通信、材料加工和医疗等领域。

激光器及其应用介绍

激光器及其应用介绍

原子温度降低到了与绝对
零度只相差百万分之一度 的程度。
的方法,使冷却温度进一
步降低。因此获得1997年 诺贝尔物理奖。
13

1961年8月,中国第一台红宝石激光器问世。中 国科学院长春光学精密机械研究所研制成功。

1987年6月,1012W的大功率脉冲激光系统——神 光装臵,在中国科学院上海光学精密机械研究所 研制成功。

1960年7月,世界第一台红宝石固态激光器问世,
标志了激光技术的诞生。

美国加利福尼亚州休斯航空公司实验室的研究员梅
曼演示的。 波长为694.3nm的激光

2014-10-16
7至此,一门新的科学技来自术——量子电子学中的激光 技术以科学史上罕见的高速 度向前发展!
2014-10-16
8
1961年
⑴ 2月(A.Javan)研制成了
He—Ne混合气体激光器。
⑵ 有人提出了Q调制技术,
并制成第一台调Q激光器。
⑶ 制成了钕玻璃脉冲激光器。
为什么要调Q?
1962年,美国三个研究小组几乎同时分别发布砷化镓 (GaAs)半导体激光器运转的报道。
仅1961—1962年间世界各国发表 的激光方面的论文达200篇以上。
从历史来看,任何科学发明或科学发现,都不外是两条 道路:一是自然界业已存在,当人们自觉或不自觉地发现以 后再产生理论,并加以证明和利用,如万有引力、氧气、电 磁等,这种情况称为“科学发现”;二是自然界(至少地球 上的自然界)并不存在的事物,但人们先从理论上推导、预 测,然后再通过努力加以证明和实现,如相对论、核衰变、 核聚变等,这种情况称为“科学发明”。而后者则更有科学 理论性和挑战性,激光的诞生过程就是属于后者。

激光的种类和激光器的用途

激光的种类和激光器的用途

激光的种类和激光器的用途激光是一种由激活的原子、分子或离子产生的高度聚焦的光束。

根据激光的产生机制、波长、功率等不同特点,激光可以分为多种不同类型。

以下是常见的一些激光器种类及其应用。

1.气体激光器:气体激光器利用气体体积放电、电离、碰撞激发等原理产生激光。

其中,最常见的激光器是二氧化碳激光器(CO2激光器),它的波长为10.6微米。

CO2激光器广泛应用于切割和焊接金属材料、医学手术、纹身移除、装饰等领域。

2.固体激光器:固体激光器使用固体材料(如晶体或玻璃)作为激发介质,通过显微光泵或一个或多个便激光器激励来产生激光。

当固体材料受到外部能量激发时,光子被激发到高能级,并在经典的自发辐射下退回到较低的能级,产生激光。

常见的固体激光器有Nd:YAG激光器和Er:YAG激光器等。

Nd:YAG激光器工作在1064纳米,常用于望远镜、瞄准器、激光光纤通信等领域。

3.半导体激光器:半导体激光器是利用半导体材料和pn结构的特性产生激光。

半导体激光器通常体积小且寿命长,因此广泛用于信息存储、激光指示器、激光打印机、激光读取器、医疗设备等领域。

此外,半导体激光器还广泛应用于激光雷达、光通信和工业材料加工等领域。

4.光纤激光器:光纤激光器是一种利用光纤作为反馈介质产生激光的激光器。

相较于传统的固体激光器,光纤激光器具有更高的效率、更小的尺寸和更长的使用寿命。

光纤激光器广泛应用于医学手术、材料加工、激光测距、光纤通信等领域。

5.自由电子激光器:自由电子激光器是一种利用加速带电粒子(电子或电子束)产生激光的激光器。

自由电子激光器的波长范围广,功率高,可用于材料加工、电子束刻蚀、粒子加速器、原子核物理研究等领域。

除了上述激光器类型外,还有衍射光束激光器、液体激光器等特殊类型的激光器。

总结起来,激光器有着广泛的应用领域。

例如,激光器在医学领域中,可用于激光手术、激光治疗、激光诊断等;在通信领域中,激光器可用于光纤通信、激光雷达等;在材料加工领域中,激光器可用于切割、打孔、焊接、雕刻等;在科研领域中,激光器可用于光谱分析、粒子加速等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光器的种类
气体激光器
以气体为工作物质的激光器。 目前应用最广泛的一类激光器:小功率He-Ne激光器,大功率二氧化碳激光器等。 大多数能连续工作,激励过程中涉及能级较固定,采用气体放电中的电子碰撞激发。 根据能级跃迁类型,又分为原子、离子、分子、准分子型气体激光器。
1.原子气体激光器 工作物质:中性气体原子。 典型代表:He-Ne激光器。其激活介质按He:Ne=1:10填充,氖阱半导体激光器 两个高势能的阱壁夹住一个低势能阱底就构成了一个势阱,双异质结构就是这样 一个半导体势阱。这类势阱中,当有源区的厚度被减少到同电子的德布罗意波的波长 差不多(约10nm)时,就会发生量子尺寸效应,此时的势阱就称为量子阱。
•量子阱半导体激光器: 有源区由多个夹层状量子阱结构重叠而构成的半导体激光器,
准分子激光器激光波长(nm)
放电激发的准分子激光器结构与TEA型CO2激光器基本相同。 很难维持放电的长期稳定性,而要求脉冲宽度为几十ns的高速放电。 卤素气体活性很强,气体容易恶化,必须用耐腐蚀材料制作,并要定期更换气体。 通常采用He、Ne将由压力数千帕的稀有气体和压力数百帕的卤素气体组成的混合气 体稀释成数百千帕的混合气体作为激光工作物质,所形成的激光器输出能量为数百微 焦耳,发光效率1%,重复频率数千赫兹。
Nd:YAG激光器结构示意图
半导体激光器
工作物质:半导体材料(主要是化合物半导体) 泵浦:电流注入
特点:输入能量最低,效率最高,体积最小,重量最轻,可以直接调制,结构简单, 与集成电路生产工艺兼容,价格低廉,可靠性高,寿命长等
目前销售总数量已占各种激光器的99%,成为世界激光器市场上的绝对主流。
(a)直流放电型
(b) TEA型
(c)波导型
气体激光器
4.准分子激光器 工作物质:稀有气体或稀有气体与卤素气体的混合气体, 输出波长处于紫外波段的高效脉冲激光器,通常作为分光、激光加工、光刻的光源。 一般稀有气体非常稳定,很难与其他原子结合形成分子, 一旦被激发易与其他原子结合形成分子——准分子, 准分子:激发态很稳定,基态不稳定立即分解,因而可获得理想的反转分布。 稀有气体与卤素气体的不同组合所得激光波长(nm)不同。
• 粒子数反转分布——通过 p-n结正向大注入途径来实现: 正向偏压下,大量电子和空穴分别通过耗尽层注入到p侧和n侧, ——导带中存在电子而价带空,形成粒子数反转分布。
• 谐振腔——一般通过解理形成: GaAs等材料折射率很高,解理面大约反射35%的入射光,可形成的一对优质F-P腔, 若再在两腔面分别镀以反射膜和增透膜,则可以进一步提高腔运行效果
代表:Ar 激光器,
输出波长:最强的是 0.488 μm的蓝光和0.5145 μm 的绿光, 输出功率:达 500 MW cm2,最大可达 150 W,可见光谱中连续输出功率最大的气体激光
能量转换效率:千分之几 所需泵浦功率高,需加冷却水、热交换器等。
用途:彩色电视、全息照相、信息存储、 快速排字、理论研究、医学、染料激光 器泵浦源。
气体激光器
发光波长:0.6328m红光,3.39m、1.15m红外光。通常腔镜选取0.6328m 输出功率:较小(几mW到100mW) 能量转换功率:较低(0.01%) 单色性好,谱线宽度很窄,频率稳定度高,方向性好,发散角小,相干长度达几十公里 应用:精密计量、准直、测距、通讯、跟踪及全息照相等。 2.离子气体激光器 工作物质:离子气体。 输出波长:大多在紫外和可见光区域,输出功率比原子气体激光器高。
气体激光器
3.分子气体激光器 工作物质:中性气体分子的激光器。
代表:CO2 激光器,其能级与分子的振动和转动有关。充气: 1: 4 : 5 CO 2 : N 2 : He
输出波长:10.6 μm 红外,正处于光通信“大气窗口”中,常被用作地面和空间光通信 光源 效率:高达30%, 输出功率:近似与管子长度成正比,很易从1米长激光器中获得100W连续功率输出 脉冲激光器输出功率可达千兆瓦量级。 又可分为直流放电型、横向放电大气压(TEA) 型和波导型
1.同质结半导体激光器
是更复杂、更高性能半导体激光器的基本结构,简单、直观而 精练地体现了半导体激光器的工作原理,便于建立清晰的概念。
• 激光工作物质: 由半导体材料构成的有源区:Ⅲ-V族化合物,如GaAs,InP直接带隙结构, 导带底与价带顶都在K空间的同一位置,注人的电子-空穴带间的光跃迁 无需声子参与,跃迁几率很大,有很高的发光效率。
(2)纵向泵浦,泵浦光束与染料光束同轴; (3)倾斜入射式泵浦,泵浦光束与染料激光束成一锐角。
(a)脉冲激光激励型
(b) 连续激光器激励型 层流式染料激光器结构示意图
固体激光器
激光工作物质:生长期间人为掺入杂质原子的晶体。 特点:体积小,结构稳,易维护,输出功率大且适于调Q 产生高功率脉冲、锁模产生超短脉冲 典型例子:红宝石激光器、Nd:YAG(掺钕的钇铝石榴石激 光器)、钛蓝宝石激光器等。
半导体激光器
2.异质结半导体激光器 由两种不同带隙的半导体材料薄层,如GaAs和AlGaAs,所组成的一种夹心结构。 高带隙势垒可以阻止注入载流子向注入端深层扩散,从而增加反转粒子数密度, 改善激光器的温度特性,缩短有源区厚度,降低阈值电流密度。
与同质结半导体激光器相比,异质结半导体激光器具有有源层厚度薄、阈值 电流密度低、内部损耗低、电-光转换量子效率高、可通过改变混晶比调节输出 波长等一系列优点。
液体激光器
激光工作物质:液体。 可分为无机液体激光器和有机液体激光器。染料激光器最有代表性, 优点:波长连续可调(调谐范围从紫外直到红外)、价格低、增益高、效率较高、制备容易、
激光均匀性好、输出功率可与固体和气体激光器相比、 可以循环操作、利于冷却。
典型例子:若丹明6G染料激光器。
泵浦:,波长稍短于激光器输出波长的光泵, 泵浦方式:(1)横向泵浦,泵浦光束与染料激光束垂直;
•应变量子阱阵列激光器: 略微改变重叠层材料的晶格常数可使量子阱的材料层形成应变,由此构成的激光器。
相关文档
最新文档